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Simple Summary: China’s livestock industry has been transforming from traditional extensive
systems to highly intensive systems. Highly intensive livestock production often causes immune
stress to animals, which makes them more susceptible to infections. The aim of this study was
to examine whether resveratrol alleviates inflammation in lambs. Results showed that resveratrol
attenuated the LPS-evoked inflammatory responses in lambs by suppressing expression levels of
inflammatory cytokines and blocking NF-κB and MAPK signaling pathways. Based on these studies,
resveratrol has the potential to be a promising therapeutic reagent for multiple inflammatory illnesses
caused by immune stress.

Abstract: Highly intensive livestock production often causes immune stress to animals, which makes
them more susceptible to infections. The aim of this study was to examine whether resveratrol
(Res) alleviates inflammation in lambs. In Experiment 1, 16 male lambs were injected with
lipopolysaccharides (LPS) at an initial dose of 0.25, 1.25, and 2.5 µg/kg body weight (BW) for
9 days. Average daily gain and blood parameters were measured and clinical symptoms were
recorded. In Experiment 2, 20 male lambs were injected intravenously with LPS (0 mg/kg) + Res
(0 mg), LPS (2.5 µg /kg) + Res (0 mg, 82.5 mg, 165 mg, 330 mg), 4 h after LPS injection. Jugular
blood was collected from each lamb to determine white blood cell (WBC) counts and the expression
of inflammatory genes. In Experiment 1, all LPS-treated lambs showed clinical signs of sickness
including rhinorrhea, lethargy, and shivering, and systemic inflammatory responses of increased
inflammatory genes levels and cortisol concentration. The lambs had increased respiratory and heart
rates and rectal temperature and decreased average daily gain and feed intake. In Experiment 2,
resveratrol significantly reduced WBCs and the expression levels of several genes associated with
inflammation response (TLR4, NF-κB, c-jun) and inhibited the signaling cascades of NF-κB and
MAPKs by down-regulating the expression levels of inflammatory cytokines (IL-1β, IL-4, IL-6,
TNF-α, IFN-γ) induced by LPS. Resveratrol attenuated the LPS-evoked inflammatory responses in
lambs by suppressing expression levels of inflammatory cytokines, and blocking NF-κB and MAPK
signaling pathways.
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1. Introduction

China’s livestock industry has been transforming from traditional extensive systems to highly
intensive systems. Livestock are vulnerable to immune stress under intensive conditions, which can
lead to infections and outbreaks of animal epidemics [1].

Intravenous injection of bacterial lipopolysaccharides (LPS) simulates infection in livestock
and can be used for the study of immune inflammatory responses without the risk of using a live
pathogen [2–4]. LPS is a major component of the outer membrane of gram-negative bacteria such
as Escherichia coli and a chief member of the pathogen-associated molecular patterns [5]. It binds to
the CD14/TLR4/MD2 receptor complex initiating the activation of intracellular signaling pathways,
including mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB). It also stimulates
the expression of inflammatory mediators, including interleukin-1β (IL-1β), tumor necrosis factor
alpha (TNF-α), interleukin-6 (IL-6), and interferon gamma (IFN-γ), causing pathological reactions such
as inflammation, fever, and shock to the body [3,6]. The pathogenesis of many diseases, including
inflammatory bowel disease, sepsis and cancer, involves inflammation [7]. Consequently, inhibition of
the expression of inflammatory factors or inflammatory genes is an important target for preventing or
treating various diseases.

Resveratrol (trans-3, 4’, 5-trihydroxystilbene), a natural plant phytoalexin, is widely distributed
in many plants. It occurs in high concentrations in grape skins, peanuts and wines and
possesses anti-inflammatory, anti-cancerogen and antioxidant properties [8–11]. Studies involving
resveratrol treatment in animals with inflammatory diseases have demonstrated downregulation
of inflammation-induced biomarkers, including pro-inflammatory mediators (IL-1β, IL-6, TNF-α,
MCP-1, IFN-γ, and NF-κB) [12–15] and upregulation of inflammation-reduced biomarkers, including
anti-oxidant protein (SOD) and total WBC counts [16,17]. Calabrese et al. [18] classified resveratrol as a
hormetic modulator in diseases, which included inflammation and infections.

Anti-inflammatory effects of resveratrol have been largely confirmed in rodents, but there have
been few studies on livestock. To fill this gap, the aim of this study was to measure responses to
the administration of resveratrol in LPS-challenged lambs. Lambs were chosen because intensive
sheep production is an important and expanding enterprise in China and lambs are very susceptible
to diseases. These data are necessary prior to consideration of resveratrol as an immunomodulatory
intervention agent in clinical practice and as a potential feed additive in livestock production systems.

2. Materials and Methods

All experimental procedures were in accordance with the animal welfare legislation and approved
by the Academic Committee of Northwestern Institute of Eco-Environment Resources, Chinese
Academy of Sciences (protocol number: CAS201810082). The animals were supplied by the Gaolan
Ecological and Agricultural Integrated Experimental Station in Gansu, China.

2.1. Experiment 1

Sixteen healthy male Hu lambs (4 to 5 months of age and 22.2 ± 0.52 kg BW) were penned
individually with free access to food and water. Composition and energy yield of the diet are presented
in Table 1. Air temperature was maintained at 13 ± 1.4 ◦C and relative humidity at 81% ± 9.5%.
After 5 days of adaptation to the conditions, each lamb received a jugular injection of LPS isolated
from Escherichia coli O111:B4 (Sigma, St. Louis, MO, USA) at 08:00 on days 1, 3, 5, 7 and 9 to induce a
chronic inflammatory response [2,4]. Initial doses of 0 (control group, n = 4), 0.25 (LPSL group, n = 4),
1.25 (LPSM group, n = 4) and 2.5 (LPSH group, n = 4) µg LPS/kg BW were injected, which were
increased by 20% at each subsequent injection. Lambs are sensitive to LPS [19], and, consequently,
the increase was only 20% to avoid the risk of sensitization and mortalities.
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Table 1. Ingredient and nutrient levels of the diet offered the lambs in Experiments 1 and 2.

Ingredient Nutrient 2

Ingredient, % of DM
Oat hay 25.00 ME (MJ/kg) 9.50

Corn stalk 15.00 Crude protein (%) 10.89
Corn 31.50 Neutral detergent fiber (%) 43.83

Soybean meal 4.00 Acid detergent fiber (%) 16.71
Wheat bran 4.50 Ca (%) 0.63

DDGS 3.00 P (%) 0.45
Molasses 3.00

Barley grain 8.50
NaCl 0.50

CaHPO4 0.80
Limestone 0.70
Soybean oil 1.50

Sodium bicarbonate 1.00
Premix 1 1.00

DM: Dry Matter; ME: Metabolic Energy; DDGS: Distillers Dried Grains with Solubles. 1 The premix provided the
following per kg of diets: Vit A, 12 000 IU; Vit D, 2 000 IU; Vit E, 30 IU; Cu, 12 mg; Fe, 64 mg; Mn, 56 mg; Zn, 60 mg;
I, 1.2 mg; Se, 0.4 mg; Co, 0.4 mg. 2 ME was a calculated value, while the other nutrient levels were measured values.

The lambs were weighed at the beginning and at the end of the experiment (days 0 and 10).
Dry matter intakes were recorded daily by weighing the feed offered and the feed remains. Rectal
temperature of each lamb was measured 3 h after LPS injection.

Ten mL jugular vein blood samples were collected in tubes with EDTA before morning feeding on
day 0 and 3 h after the LPS challenge on days 1, 3, 5, 7, and 9. White blood cells were counted in 2 mL
of blood from each lamb on days 0, 1, 3, 5, 7, and 9 (Prang XFA6000 Automatic Blood Cell Analyzer,
Nanjing, China). Five mL blood were centrifuged at 3500 rmp for 15 min at 4 ◦C, and plasma was
stored at −80 ◦C until analysis. Another 5 mL of blood were used for RNA extraction.

2.2. Experiment 2

Twenty healthy male Hu lambs (5 months of age and 25.2 ± 0.54 kg BW) were penned individually
and were offered free access to food and water. Air temperature was maintained at 5 ± 1.0 ◦C and
relative humidity at 84 ± 4.4%. They were divided randomly into five groups (n = 4 per group) and
after 5 days of adaptation to the conditions, each lamb received a jugular injection of resveratrol
(Res; purity ≥ 98%, Shaanxi Xinzhikang Biological Technology Co., Ltd. Xi’an, China) diluted in 50%
medical alcohol (Control: 0 mg, LPS: LPS + Res 0 mg; ResL: LPS + Res 82.5 mg; ResM: LPS + Res
165 mg; or ResG: LPS + Res 330 mg) daily at 08:00. LPS was isolated from Escherichia coli O111:B4
(Sigma, St. Louis, MO, USA), diluted in saline and delivered via jugular injection at 08:30 on days
15 and 17. An initial dose of 2.5 µg LPS/kg BW was increased by 20% at each subsequent injection,
whereas the lambs in the control group received an equal volume of saline and medical alcohol.
Resveratrol is difficult to dissolve in normal saline but is soluble in medical alcohol and 50% medical
alcohol has been used in studies [20]. For the purpose of this study, it was important to deliver very
accurate amounts of resveratrol into the lambs; intrajugular injection was the most accurate method
and, therefore, was employed.

Jugular vein blood samples (12 mL) were collected in vacuum tubes with EDTA at 4 h after
resveratrol injection from each lamb on day 17 and white blood cells were counted in 2 mL whole blood
(Prang XFA6000 Automatic Blood Cell Analyzer, Nanjing, China). Five mL of blood were centrifuged
at 3500 rmp for 15 min at 4 ◦C, and the plasma was stored at −80 ◦C until analysis and another 5 mL of
blood were used for RNA extraction.
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2.3. Enzyme Linked Immunosorbent Assays

Plasma cortisol concentration was measured using an enzyme-linked immunosorbent assay
(ELISA) kit (Shanghai Elisa Biotech Co., Ltd., Shanghai, China) according to the manufacturer’s
protocol, with some modifications. Briefly, 50 µL of standard/sample and 100 µL of horseradish
peroxidase (HRP)-conjugate reagent were added to the antibody-coated 96-well plates, covered with an
adhesive strip and then incubated for 60 min at 37 ◦C. The plates were then washed manually 4 times
and chromogen solution A (50 µL) and chromogen solution B (50 µL) were added to each well, mixed
gently and incubated for 15 min at 37 ◦C. Stop solution (50 µL) was then added and, within 15 min,
the optical density was read at 450 nm using a microtiter plate reader.

2.4. Quantitative Real-Time PCR

The relative gene expression was quantified by quantitative real-time PCR (qPCR) using a qPCR
kit (TB Green™ Premix Ex Taq™ II, TaKaRa, Tokyo, Japan), done on a Mx3000P Real-Time PCR System
(Stratagene, La Jolla, CA, USA).

Total RNA was extracted from blood samples using TRIzol® reagent (Invitrogen; ThermoFisher
Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s protocol. Reverse transcription
was done on RNA with the FastKing RT Kit (with gDNase; TIABGEN Biotech Co. Ltd, Beijing, China).
The mRNA expression levels of IL-1β, IL-4, IL-6, IFN-γ, TNF-α, C3, TLR4, NF-κB, and c-jun in the
blood samples were detected by quantitative real-time PCR using a TB Green™ Premix Ex Taq™ II Kit
(Tli RNaseH Plus) (TaKaRa, Tokyo, Japan) as specified by the manufacturer. The reference gene for
normalization was β-actin. Primers (Table 2) were synthesized by AuGCT DNA-Syn Biotechnology
Co., Ltd. (Beijing, China). The reaction was done in a 20 µL total reaction volume, which included
10 µL of the 2× TB Green™ Premix Ex Taq™ II, 0.4 µL of the ROX reference dye (50×), 0.8 µL each of the
forward and reverse primers (10 µM), 2 µL of the cDNA template, and 6 µL of sterilized water. Relative
fold changes in expression of candidate genes were obtained using the 2−∆∆Ct method. The Ct values
were used to calculate ∆Ct values for genes of interest [Ct (test)−Ct(reference)]. All measurements
were done in triplicate.

Table 2. List of primer sequences for quantitative real-time PCR.

Gene Forward Primer 5’-3’ Reverse Primer 5’-3’ Product
Length

Annealing
Temperature

(°C)

C3 GCACTGTCCACCAACCTCA ATCAGGCTTCTGCTTCTCCA 87 58
TLR4 GGCATCATCTTCATCGTCCT CCACTCCAGGTAGGTGTTCC 99 58

NF-κB CATCAGCCAGCGCATCCAGAC GCACGGCATTCAGGTCGTAGTC 86 61
c-jun AGCGGATCAAGGCGGAGAGG CCTGAGCATATTGGCGGTGGAC 155 55
IL-1β GCAGGCAGTGTCGGTCATCG CCTCAGGTCATCATCACGGAAGAC 82 58
IL-4 GCGGACTTGACAGGAATCTCAGC CAGCGTACTTGTACTCGTCTTGGC 80 63
IL-6 ACACTGACATGCTGGAGAAGATGC GCCGCAGCTACTTCATCCGAATAG 132 61

IFN-R ATGTTTCATTTGCCACCATCC GGTTACGCTTGCTTTGCCTTATGT 81 60
TNF-α CTGGCGGAGGAGGTGCTCTC GGAGGAAGGAGAAGAGGCTGAGG 85 59
β-actin AGCCTTCCTTCCTGGGCATGGA GGACAGCACCGTGTTGGCGTAGA 113 60

2.5. Statistical Analysis

Data are presented as means ± SD. One-way ANOVA was used to test for differences among
groups using SPSS software version 17.0 (SPSS, Inc., Chicago, IL, USA). The Levene test was used to
test for homogeneity of variances and the null hypothesis was that all variances were equal. A resulting
p-value under 0.05 meant that variances were not equal. Dunnett’s test correction was used when the
equality of variances assumption held, and Tamhane’s T2 post hoc test was used otherwise. Difference
between means was accepted to be statistically significant at p < 0.05 and as a trend at 0.05 < p < 0.10.
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3. Results

3.1. Average Daily Gain, Feed Intake, and Clinical Symptoms after LPS-Challenge

Within the first 3 hours after LPS administration, six lambs in the LPSM and LPSH groups had
diarrhoea and, 60 minutes after administration on days 1 and 3, all lambs increased their respiratory
rate, and seven lambs had rhinorrhea, became lethargic, and shivered. Heart rate in the LPSH group
was significantly higher than in the control group (Supplementary Materials Table S1). Subsequent
LPS injections resulted in lethargy, shivering, and hyperventilation in the lambs, but no diarrhoea
was observed. The LPSM (p < 0.05) and LPSH (p < 0.05) groups had lower average daily gain (ADG;
Figure 1A) and average daily feed intake (ADFI; Figure 1B) compared to the control lambs. LPSH
lambs had a higher rectal temperature (Figure 1C) on day 1 (p < 0.01) than controls, however, there was
no difference among groups in the following days. Lambs administered with LPS had a significant
decrease in the number of white blood cells (Figure 2A, p < 0.05) in a dose-independent manner on
days 1 and 3 after administration, compared with the control group.
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Figure 1. Effect of 2.5 μg /kg body weight lipopolysaccharides (LPS) on (A) average daily gain, (B) 
average daily feed intake and (C) rectal temperature in lambs. Values are expressed as means ± SD. * 
p < 0.05, ** p < 0.01, and *** p < 0.001, compared with the control group. 
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Figure 1. Effect of 2.5 µg /kg body weight lipopolysaccharides (LPS) on (A) average daily gain,
(B) average daily feed intake and (C) rectal temperature in lambs. Values are expressed as means ± SD.
* p < 0.05, ** p < 0.01, and *** p < 0.001, compared with the control group.
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Figure 2. Effect of 0.25, 1.25, and 2.5 µg/kg LPS on (A) white blood cells (WBCs) and (B) plasma cortisol
concentration in lambs. Values are expressed as means ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001,
compared with the control group.

3.2. LPS Challenge Induced Systemic Inflammation in Lambs

Plasma cortisol concentration remained constant on days 0, 1, 3, and 5 in control lambs, but with
LPS injection, cortisol concentration increased in a dose-independent manner at 3 h after LPS-challenge
on day 1 and returned to pretreatment level on day 5. Following subsequent administration of LPS,
plasma cortisol concentration did not differ from the control group (Figure 2B, p < 0.05). The expressions
of IFN-γ and TLR4 in blood were higher than in the control group after the LPS challenge on days
1 and 3 (Figure 3A–B, p < 0.05), in particular in the LPSH group. On days 5, 7, and 9, there was no
significant difference between the LPS injected groups and the control group.



Animals 2019, 9, 872 7 of 14Animals 2019, 9, x 7 of 15 

7 
 

0 1 3 5 7 9
0

2

4

6

8

*

*

*

0 μg/kg
0.25 μg/kg
1.25 μg/kg
2.5 μg/kg

Time(d)

TL
R

4 
m

R
N

A 
le

ve
l

(r
el

at
io

n 
to

 β
-a

ct
in

 )

0 1 3 5 7 9
0

1

2

3

4

5

*
**

****

Time(d)

IF
N-

γ
 m

RN
A 

le
ve

l
(r

el
at

io
n 

to
 β

-a
ct

in
 )

A

B

 
Figure 3. Effect of 0.25, 1.25, and 2.5 μg/kg LPS on expression of inflammatory markers in blood of 
lambs. (A) Toll‐like receptor‐4 (TLR4) and (B) Interferon‐γ (IFN-γ). The values are normalized to 
control values and expressed as means ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with 
the control group. 
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Figure 3. Effect of 0.25, 1.25, and 2.5 µg/kg LPS on expression of inflammatory markers in blood of
lambs. (A) Toll-like receptor-4 (TLR4) and (B) Interferon-γ (IFN-γ). The values are normalized to
control values and expressed as means ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with the
control group.

3.3. Effect of Resveratrol on Blood Parameters in LPS-Challenged Lambs

LPS injected lambs had lower WBCs (Figure 4A) and higher concentrations of plasma cortisol
(Figure 4B) than the control group. The resveratrol treatment enhanced WBCs and decreased the
concentration of plasma cortisol in lambs subjected to an LPS challenge (p < 0.05, Figure 4).
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group (p < 0.05 or p < 0.01).  

Figure 4. Effect of resveratrol on: (A) the number of total white blood cells (WBCs) and (B) concentration
of plasma cortisol in LPS-challenged lambs. Values are normalized to control values and expressed
as means ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with the control group; # p < 0.05,
## p < 0.01, and ### p < 0.001, compared with the LPS treatment.



Animals 2019, 9, 872 8 of 14

3.4. Effect of Resveratrol on Expression of Genes Following the LPS Challenge

When compared to the control group, LPS injected lambs had a tendency to increase the expression
levels of C3, while lambs with resveratrol treatment had a tendency to reduce the levels (p < 0.10;
Figure 5A). The mRNA levels of TLR4 (Figure 5B), c-jun (Figure 5C), and NF-κB (Figure 5D) in the
LPS injected lambs were significantly higher than in the control group (p < 0.05 or p < 0.01); however,
resveratrol at 165 mg suppressed the expression of these genes compared with the LPS group (p < 0.05
or p < 0.01).
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Figure 5. Effect of resveratrol on expression of immune gene C3 (A) and inflammatory markers in 
peripheral WBCs in LPS‐challenged lambs, (B) TLR4, (C) c-jun, and (D) NF-κB. Values are normalized 
to control values and expressed as means ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with 
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3.5. Effect of Resveratrol on Expression of Inflammatory Cytokines Following LPS Challenge

LPS administration upregulated the levels of IL-1β (p < 0.001; Figure 6A), IL-6 (p < 0.05; Figure 6B),
IFN-γ (p < 0.001; Figure 6C), TNF-α (Figure 6D; p < 0.01), and IL-4 (p < 0.05; Figure 6E). After the
administration of 165 mg and 330 resveratrol, the expressions of these genes were lowered significantly.
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Figure 6. Effect of resveratrol on expression of pro‐inflammatory cytokines (A) IL-1β, (B) IL-6, (C) IFN-
γ, (D) TNF-α, and (E) anti‐inflammatory cytokines IL-4 in LPS‐challenged lambs. The values are 
normalized to control values and expressed as means ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001, 
compared with the control group; # p < 0.05, ## p < 0.01, and ### p < 0.001, compared with the LPS 
treatment. 
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Figure 6. Effect of resveratrol on expression of pro-inflammatory cytokines (A) IL-1β, (B) IL-6, (C) IFN-γ,
(D) TNF-α, and (E) anti-inflammatory cytokines IL-4 in LPS-challenged lambs. The values are
normalized to control values and expressed as means ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001,
compared with the control group; # p < 0.05, ## p < 0.01, and ### p < 0.001, compared with the
LPS treatment.

4. Discussion

In recent years, overuse of antibiotics has led to a rise in bacterial resistance to antibiotics,
and has become a worldwide concern. Faced with this situation, natural plants are being examined
as possible alternatives to antibiotics. Resveratrol has the potential to become an effective natural
anti-bacterial drug as it possesses properties of anti-oxidation [13], anti-inflammation [21], anti-platelet
aggregation [22,23], microcirculation improvement [24], vascular endothelium protection [25], nervous
system protection [26], immunity enhancement, and aging delay. The main finding of this study was
that resveratrol provided vital protection against inflammation induced by LPS in lambs.

4.1. LPS Challenge Induced Systemic Inflammation in Lambs

The pathogenesis of many diseases, including inflammatory bowel disease, Crohn’s disease, gout,
and cancer, involves inflammation [19]. To reveal the mechanism of inflammatory disease and to
find effective counter-measures for the chronic diseases, LPS, as a non-pathogenic immune activator,
is being used to establish animal models. An intrajugular injection of 2.5 µg/kg LPS resulted in different
expressions of inflammation-related genes in ewes [2]. Yates et al. [27] reported that an intrajugular
injection of 0.75 and 1.5 µg/kg LPS caused a dose-dependent inflammatory response, manifested as
an increase in rectal temperature, serum cortisol, and serum insulin. A single injection of LPS in
animals only induced a short-term acute immune stress, which caused a sharp increase in plasma
concentrations of inflammatory cytokines that returned to the pre-injection levels after 4 to 8 h [2,27,28].
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Therefore, to reduce the tolerance and avoid the risk of mortality due to LPS in lambs in the present
study, an initial dose of 0.25, 1.25, or 2.5 µg/kg LPS was injected every other day with a dose increase of
20% each time to examine the putative effect of resveratrol on inflammatory responses.

LPS induced an inflammatory state in lambs, especially at the high dose of 2.5 µg/kg LPS.
The hypothalamic–pituitary–adrenal (HPA) axis is the major system for stress regulation, and cortisol,
a hormone from the adrenal cortex, is secreted for its anti-inflammatory actions. In this study, plasma
cortisol concentration increased on the first day after administration of LPS then returned to the
pre-injection level on the fifth day, which indicated an increased secretion caused by a response of
the hypothalamic–pituitary–adrenal axis [29]. The WBCs in the LPSM and LPSH groups were lower
than in the control group after administration on days 1, 3, and 5, as was also reported for pigs [4].
According to Wang et al. [17], the reason for blood leukopenia was that the WBCs adhered to the
endothelial cells after LPS injection, and the WBCs infiltrated into the tissue through the vascular
endothelial barrier. The lower LPS dose (LPSL) did not affect the expressions of IFN-γ and TLR4,
whereas the higher doses (LPSM and LPSH) increased them to an even greater extent than the control
group after the LPS challenge on days 1 and 3. However, the magnitude of cortisol response and
the expressions of IFN-γ and TLR4 to LPS administration were attenuated with successive injections.
This might be due to a lower amplitude of response, relative to the first challenge, and could be
associated with the instability and short half-life of inflammatory factors in blood [4]. These findings
demonstrated an adaptive endocrine response and an activation of intracellular signaling pathways to
repeated inflammatory stimuli of LPS.

4.2. Resveratrol Improves Systemic Inflammation Response in LPS-Injected Lambs

The complement system begins with the formation of antigen–antibody immune complexes,
thereby creating a chemo-attractant for immune cells, leading to a release of proteolytic enzymes from
intracellular granules, and modulation of cytokine production [30]. The complement component C3 is
the central factor in all three activation pathways (classical, alternative, and lectin) [31]. Hadfield et al. [2]
reported that the mRNA level C3 in blood of ewes increased for 6 h after LPS administration, but there
was no change in C3 at 0–4 h. In this study, LPS had a tendency to increase the expression level of C3
when compared to the control group, whereas lambs treated with resveratrol had a tendency to reduce
the level of C3. It was reported that the enhanced transcription of the C3 gene induced by LPS is targeted
by the c-jun transcription factor [32]. C-jun is a component of the AP-1 transcription complex, which is
considered to be the major target and key factor in inflammatory diseases that regulate inflammatory
processes. The activity of AP-1 is regulated by mitogen-activated protein kinase (MAPK) [33]. In the
present study, the mRNA level of c-jun was enhanced substantially after LPS treatment in the lambs;
however, this up-regulation was suppressed markedly by resveratrol. The dose of 165 mg resveratrol
showed the best results, indicating that the proper dose of resveratrol is important in alleviating
inflammation by the MAPK signal pathway. Studies in rodents also demonstrated resveratrol-mediated
protection against LPS-induced inflammation [34,35], which suggests that resveratrol is not species
specific in its actions and can be used, most likely, on all animals.

Previous research demonstrated that the inflammatory response to LPS was associated with
activation of toll-like receptors (TLRs) whose family members are receptors of the innate immune
system that recognize pathogen-associated molecular patterns. Among them, TLR4 is considered to be
a major LPS signaling receptor [36]. Stimulation of TLR4 triggers activation of transcription factors,
which, in turn, enhance the synthesis of inflammatory genes, including cytokines. The formation of an
LPS-TLR4/MD-2 complex and the subsequent recruitment of MyD88 adaptor protein induces activation
of MAPKs, as well as the transcriptional NF-κB, leading to the secretion of various inflammatory
mediators [36]. NF-κB is present in the cytoplasm as a hetero-trimeric complex composed of three
subunits: p50, p65, and IκB. After activation of the complex, phosphorylation and degradation of IκB
exposes nuclear localization signals on the p50/p65 complex, leading to their nuclear translocation
and binding to the specific regulated sequences in the DNA, thus controlling gene transcription [37].
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NF-κB signaling is an inducer of LPS, as well as MAPK signaling, while the attenuation of this
signaling by resveratrol contributes to its anti-inflammatory effect [10,38]. NF-κB and AP-1 were key
downstream factors of TLR4 and resveratrol was shown to block the expression of TLR4 and suppress
the phosphorylation of NF-κB and expression of AP-1 in high glucose-induced mesangial cells [39].
In this study, resveratrol prevented NF-κB and TLR4 gene upregulation caused by LPS.

The production of inflammatory cytokines such as IL-1β, IL-4, IL-6, TNF-α, and IFN-γ have strong
influence on inflammatory responses and serve as markers in LPS-induced inflammation [40–43].
TNF-α acts as a first signal that enhances the production of other pro-inflammatory cytokines such as
IL-1β. IL-1β, a subtype of IL-1, is thought to mediate inflammatory actions by inducing the expression
of pro-inflammatory genes and the production of secondary cytokines [44]. In contrast, IL-4 is often
associated with suppression or reduction of inflammatory responses, mainly by inhibiting the secretion
of IL-1β, IL-6, and TNF-α [45,46]. Studies have shown that resveratrol regulates the expression of
cytokines induced by LPS through the NF-κB signaling pathway. It can activate transcription and
promote production of TNF-α, IL-1β, IL-4, IL-6, and IFN-γ genes. Then NF-κB is activated again,
which leads to further amplification of the initial inflammatory signal, aggravating the body damage
and microcirculatory disorders [37]. In the present study, resveratrol at 165 and 330 mg suppressed the
secretion of cytokines, and showed a positive trend to narrow the gap caused by LPS, which indicated
that resveratrol regulated immune abnormalities caused by LPS.

5. Conclusions

Resveratrol attenuated the LPS-evoked inflammatory activation in lambs by suppressing
expression levels of pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ, and TNF-α and
anti-inflammatory cytokines IL-4, as well as the release of cortisol and the reduction of leucocytes.
Resveratrol induced anti-inflammation actions by decreasing complement activity and blocking NF-κB
and MAPK signaling pathways. Based on these studies, resveratrol has the potential to be a promising
therapeutic reagent for multiple inflammatory illnesses caused by immune stress. Perhaps it can be
added to feed in intensively-raised livestock systems, but this still warrants further investigation.
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