A Review of Medical Conditions and Behavioral Problems in Dogs and Cats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Pain and Behavioral Problems
3.1. Pain and Aggressive Behaviors
3.2. Pain and Fears
3.3. Pain and Sleep Disorders
3.4. Inappropriate Elimination
3.5. Repetitive Behaviors
4. Endocrine Diseases and Behavioral Problems
5. Neurology and Behavioral Problems
6. Vomeronasal Organ and Behavioral Problems
7. Cardiology and Behavioral Problems
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- Dog. Male. 2.5 years old (approximately).
- Border collie.
- Adopted when he was 2 months old from a breeder in Canada. Since the dog was 6 months old, he lives in Spain (Mallorca) in a big house with garden and without any other animal at home.
- Non-castrated.
- Target: All unfamiliar people.
- Context: The behavior was more intense outside of home, but he also showed aggression toward unfamiliar people at home and at the veterinary clinic.
- Body posture: Defensive.
- Other important information: Impulsive aggression.
- He had bitten two times, in two different contexts (at home and at the park). He had always been impulsive. Neither of these two people had tried to touch the animal at the moment of the attack, they just passed by walking near the dog.
- Back pain: Low intensity.
- No more relevant information in the GPE.
- Back X-Ray: Normal.
- Abdominal X-Ray and ultrasonography: Normal.
- General blood test (Complete blood count (CBC) and complete biochemistry): Normal.
- Analgesic drug: Firocoxib 5 mg/kg/24 h.
- Physiotherapy treatment of back pain.
- Behavioral modification: We preferred to wait at least two weeks in order to evaluate the evolution of the case.
- Environmental modification: We preferred to wait at least two weeks in order to evaluate the evolution of the case.
- Other recommendations: Avoiding, if possible, contexts where the dog had been aggressive before. After one week, owners should present unfamiliar people to the dog (progressively).
- After two weeks of treatment, the dog did not show any aggressive behavior toward unfamiliar people. Firocoxib was withdrawn.
- Aggressive behavior completely disappeared after a few days of treatment, and the dog has not been aggressive since then.
- When pain-related aggression is suspected, it could be useful to start only with analgesic drug treatment.
- Depending on the evolution of the behavioral clinical signs only with treatment for pain, other treatments should be started. Especially important, a de-sensitization and counter-conditioning toward the target of the aggression should be introduced if the evolution is not good.
- Pain can lead to defensive aggressive behavior toward people even when the episode of pain started in the absence of people.
- Dog. 7 years old.
- Yorkshire terrier.
- Adopted when she was 1-year-old from a shelter.
- Spayed female.
- Context: The dog shows a very intense fear response when the owners want to give different kinds of treats.
- Body posture: Defensive. Non-aggressive.
- Other important information: Before the holidays, she had never shown this behavior.
- There is no history of negative experience at the friend’s home.
- GPE: Normal.
- X-Ray: Normal.
- Abdominal X-Ray and ultrasonography: Normal.
- General blood test (CBC and complete biochemistry):
- CBC: Not relevant. (Attached Document 1)
- Complete biochemistry: Not relevant.
- Bile acids:
- Pre-pandrial: 102.6 micromol/l (ref. value: 0.1–10 micromol/l).
- Post-pandrial: 146.7 micromol/l (ref. value: <25 micromol/l)
- Abdominal CT: No abnormalities were observed.
- Pharmacological treatment:
- Metronidazole: 25 mg/Kg/12 h.
- Lactulose every 12 h.
- Prescription Diet l/d Canine” de Hill’s®.
- Behavioral modification: We preferred to wait at least two weeks in order to evaluate the evolution of the case.
- Environmental modification: We preferred to wait at least two weeks in order to evaluate the evolution of the case.
- Other recommendations: Avoiding, if possible, contexts where the dog had shown fear before.
- After three weeks of treatment, the dog did not show any more fear reactions.
- Fear behavior completely disappeared after a few weeks of treatment. However, we have only had 7 weeks of follow-up.
- Liver malfunction should be suspected when fear reaction appears out of a “normal” context, even when the context is firm.
- This liver malfunction can change behavior even when there are no other clinical signs.
- Depending on the evolution of the behavioral and medical signs only with symptomatic treatment, other treatments should be started. However, in most of the cases, in order to better clarify the diagnosis, it is mandatory to do more invasive tests, such as a liver biopsy.
References
- Kaiser, S.; Sachser, N. The effects of prenatal social stress on behavior: Mechanism and function. Neurosci. Biobehav. Rev. 2005, 29, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, M. The long-term behavioral consequences of prenatal stress. Neurosci. Biobehav. Rev. 2008, 32, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.P. Critical periods in behavioral development. Science 1962, 138, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Hellyer, P.; Rodan, I.; Brunt, J.; Downing, R.; Hagedorn, J.E.; Robertson, S.A. AAHA/AAFP Pain management guidelines for dogs & cats. J. Am. Anim. Hosp. Assoc. 2007, 43, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Asmundson, G.J.G.; Katz, J. Understanding the co-occurrence of anxiety disorders and chronic pain: State-of-the-art. Depress. Anxiety 2009, 26, 888–901. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, K.M.D. Assessing pain in animals. Anim. Welf. 2002, 11, 31–53. [Google Scholar]
- Fanselow, M.S. Conditional and unconditional components of post-shock freezing. Pav. J. Biol. Sci. 1980, 15, 177–182. [Google Scholar] [CrossRef]
- Mellor, D.J.; Cook, C.J.; Stafford, K.J. Quantifying some responses to pain as a stressor. In The Biology of Animal Stress. Basic Principles and Implications for Animal Welfare; Moberg, G.P., Mench, J.A., Eds.; CABI Publishing: New York, NY, USA, 2000; pp. 171–198. [Google Scholar]
- Chaouloff, F. Effects of acute physical exercise on central serotonergic systems. Med. Sci. Sports Exerc. 1997, 29, 58–62. [Google Scholar] [CrossRef]
- Tsatsoulis, A.; Fountoulakis, S. The protective role of exercise on stress system dysregulation and comorbidities. Ann. N.Y. Acad. Sci. 2006, 1083, 196–213. [Google Scholar] [CrossRef]
- Camps, T.; Amat, M.; Mariotti, V.M.; Le Brech, S.; Manteca, X. Pain-related aggression in dogs: 12 clinical cases. J. Vet. Behav. 2011, 7, 99–102. [Google Scholar] [CrossRef]
- Brown, J.S.; Kalish, H.I.; Farber, I.E. Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J. Exp. Psychol. 1951, 41, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Meulders, A.; Vansteenwegen, D.; Vlaeyen, J.W. The acquisition of fear of movement-related pain and associative learning: A novel pain-relevant human fear conditioning paradigm. Pain 2011, 152, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Meulders, A.; Jans, A.; Vlaeyen, J. Differences in pain-related fear acquisition and generalization: An experimental study comparing fibromyalgia patients and healthy controls. Pain 2015, 156, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Lyons, D.N.; Kniffin, T.C.; Zhang, L.P.; Danaher, R.J.; Miller, C.S.; Bocanegra, J.L.; Carlson, C.R.; Westlund, K.N. Trigeminal inflammatory compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors. Neuroscience 2015, 295, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.; Sharpe, L.; Nicholas, M.K. Modification of attentional biases in chronic pain patients: A preliminary study. Eur. J. Pain. 2004, 8, 585–594. [Google Scholar] [CrossRef]
- Lindley, L. The effects of pain on behavior and behavioral problems Part 2: Fear and anxiety. Companion Anim. 2012, 17, 55–58. [Google Scholar] [CrossRef]
- Mathews, K.A. Pain assessment and general approach to management. Vet. Clin. North Am. Small Anim. Pr. 2000, 30, 729–755. [Google Scholar] [CrossRef]
- Mendl, M.; Brooks, J.; Basse, C.; Burman, O.; Paul, E.; Blackwell, E.; Casey, R. Dogs showing separation-related behavior exhibit a ‘pessimistic’ cognitive bias. Curr. Biol. 2010, 20, R839–R840. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.L.; Hewison, L.; McPeake, K.J.; Zulch, H.; Mills, D.S. Noise sensitivities in dogs: An exploration of signs in dogs with and without musculoskeletal pain using qualitative content analysis. Front. Vet. Sci. 2018, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.T.; Haythornthwaite, J.A. How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature. Sleep Med. Rev. 2004, 8, 119–132. [Google Scholar] [CrossRef]
- Doufas, A.G.; Panagiotou, O.A.; Ioannidis, J.P.A. Concordance of sleep and pain outcomes of diverse interventions: An umbrella review. PLoS ONE 2012, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Finan, P.H.; Goodin, B.R.; Smith, M.T. The association of sleep and pain: An update and a path forward. J. Pain. 2013, 14, 1539–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavigne, G.J.; Nashed, A.; Manzini, C.; Carra, M.C. Does sleep differ among patients with common musculoskeletal pain disorders? Curr. Rheumatol. Rep. 2011, 13, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Neilson, J.C.; Hart, B.L.; Cliff, K.D.; Ruehl, W.W. Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. J. Am. Vet. Med. Assoc. 2001, 218, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Kruger, J.M.; Osborne, C.A. Management of feline nonobstructive idiopathic cystitis. In Kirk’s Current Veterinary Therapy XIV; Bonagura, J.D., Twedt, D.C., Eds.; Saunders Elsevier: St Louis, MO, USA, 2009; pp. 944–950. [Google Scholar]
- Bowen, J.; Heath, S. Feline house-soiling and marking problems. In Behavior Problems in Small Animals Practical Advice for the Veterinary Team; Bowen, J., Heath, S., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2005; pp. 185–203. [Google Scholar]
- Overall, K.L. Undesirable, problematic, and abnormal feline behavior and behavioral pathologies. In Manual of Clinical Behavioral Medicine for Dogs and Cats; Overall, K.L., Ed.; Elsevier Mosbry: St Louis, MO, USA, 2013; pp. 360–456. [Google Scholar]
- Raphael, K.G.; Janal, M.N.; Nayak, S.; Schwartz, J.E.; Gallagher, R.M. Psychiatric comorbidities in a community sample of women with fibromyalgia. Pain 2006, 124, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Survey Anesthesiol. 1965, 11, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Samuels, M.H. Psychiatric and cognitive manifestations of hypothyroidism. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Overall, K.L. Medical differentials with potential behavioral manifestations. Vet. Clin. Small Anim. 2003, 33, 213–229. [Google Scholar] [CrossRef]
- Constant, E.L.; De Volder, A.G.; Ivanoiu, A.; Bol, A.; Labar, D.; Seghers, A.; Cosnard, G.; Melin, J.; Daumerie, C. Cerebral blood flow and glucose metabolism in hypothyroidism: A positron emission tomography study. J. Clin. Endocrinol. Metab. 2001, 86, 3864–3870. [Google Scholar] [CrossRef]
- Lass, P.; Slawek, J.; Derejko, M.; Rubello, D. Neurological and psychiatric disorders in thyroid dysfunctions. The role of nuclear medicine: SPECT and PET imaging. Minerva Endocrinol. 2008, 33, 75–84. [Google Scholar]
- Bauer, M.; Silverman, D.H.S.; Schlagenhauf, F.; London, E.D.; Geist, C.L.; Van Herle, K.; Rasgon, N.; Martinez, D.; Miller, K.; Van Herle, A.; et al. Brain glucose metabolism in hypothyroidism: A positron emission tomography study before and after thyroid hormone replacement therapy. J. Clin. Endocrinol. Metab. 2009, 94, 2922–2929. [Google Scholar] [CrossRef] [PubMed]
- He, X.S.; Ma, N.; Pan, Z.L.; Wang, Z.X.; Li, N.; Zhang, X.C.; Zhou, J.N.; Zhu, D.F.; Zhang, D.R. Functional magnetic resource imaging assessment of altered brain function in hypothyroidism during working memory processing. Eur. J. Endocrinol. 2011, 164, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Cooke, G.E.; Mullally, S.; Correia, N.; O’Mara, S.M.; Gibney, J. Hippocampal volume is decreased in adults with hypothyroidism. Thyroid 2014, 24, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Mason, G.A.; Bondy, S.C.; Nemeroff, C.B.; Walker, C.H.; Prange, A.J. The effects of thyroid state on beta-adrenergic and serotonergic receptors in rat brain. Psychoneuroendocrinol 1987, 12, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Henley, W.N.; Chen, X.; Klettner, C.; Bellush, L.L.; Notestine, M.A. Hypothyroidism increases serotonin turnover and sympathetic activity in the adult rat. Can. J. Physiol. Pharm. 1991, 69, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.C.; Jacobs, B.L. Handbook of the Behavioral Neurobiology of Serotonin, 1st ed.; Elsevier: Oxford, UK, 2010; pp. 309–457. [Google Scholar]
- Beaver, B.V.; Haug, L.I. Canine behaviors associated with hypothyroidism. J. Am. Anim. Hosp. Assoc. 2003, 39, 431–434. [Google Scholar] [CrossRef]
- Fatjó, J.; Stub, C.; Manteca, X. Four cases of aggression and hypothyroidism in dogs. Vet. Rec. 2002, 151, 547–548. [Google Scholar] [CrossRef]
- Seibert, L.M.; Landsberg, G.M. Diagnosis and management of patients presenting with behavior problems. Vet. Clin. Small Anim. 2008, 38, 937–950. [Google Scholar] [CrossRef]
- Legrand, J. Thyroid hormone effects on growth and development. In Thyroid Hormone Metabolism; Hennemann, G., Ed.; Marcel Dekker: New York, NY, USA, 1986; pp. 503–554. [Google Scholar]
- Porterfield, S.P.; Hendrich, C.E. The role of thyroid hormones in prenatal and neonatal development—Current perspectives. Endocr. Rev. 1993, 14, 94–106. [Google Scholar] [CrossRef]
- Oppenheimer, J.H.; Schwartz, H.L. Molecular basis of thyroid hormone-dependent brain development. Endocr Rev. 1997, 18, 462–475. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Kilby, M.D. Thyroid hormone and central nervous system development. J. Endocrinol. 2000, 165, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal, J. Action of thyroid hormone in brain. J. Endocrinol. Invest. 2002, 25, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.W.; Schoonover, C.M.; Jones, S.A. Control of thyroid hormone action in the developing rat brain. Thyroid 2003, 13, 1039–1056. [Google Scholar] [CrossRef] [PubMed]
- Morreale, G.; Obregón, M.J.; Escobar, F. Role of thyroid hormone during early brain development. Eur. J. Endocrinol. 2004, 151, U25–U73. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, O.M.; El-Gareib, A.W.; El-Bakry, A.M.; Abd El-Tawab, S.M.; Ahmed, R.G. Thyroid hormones states and brain development interactions. Int. J. Dev. Neurosci. 2008, 26, 147–209. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.G. Hypothyroidism and brain developmental players. Thyroid Res. 2015, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Scott-Moncrieff, J.C. Thyroid disorders in the geriatric veterinary patient. Vet. Clin. Small Anim. 2012, 42, 707–725. [Google Scholar] [CrossRef]
- Hassan, W.A.; Rahman, T.A.; Aly, M.S.; Shahat, A.S. Alterations in monoamines level in discrete brain regions and other peripheral tissues in young and adult male rats during experimental hyperthyroidism. Int. J. Dev. Neurosci. 2013, 31, 311–318. [Google Scholar] [CrossRef]
- Foster, E.S.; Carrillo, J.M.; Patnaik, A.K. Clinical signs of tumors affecting the rostral cerebrum in 43 dogs. J. Vet. Intern. Med. 1988, 2, 71–74. [Google Scholar] [CrossRef]
- Kandell, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Podell, M.; Fenner, W.R.; Powers, J.D. Seizure classification in dogs from a nonreferral-based population. J. Am. Vet. Med. Assoc. 1995, 206, 1721–1728. [Google Scholar]
- Ghormley, T.M.; Feldman, D.G.; Cook, J.R. Epilepsy in dogs five years of age and older: 99 cases (2006–2011). J. Am. Vet. Med. Assoc. 2015, 246, 447–450. [Google Scholar] [CrossRef]
- Licht, B.G.; Licht, M.H.; Harper, K.M.; Lin, S.; Curtin, J.J.; Hyson, L.L.; Willard, K. Clinical presentations of naturally occurring canine seizures: Similarities to human seizures. Epilepsy Behav. 2002, 3, 460–470. [Google Scholar] [CrossRef]
- Heynold, Y.; Faissler, D.; Steffen, F.; Jaggy, A. Clinical, epidemiological and treatment results of idiopathic epilepsy in 54 Labrador retrievers: A long-term study. J. Small Anim. Pr. 1997, 38, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Berendt, M.; Gram, L. Epilepsy and seizure classification in 63 dogs: A reappraisal of veterinary epilepsy terminology. J. Vet. Intern. Med. 1999, 13, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Jalava, M.; Sillanpaa, M. Concurrent illnesses in adults with childhood-onset epilepsy: A population-based 35-year follow-up study. Epilepsia 1996, 37, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Zenteno, J.F.; Matijevic, S.; Wiebe, S. Somatic comorbidity of epilepsy in the general population in Canada. Epilepsia 2005, 46, 1955–1962. [Google Scholar] [CrossRef]
- Nuyen, J.; Schellevis, F.G.; Satariano, W.A.; Spreeuwenberg, P.M.; Birkner, M.D.; van den Bos, G.A.M.; Groenewegen, P.P. Comorbidity was associated with neurologic and psychiatric diseases: A general practice-based controlled study. J. Clin. Epidemiol. 2006, 59, 1274–1284. [Google Scholar] [CrossRef]
- Austin, J.K.; Caplan, R. Behavioral and psychiatric comorbidities in pediatric epilepsy: Toward an integrative model. Epilepsia 2007, 48, 1639–1651. [Google Scholar] [CrossRef]
- LaFrance, W.C., Jr.; Kanner, A.M.; Hermann, B. Psychiatric comorbidities in epilepsy. Int. Rev. Neurobiol. 2008, 83, 347–383. [Google Scholar] [CrossRef]
- Heinrichs, S.C.; Seyfried, T.N. Behavioral seizure correlates in animal models of epilepsy: A road map for assay selection, data interpretation, and the search for causal mechanisms. Epilepsy Behav. 2006, 8, 5–38. [Google Scholar] [CrossRef]
- Gastens, A.M.; Brandt, C.; Bankstahl, J.P.; Löscher, W. Predictors of pharmacoresistant epilepsy: Pharmacoresistant rats differ from pharmacoresponsive rats in behavioral and cognitive abnormalities associated with experimentally induced epilepsy. Epilepsia 2008, 49, 1759–1776. [Google Scholar] [CrossRef] [PubMed]
- Shihab, N.; Bowen, J.; Volk, H.A. Behavioral changes in dogs associated with the development of idiopathic epilepsy. Epilepsy Behav. 2011, 21, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Watson, F.; Rusbridge, C.; Packer, R.M.A.; Casey, R.A.; Heath, S.; Volk, H.A. A review of treatment options for behavioural manifestations of clinical anxiety as a comorbidity in dogs with idiopathic epilepsy. Vet. J. 2018, 238, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, J.; Packer, R.M.A.; Volk, H.A. Preliminary assessment of cognitive impairments in canine idiopathic epilepsy. Vet. Rec. 2018, 182, 633. [Google Scholar] [CrossRef] [Green Version]
- Packer, R.M.A.; McGreevy, P.D.; Salvin, H.E.; Valenzuela, M.J.; Chaplin, C.M.; Volk, H.A. Cognitive dysfunction in naturally ocurring canine idiopathic epilepsy. PLoS ONE 2018, 13, e0192182. [Google Scholar] [CrossRef] [Green Version]
- Hesdorffer, D.C.; Hauser, W.A.; Olafsson, E.; Ludvigsson, P.; Kjartansson, O. Depression and suicide attempt as risk factors for incident unprovoked seizures. Ann. Neurol. 2006, 59, 35–41. [Google Scholar] [CrossRef]
- Packer, R.M.A.; Hobbs, S.L.; Blackwell, E.J. Behavioral interventions as an adjunctive treatment for canine epilepsy: A missing part of the epilepsy management toolkit? Front. Vet. Sci. 2019, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Berendt, M.; Gredal, H.; Alving, J. Characteristics and phenomenology of epileptic partial seizures in dogs: Similarities with human seizure semiology. Epilepsy Res. 2004, 61, 167–173. [Google Scholar] [CrossRef]
- Stokes, P.E.; Holtz, A. Fluoxetine tenth anniversary update: The progress continues. Clin. Ther. 1997, 19, 1135–1249. [Google Scholar] [CrossRef]
- Simpson, S.A.; Syring, R.; Otto, C.M. Severe blunt trauma in dogs: 235 cases (1997–2003). J. Vet. Emerg. Crit. Care 2009, 19, 588–602. [Google Scholar] [CrossRef]
- Fletcher, D.J.; Dewey, C.W. Traumatic brain injury. In Kirk’s Current Veterinary Therapy XIV; Bonagura, J.D., Twedt, D.C., Eds.; Elsevier Saunders: St. Louis, MO, USA, 2009; pp. 33–37. [Google Scholar]
- Beltran, E.; Platt, S.R.; McConnell, J.F.; Dennis, R.; Keys, D.A.; De Risio, L. Prognostic value of early magnetic resonance imaging in dogs after traumatic brain injury: 50 cases. J. Vet. Intern. Med. 2014, 28, 1256–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, L.G.; Wohl, J.S.; Manning, A.M.; Hackner, S.G.; Raffe, M.R.; Maislin, G. Evaluation of the survival prediction index as a model of risk stratification for clinical research in dogs admitted to intensive care units at four locations. Am. J. Vet. Res. 2001, 62, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.H.; Levin, H.S.; Eisenberg, H.M. Mild head injury classification. Neurosurgery 1990, 27, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Borczuk, P. Predictors of intracranial injury in patients with mild head trauma. Ann. Emerg. Med. 1995, 25, 731–736. [Google Scholar] [CrossRef]
- Miller, E.C.; Holmes, J.F.; Derlet, R.W. Utilizing clinical factors to reduce head CT scan ordering for minor head trauma patients. J. Emerg. Med. 1997, 15, 453–457. [Google Scholar] [CrossRef]
- Haydel, M.J.; Preston, C.A.; Mills, T.J.; Luber, S.; Blaudeau, E.; DeBlieux, P.M. Indications for computed tomography in patients with minor head injury. N. Engl. J. Med. 2000, 343, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Arciniegas, D.B.; Anderson, C.A.; Topkoff, J.; McAllister, T.W. Mild traumatic brain injury: A neuropsychiatric approach to diagnosis, evaluation, and treatment. Neuropsychiatr. Dis. Treat. 2005, 1, 311–327. [Google Scholar]
- Povlishock, J.T. Traumatically induced axonal injury: Pathogenesis and pathobiological implications. Brain. Pathol. 1992, 2, 1–12. [Google Scholar]
- Obrenovitch, T.P.; Urenjak, J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J. Neurotrauma. 1997, 14, 677–698. [Google Scholar] [CrossRef]
- Arciniegas, D.B. The cholinergic hypothesis of cognitive impairment caused by traumatic brain injury. Curr. Psychiatry Rep. 2003, 5, 391–399. [Google Scholar] [CrossRef]
- Choksey, M.S.; Costa, D.C.; Iannotti, F.; Crockard, H.A. 99TCm-HMPAO SPECT studies in traumatic intracerebral haematoma. J. Neurol. Neurosurg. Psychiatry 1991, 54, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchener, A.; Wyper, D.J.; Patterson, J.; Hadley, D.M.; Wilson, J.T.; Scott, L.C.; Jones, M.; Teasdale, G.M. SPECT, CT, and MRI in head injury: Acute abnormalities followed up at six months. J. Neurol. Neurosurg. Psychiatry 1997, 62, 633–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazzelli, M.; Chappell, F.M.; Miranda, H.; Shuler, K.; Dennis, M.; Sandercock, P.A.; Muir, K.; Wardlaw, J.M. Diffusion-weighted imaging and diagnosis of transient ischemic attack. Ann. Neurol. 2014, 75, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejaz, S.; Emmrich, J.V.; Sawiak, S.J.; Williamson, D.J.; Baron, J.-C. Cortical Selective Neuronal Loss, Impaired Behavior, and Normal Magnetic Resonance Imaging in a New Rat Model of True Transient Ischemic Attacks. Stroke 2015, 46, 1084–1092. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Han, S.S.; Tatlisumak, T.; Liu, K.F.; Garcia, J.H.; Sotak, C.H. Reversal of acute apparent diffusion coefficient abnormalities and delayed neuronal death following transient focal cerebral ischemia in rats. Ann. Neurol. 1999, 46, 333–342. [Google Scholar] [CrossRef]
- Sicard, K.M.; Henninger, N.; Fisher, M.; Duong, T.Q.; Ferris, C.F. Long-term changes of functional MRI-based brain function, behavioral status, and histopathology after transient focal cerebral ischemia in rats. Stroke 2006, 37, 2593–2600. [Google Scholar] [CrossRef]
- Pageat, P.; Gaultier, E. Current research in canine and feline pheromones. Vet. Clin. Small Anim. 2003, 33, 187–211. [Google Scholar] [CrossRef]
- Asproni, P.; Cozzi, A.; Verin, R.; Lafont-Lecuelle, C.; Bienboire-Frosini, C.; Poli, A.; Pageat, P. Pathology and behaviour in feline medicine: Investigating the link between vomeronasalitis and aggression. J Feline Med. Surg. 2016, 18, 997–1002. [Google Scholar] [CrossRef]
- Asproni, P.; Cozzi, A.; Mainau, E.; Temple, D.; Manteca, X.; Bienboire-Frosini, C.; Pageat, P. First description of vomeronasal organ inflammatory changes in pigs. In Proceedings of the International Congress on Semiochemistry and Management of Animal Populations, Apt, France, 19–22 November 2014; p. 131. [Google Scholar]
- Gorelick, P.B. Risk factors for vascular dementia and Alzheimer disease. Stroke 2004, 35 (Suppl. I), 2620–2622. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.H.; Cohen, R.; Ott, B.R.; Salloway, S. Vascular Dementia: Cerebrovascular Mechanisms and Clinical Management; Human Press: Totowa, NJ, USA, 2005. [Google Scholar]
- Victoroff, J.; Mack, W.J.; Lynnes, S.A.; Chui, H.C. Multicenter clinicopathological correlation in dementia. Am. J. Psychiatry 1995, 152, 1476–1484. [Google Scholar]
- Snowdon, D.A.; Grenier, L.H.; Mortimer, J.A.; Riley, K.P.; Markesbery, W.R. Brain infarction and the clinical expression of Alzheimer disease. The Nun study. J. Am. Med. Assoc. 1997, 277, 813–817. [Google Scholar] [CrossRef]
- MRC CFAS. Cognitive function and dementia in six areas of England and Wales: The distribution of MMSE and prevalence of GMS organicity level in the MRC CFA study. Psychol. Med. 1998, 28, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.L.; Paul, R.H. The aging population and the relevance of vascular dementia. In Vascular Dementia: Cerebrovascular Mechanisms and Clinical Management; Paul, R.H., Cohen, R., Ott, B.R., Salloway, S., Eds.; Human Press: Totowa, NJ, USA, 2005; pp. 3–5. [Google Scholar]
- Wolfson, C.; Wolfson, D.B.; Asgharian, M.; M’Lan, C.E.; Østbye, T.; Rockwood, K.; Hogan, M.D. A reevaluation of the duration of survival after the onset of dementia. N. Engl. J. Med. 2001, 344, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Nash, D.T.; Fillit, H. Cardiovascular disease risk factors and cognitive impairment. Am. J. Cardiol. 2006, 97, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Paepe, D.; Verjans, G.; Duchateau, L.; Piron, K.; Ghys, L.; Daminet, S. Routine health screening: Findings in apparently healthy middle-aged and old cats. J. Feline Med. Surg. 2013, 15, 8–19. [Google Scholar] [CrossRef]
Group | Abnormalities in Neurological Examination | Abnormalities in Laboratory or Imaging Work-Up | Examples |
---|---|---|---|
Group 1 | + | + | Brain tumors, brain ischemia, traumatic injuries, etc. |
Group 2 | + | − | Lysosomal storage diseases, degenerative problems |
Group 3 | − | + | Tumors of frontal regions of the brain |
Group 4 | − | − | Idiopathic epilepsy, mild traumatic brain injury, transient ischemia |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camps, T.; Amat, M.; Manteca, X. A Review of Medical Conditions and Behavioral Problems in Dogs and Cats. Animals 2019, 9, 1133. https://doi.org/10.3390/ani9121133
Camps T, Amat M, Manteca X. A Review of Medical Conditions and Behavioral Problems in Dogs and Cats. Animals. 2019; 9(12):1133. https://doi.org/10.3390/ani9121133
Chicago/Turabian StyleCamps, Tomàs, Marta Amat, and Xavier Manteca. 2019. "A Review of Medical Conditions and Behavioral Problems in Dogs and Cats" Animals 9, no. 12: 1133. https://doi.org/10.3390/ani9121133