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Simple Summary: Cytochrome P450s (CYPs) are a family of membrane-bound monooxygenase proteins.
In this study, 58 CYP genes were identified in Amur stickleback (Pungitius sinensis). Motif distribution,
recombination, and selection were performed to investigate their evolutionary history. In addition,
expression profiles of CYPs were examined following dimethoate treatment. The results will provide a
useful reference for further functional analyses.

Abstract: Cytochrome P450s (CYPs) are a family of membrane-bound mono-oxygenase proteins,
which are involved in cell metabolism and detoxification of various xenobiotic substances. In this
study, we identified 58 putative CYP genes in Amur stickleback (Pungitius sinensis) based on the
transcriptome sequencing. Conserved motif distribution suggested their functional relevance within
each group. Some present recombination events have accelerated the evolution of this gene family.
Moreover, a few positive selection sites were identified, which may have accelerated the functional
divergence of this family of proteins. Expression patterns of these CYP genes were investigated and
indicated that most were affected by dimethoate treatment, suggesting that CYPs were involved
in the detoxication of dimethoate. This study will provide a foundation for the further functional
investigation of CYP genes in fishes.
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1. Introduction

Cytochrome P450s (CYPs) are a family of membrane-bound hemoproteins that catalyze a variety
of mono-oxygenase reactions, which play key roles in detoxification and cellular metabolism of
xenobiotics [1]. The name comes from its discovery as a pigment that absorbs 450 nm wavelength of
light in a complex with carbon monoxide. The maximum absorption of CYP is 420 nm in inactive
form [2,3]. CYPs are divided into different families and subfamilies based on their special function and
species existence. Different families are represented by Arabic numerals, while different subfamilies are
represented by capital letters from A to Q [4]. For instance, CYP1B2 refers to CYP family 1, subfamily B
and protein 2. There are more than 13,000 CYP genes representing more than 400 families among various
species [5] The number of CYP genes varies greatly among different organisms [6–9]. A total of 57
CYP genes have been identified in human, belonging to 18 families and 44 subfamilies [6]. Similarly,
54 genes encoding CYPs have been identified in Japanese pufferfish (Takifugu rubripes) [9]. In addition,
about 246 and 328 CYP genes were also found from the genomes of Arabidopsis and rice, respectively [7].
The difference in the number of CYP genes in different organisms may be the result of adaptation to
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diverse environments [10]. Moreover, this CYP polymorphism may be related to drug metabolic capacity
and risk of disease development [11].

CYPs can be classified into different categories based on different views. Traditionally, some CYPs
are involved in the detoxification of xenobiotics, and others are involved in the biosynthesis of
endogenous compounds. Eukaryotic CYPs are mainly located in the endoplasmic reticulum (ER)
bound to the membrane, while prokaryotic ones participate in the electron transfer process in
the cytosol [12,13]. In addition, some mitochondrial membrane-binding CYPs have been found [14].
Structurally, CYP proteins usually contain several conserved motifs and substrate recognition sites [15,16].
X-ray crystal structure and molecular dynamics simulations (MDS) show that some active sites of
the CYP proteins have obvious flexibility [17]. This conformational change increases the interaction
between the active sites of CYP proteins and various compounds.

CYPs catalyze the oxidative metabolism of both xenobiotics and endogenous compounds,
such as drugs, pesticides, chemical carcinogens, hormones, phytochemicals, and environmental
contaminants, etc. [1]. Moreover, production of a vast diversity of plant natural products, such as
steroids and terpenoids, is based on the function of CYPs [18]. Some tumorigenesis also has been
associated with the CYP genes [19]. In fish, expression patterns of some CYP family genes could
be changed by various compounds, such as pesticides, benzopyrene, polychlorinated biphenyls,
and 4-tert-pentylphenol [20–24]. Furthermore, some receptors, such as the aryl hydrocarbon (Ah)
receptor, constitutive and rostane receptor (CAR), pregnane X receptor (PXR), and retinoic X receptor
(RXR) are involved in the binding of xenobiotics and the promoter regions of CYPs, thus regulating the
expression of the CYP genes [25].

Over the past 30 years, organophosphorus pesticides (OPs) have accelerated agricultural
production. They can bind to cholinesterase on the synaptic membrane and prevent its catalytic action.
Accumulated acetylcholine can then overexcite insects and eventually lead to death [26]. At the same
time, the uncontrolled use of OPs has also brought environmental pollution problems. When entering
water, OPs have a serious impact on some aquatic organisms [27]. OPs widely interfere with physiological
processes, including enzyme activity, oxidative metabolism, and osmotic regulation, and exert
immunotoxic effects on organisms [28,29]. Dimethoate (O,O-dimethyl S-(N-methylcarbamoylmethyl)-
dithiophosphate) is one kind of the OPs widely used in experiments. An important biological
resource and the first animal taxon with both innate and adaptive immune systems, studies of fish
not only deepen our understanding of the evolution of the vertebrate immune system, but also
help to strengthen environmental monitoring and protect an important food supply. Some CYPs
have been considered as reliable biomarkers for monitoring pollutants in aquatic animals [30,31].
Pungitius sinensis, also known as Amur stickleback, belongs to the family Gasterosteidae. Because of
its biological characteristics like strong vitality, small size, and short reproductive cycle, this fish will
be an important model system for many researchers. Threespine stickleback (Gasterosteus aculeatus)
especially has a wide range of applications in physiological and behavioral studies. Compared with
G. aculeatus, the research on P. sinensis is limited. This study first identified 58 putative CYP genes
based on the transcriptome sequencing data of Amur stickleback. Next, motif distribution, phylogeny,
recombination, selective pressure, and expression profiles were performed to explore their evolutionary
relationships. This study will be helpful for further functional studies of this gene family.

2. Materials and Methods

2.1. Materials, Organophosphorus Pesticide Exposure, and RNA Sequencing and Analysis

P. sinensis were obtained from aquaculture farms. Each mock and experimental group consisted of three
fish hold separately at 22–23 ◦C. After 2 days of environmental adaptation, dimethoate (C5H12NO3PS2)
was added to the experimental group at a 2.1 mg/L concentration for 24 h. The mock group was
composed of fish cultured in freshwater. In these experiments, the entire fish body was used for RNA
extraction. The RNA samples were pooled from three biological replicates. An equimolar amount
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of RNA was used for RNA sequencing. The Illumina Hiseq2000 platform was used to sequence the
library at Shanghai OE Biotech Co., Ltd. (Shanghai, China). In transcriptome sequencing analysis,
the expression level of Unigene can be estimated by counting the sequence reads. Reads counts were
positively correlated with gene length and sequencing depth, as well as the true expression level of the
gene. Using the database, the expression abundance of each Unigene in each sample was identified
by sequence similarity alignment. Bowtie 2 [32] was used to obtain the reads number on Unigene,
and eXpress [33] was used to calculate the FPKM (fragments per kilobase of transcripts per million
fragments) value in each sample. The FPKM value was used to indicate the expression level of each
transcript [34,35].

2.2. Identification of Putative CYP Proteins in the P. sinensis

To identify the putative CYP proteins in this RNA sequencing data, the Hidden Markov Model
(HMM) profile of the conserved CYP domain (pfam00067) was used to perform a BLAST search
against the Ensembl database [36] with an E-value cutoff of 1 × 10−1. Next, the CDD (a Conserved
Domain Database) [37] and the Pfam databases [38] were used to further verify whether the candidates
belong to this family. Some members that do not contain the conserved CYP domain are removed.
ProtParam [39] and CELLO (subCELlular LOcalization predictor) [40] were used to predict the
biochemical characteristics and the subcellular localization of these CYP proteins, respectively.
Searching of the best matched sequence and species was performed on the National Center for
Biotechnology Information database (NCBI) [41].

2.3. Phylogeny, and Conserved Motif Analysis of the CYP Gene Family

To explore the phylogenetic relationships among these CYP members, multiple sequence alignment
was performed using the MUSCLE (MUltiple Sequence Comparison by Log-Expectation) method [42].
Next, a neighbor-joining phylogenetic tree was constructed using MEGA6 (Molecular Evolutionary
Genetics Analysis) [43] with parameters: p-distance substitution model, 1000 bootstrap replications,
and insertion of pairwise deletion gaps. Maximum likelihood (ML) method was also used to construct
another phylogenetic tree with Jones–Taylor–Thornton (JTT) model, 100 bootstrap replications and
partial deletion. Additionally, conserved motifs of these CYP proteins were identified using the MEME
(Multiple Em for Motif Elicitation) program [44] with the following parameters: a maximum of eight
motifs and 6–50 widths.

2.4. Recombination Events and Detecting of the CYP Genes

Potential recombination events at the CYP genes were identified using RDP (Recombination
Detaction Program) v4.8 [45]. Five methods (RDP [46], GENECONV [47], MaxChi [48], Chimaera [48],
and TOPAL [49]) were used to analyze the CDS (coding sequence) of the CYP genes with a p-value
cutoff of 0.05 and 100 permutations.

2.5. Site-Specific Selection Assessment and Testing

Selective pressure at each residue of the CYP proteins was estimated using the value of the
synonymous (Ks) and non-synonymous rates of nucleotide substitution (Ka). Four evolutionary
models [M8 (beta+w ≥ 1), M8a (beta+w = 1), M7 (beta), and M5 (gamma)] were used to calculate
the Ka/Ks values. Among these models, a Bayesian inference approach was used to represent how
the characteristics evolved with probabilistic terms, and their biological assumptions were also used
to assume a statistical distribution. M8 allows positive selection of proteins. A proportion p0 of the
sites are drawn from a beta distribution, and a proportion p1 (=1 − p0) of the sites are drawn from an
additional category beta+w (≥ 1). Therefore, sites drawn from the beta distribution are experiencing
purifying selection, whereas those from the beta+w category are experiencing either neutral or positive
selection. The M8a model is similar to the M8 model, but positive selection is not allowed by setting
beta+w = 1. The M7 model is also similar to M8 except that it only assumes a beta distribution without
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additional category, which is mainly used for protein purifying selection. The M5 model assumes that
Ka/Ks among sites are gamma distributed, and thus may allow for purifying, neutral, and positive
selection [50]. All these models assume a statistical distribution to account for heterogenous Ka/Ks
values among sites. The distributions are approximated using eight discrete categories following the
previous study [51] and the Ka/Ks values are computed by calculating the expectation of the posterior
distribution [50]. Comparison of these models allows statistical testing of the hypothesis of positive
selection on protein (H1) by comparing the hypothesis with the null model (H0). LRT (likelihood
ratio test) and AICc (Alaike Information Criterion) are allowed for the nested and no-nested models,
respectively. The three-dimensional structure of the Psi_CYP4V protein in Group III was predicted
with the Phyre2 server [52]. The effect of a point mutant on protein stability was predicted using
I-Mutant2.0 [53].

3. Results and Discussion

3.1. Identification, Phylogenetic Analysis, and Motifs Distribution

A total of 58 putative CYP genes were identified in the P. sinensis genome (Table S1). They encode
183–557 amino acids with 5.50 to 9.57 pI values. Also, 91.4% of the predicted CYP proteins exhibit
highly hydrophobic characteristics. Most CYPs were predicted to be localized in the plasma membrane
(44.8%), mitochondrion (41.4%) or cytoplasm (36.2%) by CELLO [40].

In order to evaluate the evolutionary relationship among CYP family genes in this fish, phylogenetic
analysis was carried out based on a NJ (Neighbor-Joining) method. ML theory also was used to generate
another phylogenetic tree (Figure S1), which had very similar topology with the NJ tree. Here, the NJ
tree was selected for further analysis. These 58 CYP proteins were divided into five groups according to
sequence similarity (Figure 1), although the bootstrap support was low for the most fundamental nodes
of the tree. The motif distribution described below also supports this classification. The CYP1 family
belongs to Group I, which is involved in the metabolism and activation of carcinogens in fish [54].
Its expression is induced by a variety of compounds such as pesticides, polychlorinated biphenyls,
and benzopyrene. Therefore, CYP1 is often used as a biomarker for assessing aquatic environmental
pollution [55,56]. The CYP2 family shows the largest degree of divergence, and except for CYP2A
in Group II, other subfamilies (CYP2J, CYP2K, CYP2N, etc.) are in Group I (Figure 1). These CYP2
members catalyze foreign and endogenous compounds in fish [57]. CYP3 and CYP4 were assigned to
Group III. The CYP3 family shows testosterone hydroxylase activity, and the enzyme activity of some
members is induced by treatment with dexamethasone, dehydroepiandrosterone (DHEA), and other
compounds [58,59]. The CYP4 family catalyzes the hydroxylation of fatty acids, and some peroxisome
proliferating agent can induce its transcription [60]. One family of Group IV, CYP19, catalyzes C19
androgen to form aromatic C18 estrogen. It is the terminal steroid-producing enzyme in the estrogen
biosynthesis pathway, and therefore plays a role in temperature-dependent sex determination [61].
Retinoic acid (RA) plays an important role in embryonic development of vertebrates [62]. CYP26 family
enzymes from Group V metabolize RA to hydroxylated polar derivatives [63]. Deletion of CYP26
genes in zebrafish can lead to severe damage of the hindbrain [62].
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its function was considered to neutralize the charge of propionate side chains of heme through 
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I-helix region (GxE/DTT/S), PERF motif region (PxxFxPE/DR), and K-helix region (ExLR) were found 
in motifs 1, 2, 3, and 4, respectively (Figure 2B−E). The heme-binding region exists in the C-terminal 
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complexity of CYP proteins. 

Figure 1. Phylogenetic relationships and motif compositions of the CYP genes in the P. sinensis.
The phylogenetic tree was constructed and classified into five groups. Different motifs of the CYP
proteins are displayed by different-colored boxes.

We also compared structural diversity with MEME [44]. Eight conserved motifs were found
among these predicted CYP proteins (Figure 1). In general, most members have the same motif
distribution within each group, which suggests the similarity of their functions [64,65]. In addition,
several specific motifs were found within some groups. For example, motifs 6 and 7 were restricted to
Group I. Among them, a conserved C-helix region (WxxxR) (Figure 2A) was located in motif 7 and its
function was considered to neutralize the charge of propionate side chains of heme through tryptophan
and arginine [66]. Moreover, others conserved heme-binding region (PFxxGxRxCxG/A), I-helix region
(GxE/DTT/S), PERF motif region (PxxFxPE/DR), and K-helix region (ExLR) were found in motifs 1,
2, 3, and 4, respectively (Figure 2B–E). The heme-binding region exists in the C-terminal of CYP
proteins, which forms a specific secondary structure and is involved in the NADPH-dependent electron
transport pathway [67]. The I-helix region is responsible for proton transfer during monooxygenation.
The K-helix region is essential for stabilizing the heme core structure of CYPs [68]. These conserved or
variable regions play key roles in the functional divergence and complexity of CYP proteins.



Animals 2019, 9, 873 6 of 15Animals 2019, 9, x  6 of 15 

 
A 

B C 

 
D E 

Figure 2. Motif and variation patterns among P. sinensis CYP genes. The height of a letter indicates its 
relative frequency at the given position for the amino acid. Five conserved regions are shown here: 
(A) C-helix region (WxxxR); (B) Heme-binding region (PFxxGxRxCxG/A); (C) I-helix region 
(GxE/DTT/S); (D) PERF motif region (PxxFxPE/DR); and (E) K-helix region (ExLR). 

3.2. Comparison of the CYP Genes among P. sinensis and Other Species 

Next, we investigated the number of changes of the CYP genes among the P. sinensis and 
zebrafish (Danio rerio), medaka (Oryzias latipes), threespine stickleback (Gasterosteus aculeatus), 
Atlantic cod (Gadus morhua), green-spotted puffer (Tetraodon nigroviridis), and fugu puffer (Takifugu 
rubripes). The results indicated that a number of the CYP genes have undergone a great change 
following genome duplication in these fish species, and their expansion of the CYP gene family 
mainly occurred in Group I (Table 1; Figure S2). Fewer CYP genes exist in Groups III and IV of 
Atlantic cod, and in Group III of fugu puffer, respectively. Moreover, taxon-specific expansion of the 
CYP genes was found to occur in the Group II of P. sinensis. The comparative analysis revealed some 
evolutionary changes of the CYP gene family during the separation of these fish taxa. This family has 
undergone extensive gene gain and loss in evolution, and the gene duplication of CYP members in 
Group I was more significant. In zebrafish, we also examined their chromosome locations and found 
that over 56.9% of them were arranged in tandem, especially on chromosomes 20, 23, and 25. This 
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Figure 2. Motif and variation patterns among P. sinensis CYP genes. The height of a letter indicates
its relative frequency at the given position for the amino acid. Five conserved regions are shown
here: (A) C-helix region (WxxxR); (B) Heme-binding region (PFxxGxRxCxG/A); (C) I-helix region
(GxE/DTT/S); (D) PERF motif region (PxxFxPE/DR); and (E) K-helix region (ExLR).

3.2. Comparison of the CYP Genes among P. sinensis and Other Species

Next, we investigated the number of changes of the CYP genes among the P. sinensis and zebrafish
(Danio rerio), medaka (Oryzias latipes), threespine stickleback (Gasterosteus aculeatus), Atlantic cod
(Gadus morhua), green-spotted puffer (Tetraodon nigroviridis), and fugu puffer (Takifugu rubripes).
The results indicated that a number of the CYP genes have undergone a great change following genome
duplication in these fish species, and their expansion of the CYP gene family mainly occurred in
Group I (Table 1; Figure S2). Fewer CYP genes exist in Groups III and IV of Atlantic cod, and in
Group III of fugu puffer, respectively. Moreover, taxon-specific expansion of the CYP genes was
found to occur in the Group II of P. sinensis. The comparative analysis revealed some evolutionary
changes of the CYP gene family during the separation of these fish taxa. This family has undergone
extensive gene gain and loss in evolution, and the gene duplication of CYP members in Group I was
more significant. In zebrafish, we also examined their chromosome locations and found that over
56.9% of them were arranged in tandem, especially on chromosomes 20, 23, and 25. This suggests
that the amplification of CYP genes in zebrafish may come from tandem duplication. In addition,
synteny analysis of the CYP genes were also performed to demonstrate more detailed evolutional
relationship in several fish and other species (Figure S3). There is a CYP gene cluster on chromosome
20 of zebrafish. However, most of these genes in the cluster have disappeared in threespine stickleback,
Atlantic cod, and fugu puffer, suggesting that tandem duplication contributes the amplification of
zebrafish CYP genes. In addition, we also found that some CYP2J20-like genes were duplicated in
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chicken, turkey, and mouse (Figure S3). Previous studies have indicated that the number of CYP genes
varies greatly in different organisms. About 50–70 CYP genes have been identified in mammals [8].
Moreover, the number of CYP family genes has exceeded 200 in plants [7]. Similarly, in insects,
the number of CYP genes in flour beetle Tribolium castaneum was 1.72 times higher than that of fruit fly
Drosophila melanogaster [69,70]. The number variation of CYP genes may be the result of adaptation to
ecological environment in different organisms [10].

Table 1. Variation in number of CYP genes among P. sinensis and other fish species.

Group P. sinensis D. rerio O. latipes G. aculeatus G. morhua T. nigroviridis T. rubripes

I 17 34 18 15 18 18 10
II 6 0 0 0 0 0 0
III 10 9 8 7 8 9 3
IV 11 8 8 9 4 8 7
V 13 12 9 11 3 11 7

Others 1 1 1 1 0 1 1

3.3. Detection of Intragenic Recombination Events in the P. sinensis CYP Genes

Recombination results in the exchange of sequences within or between genes, which affects the
gene structure and genetic components [71,72]. To explore the evolutionary properties of P. sinensis
CYP genes, five recombination methods (RDP, Geneconv, MaxChi, Chimaera, and TOPAL) embedded
in the RDP v4.8 software [45] were used to investigate their recombination events. A total of 40 CYP
genes were evaluated and they experienced 22 recombination events (Table 2). The MaxChi method
detected more recombination signals than other methods due to its Maximum χ2 method in the data
evaluation process [73,74]. A recombination event of Psi_CYP2J and Psi_CYP2Y is presented as an
example (Figure 3). An obvious recombination signal appears in the central region of Psi_CYP2J gene.
A previous study has demonstrated that CYP genes include multiple cases of interparalog chimeras,
and the polymorphic CYP12A4/CYP12A5 chimera correlates with resistance to an insecticide [10].
Our results suggest multiple P. sinensis CYP genes undergoing recombination events. Therefore,
recombination increased the complexity of P. sinensis CYP genes and may have played important roles
in functional divergence and genetic evolution of this gene family.
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Table 2. Predicted recombination events among CYP genes in P. sinensis.

Event Number Found In Recombination Major Parent Minor Parent
Detection Methods

RDP GENECONV MaxChi Chimaera TOPAL

1 1 Psi_CYP26C Unknown Psi_CYP26A - - + + +
2 1 Psi_CYP2U1 Psi_CYP2J Unknown - - + - -
3 1 Psi_CYP27A2 Psi_CYP27C Unknown - - + - -
4 1 Psi_CYP2K2 Psi_CYP2J Unknown - - + - -
5 1 Psi_CYP7B Psi_CYP8B1 Psi_CYP26C - - + - -
6 1 Psi_CYP2K1 Psi_CYP2J Unknown - - + - +
7 2 Psi_CYP3A Psi_CYP46A Unknown - - + - -
8 1 Psi_CYP1B1 Psi_CYP2A1 Unknown - - + - -
9 1 Psi_CYP2K2 Psi_CYP2J Psi_CYP2A1 - - + - -
10 1 Psi_CYP24A1 Unknown Psi_CYP5A - - + - -
11 1 Psi_CYP27A3 Psi_CYP27 Psi_CYP24A1 - - + - -
12 1 Psi_CYP27A3 Psi_CYP3C1 Unknown - - + - -
13 2 Psi_CYP73A1 Psi_CYP2K1 Psi_CYP3A69 - + + - -
14 1 Psi_CYP73A1 Psi_CYP17A1 Unknown - - + - -
15 1 Psi_CYP11A2 Psi_CYP27B Psi_CYP73A2 - - + - -
16 1 Psi_CYP3A69 Psi_CYP26A Psi_CYP17B - - + - -
17 1 Psi_CYP17A1 Psi_CYP2N1 Psi_CYP17A3 - - + - -
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3.4. Selective Pressure at Amino Acid Sites of the CYP Members

Selective pressure of different amino acid sits was assessed using the Ka/Ks value, which indicates
positive or purifying selection when greater or less than one, respectively [75]. Peptides experiencing
selective pressure often alter the structure and hence the function of proteins during evolution.
Duplicated genes usually have three destinies: neo-functionalization, sub-functionalization,
or pseudogenization. Among them, the neo-functionalization and sub-functionalization are under
positive and purifying selection, respectively [76–78]. To explore which peptides had undergone
selection in evolution, the Ka/Ks value of each CYP site was calculated (Table 3). Group V had higher
Ka/Ks values than the other groups, indicating that the changes among these members are relatively
fast. All Ka/Ks values were below one, indicating that most P. sinensis CYP genes were subjected to
purifying selection during evolution. In addition, several positive selection sites were identified in
Group III and Group V under the M5 model (which assumes a gamma distribution overω) (Table 3).
As an example, the location of eight positive selection sites in Group III is described in detail (Figure 4;
Figure S3). Among them, three sites (28L, 208K, and 354T) are located on the alpha helices (A, E, and J),
respectively. Moreover, the 208K site was also located on substrate recognition site 2 (SRS2) (Figure S1).
SRSs are responsible for the identification and binding of metabolic substrates. Here, a residue (208K)
in SRS2 was positively selected, suggesting that the type of substrate recognized may change. We also
found that positive selection site (414R) was located near the PERF motif region, suggesting that the
414R site may affect the function of this domain.

Table 3. Likelihood values and parameter estimates regarding selection upon CYP genes.

Branches Models Ka/Ks Log-Likelihood Numbers of PSS *

Group I

M8 (beta+w ≥ 1) 0.2757 −20,905.7 0
M8a (beta+w = 1) 0.2781 −20,904.8 0

M7 (beta) 0.2600 −20,893.9 0
M5 (gamma) 0.3149 −20,940 0

Group II

M8 (beta+w ≥ 1) 0.2859 −8912.75 0
M8a (beta+w = 1) 0.2879 −8913.55 0

M7 (beta) 0.2752 −8909.22 0
M5 (gamma) 0.3308 −8947.28 0

Group III

M8 (beta+w ≥ 1) 0.3429 −17,468.6 0
M8a (beta+w = 1) 0.3455 −17,469.5 0

M7 (beta) 0.3291 −17,465.5 0
M5 (gamma) 0.4137 −17,517.7 8

Group IV

M8 (beta+w ≥ 1) 0.3083 −15,652.2 0
M8a (beta+w = 1) 0.3177 −15,663.2 0

M7 (beta) 0.2983 −15,654.2 0
M5 (gamma) 0.3534 −15,694.7 0

Group V

M8 (beta+w ≥ 1) 0.4936 −20,366.6 0
M8a (beta+w = 1) 0.4937 −20,367.1 0

M7 (beta) 0.4767 −20,363.7 0
M5 (gamma) 0.6040 −20,454.8 35

* PSS: positive selection site.

Next, I-Mutant2.0 software [53] was used to evaluate the effect of mutants of these positive
selecting sites on folding stability of the protein. As a result, over 82.5% of mutants at these sites relaxed
the stability of the CYP protein (Figure 4), which makes the protein less stable, but also may promote the
functional diversification of CYP members. Previous studies have also indicated that positive selection
induced the functional diversity of some CYP members [79–81]. It was consistent with the variety of
CYP functions, including essential metabolism, developmental regulation, and pollutant defense [6].
Moreover, some positive selection sites are associated with substrate-binding regions, similar to
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our results described above. Of the nine positive selection sites identified in a previous study [80],
two homologous sites (55T and 208K) were also found in this study (Figure 4; Figure S4). These findings
suggest that some CYP genes are subject to natural selection to change their peptides for coping with
xenobiotic exposure in evolution. It is an adaptation of organisms to environmental changes.
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3.5. Expression Profiles of the P. sinensis CYP Genes under Dimethoate Stress Based on Transcriptome Data

To verify whether the P. sinensis CYP genes are also affected by dimethoate stress, their expression
patterns were first investigated under this pesticide stress using the transcriptome data. The results
indicated that expression levels of 77.59% and 10.34% of the P. sinensis CYP genes decreased or increased,
respectively, under dimethoate stress (Figure 5). Among them, compared with the control group,
expression levels of the Psi_CYP27B and the Psi_CYP2R1 genes decreased about 212.2 and 149.6 times
following the dimethoate treatment, respectively. Meanwhile, expression levels of the Psi_CYP19A1
gene increased about 12.9 times under the same condition. CYP19A1 catalyzes the terminal step in the
conversion of androgens to estrogens, and therefore plays a role in sex determination. Previous studies
have indicated that CYP19A1 mRNA is increased or suppressed with a temperature-dependent manner
in the liver of females or males, respectively, suggesting its involvement in sexual development [61,82].
Moreover, inhibition of aromatase activity can cause sex reversal in fish [83,84]. Some environmental
pollutants, such as pesticides, have been shown to affect sex conversion of fish [85,86]. Here, dimethoate
treatment can improve the transcriptional level of the Psi_CYP19A1 gene, suggesting a potential effect
of sex conversion.

We also investigated the response of some duplicated CYP genes, such as Psi_CYP2N1/
Psi_CYP2N2, Psi_CYP2K1/Psi_CYP2K2/Psi_CYP2K3, Psi_CYP17A1/Psi_CYP17A2, Psi_CYP19A1/
Psi_CYP19A2/Psi_CYP19A3, and Psi_CYP8A1/Psi_CYP8A2, to the dimethoate stress, and found
significantly differences among them (Figure 5). As a family of membrane-bound hemoproteins,
CYPs are involved in the detoxification and cellular metabolism of xenobiotics [1]. Furthermore,
by altering neuroimmune communication, OPs can target several molecules of the immune system and
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play an immunotoxic effect [87]. Here, the expression patterns of most P. sinensis CYP genes were affected
by dimethoate stress, suggesting that these CYP genes may be involved in the detoxication of OPs.
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4. Conclusions

This study provided a comparative analysis of the CYP gene family in P. sinensis, which were
classed into five groups by phylogenetic analyses. Motif compositions of the CYPs were highly
conserved within each group, indicative of their functional conservation. Intragenic recombination
plays a key role in the evolution of CYP genes. A few sites associated with the functional divergence
were identified via selection analysis. Differential expression patterns of the CYP genes provided
insights into possible functional divergence under dimethoate treatment. This study will provide a
useful reference for further functional analysis of this gene family.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/9/11/873/s1,
Table S1. CYP genes identified in this study. Figure S1. Phylogenetic tree generated by ML method. Figure S2.
Phylogenetic analysis of CYP genes in Amur stickleback and other six fish species. Figure S3. Synteny analysis of
CYP genes in several fish and other species. The position of CYP genes and neighboring genes on chromosomes are
shown. Figure S4. Sequence alignment of the Group III CYPs in P. sinensis. Sequence alignment was performed
by using ClustalW. Five conserved regions (C-Helix region, I-Helix region, K-Helix region, PERF motif region,
and heme-binding region) are written in red. The 12 alpha helices are marked (from A to L) with green lines.
Six substrate recognition sites (SRS1–6) are boxed with blue rectangles. Eight positive selective sites are presented
in red background.

http://www.mdpi.com/2076-2615/9/11/873/s1
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