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Simple Summary: This review summarizes adaptations and predispositions of different 
arthropod taxa (springtails, web spiders, millipedes and centipedes) to flood and drought 
conditions. The main focus sis directed to arthropod species, which are living in Middle 
European floodplain forests and wetlands, because of the fast change of flood and drought 
conditions in these habitats. Furthermore the effects of the predicted regional climate 
change like increasing aperiodic summer flooding and decreasing winter and spring floods 
are also discussed.  

Abstract: Floodplain forests and wetlands are amongst the most diverse and species rich 
habitats on earth. Arthropods are a key group for the high diversity pattern of these landscapes, 
due to the fact that the change between flooding and drought causes in different life cycles 
and in a variety of adaptations in the different taxa. The floodplain forests and wetlands of 
Central Amazonia are well investigated and over the last 50 years many adaptations of 
several hexapod, myriapod and arachnid orders were described. In contrast to Amazonia 
the Middle European floodplains were less investigated concerning the adaptations of 
arthropods to flood and drought conditions. This review summarizes the adaptations and 
predispositions of springtails, web spiders, millipedes and centipedes to the changeable 
flood and drought conditions of Middle European floodplain forests and wetlands. Furthermore 
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the impact of regional climate change predictions like increasing aperiodic summer floods 
and the decrease of typical winter and spring floods are discussed in this article.  
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1. Introduction 

Riparian zones like floodplain forests and wetlands are among the world’s most productive plant 
and animal habitats. First and foremost, this is a result of the special properties of this habitat, which 
are tied to the constant flux between flooding and drought. These fluctuating conditions lead to a 
highly dynamic biocenosis. In order to survive here, arthropods must possess specific adaptations that 
enable them to tolerate these “disturbances”. The adaptations of arthropods in the floodplain forests of 
the Amazon have been well studied (reviewed in [1–4]). In one region, in which high water periods 
triggered by the rainy season occur each year and in which the water level climbs relatively slowly, the 
animals have adapted to these conditions over the past several million years. It can be assumed that 
these adaptations involve “true” adaptations that have arisen over the course of evolutionary time. In 
contrast to the Amazon wetland system, the floodplain forests of Central Europe have existed only 
since the end of the last glacial period. Here too, arthropods have diverse adaptations to the sometimes 
highly dynamic conditions. Some invertebrates show physiological resistance against inundation, 
phenologies in rhythm of the regular seasonal water level fluctuations and high dispersal ability as well 
as migration [2]. However, these adaptations presumably did not evolve over the course of the 
settlement of these habitats. Instead, they are the result of previously developed predispositions for 
which these specialized habitats presented a selective advantage [5]. Most species in middle European 
riparian habitats survive inundation using a “risk strategy”. This means the combination of high 
reproduction rates, dispersal and reimmigration following flood events [5]. This “r-strategy” results in 
high population densities in the spring period when regular floods recede. But extreme summer 
drought and aperiodic summer floods can cause drastic decreases in abundance and comprise the risk 
to disappear from these habitats. But strong dispersal ability, particularly by emigration to adjacent 
upland areas, increases the possibility to a later immigration of the flooded habitats. This strategy is 
found in many pioneer colonizers of high disturbed, immature or not yet developed ecosystems [5].  

The majority of studies of Central European riparian zones have explored the effects of flooding  
on arthropods [6–16]. In contrast, studies of the effects of drought in these habitats are relatively  
rare [17,18], most likely because of the problem of the definition of drought in a hydrological  
system [19]. Humphries and Baldwin therefore hypothesized that in the future, different researchers 
should define the term “drought” in a hydrological sense and in a manner specific to their own field of 
research [20]. In this way, the greatest challenges are generally not in the droughts, but rather in the  
so-called “anti-droughts” [19]. Anti-droughts are the effects that are manifested by a change in the 
seasonality of the flooding events in a distinctly aquatic ecosystem. After prolonged dry periods or 
during a normal drought in a riparian zone, an aperiodic flooding event would likely have catastrophic 
consequences for the animal species living there. Anthropogenic encroachment in fluvial ecosystems 
has disrupted the delicate dynamics of the riparian regions of Central Europe. The consequences 
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include the lowering of ground water levels, which has led to the disappearance of the natural flooding 
periods and hence to the desiccation of the riparian forests [21]. At the same time, an increase in the 
frequency of heavy rainfall events, particularly during the summer months, has increased the risk of 
aperiodic flooding in these regions. In association with the increased drought conditions, these 
floodings have devastating effects on the ecological communities in the riparian forests that remain.  

The effects of climate change on northern and Central Europe and regionally are the subject of 
several ongoing studies [22–29]. The various climate models used in these studies have predicted drier 
summers and milder, rainier winters [22,25,28–31]. The current temperature trends might indicate that 
the model predictions are more or less accurate. Over the past 30 years in Germany, 24 have turned out 
warmer than expected (source: German National Meteorological Service). Moreover, in the 130-year 
period of weather recordkeeping by the “German National Meteorological Service”, the 5 warmest 
years have occurred within the past 30 years. This has wide-ranging consequences especially for 
riverine ecosystems in Central Europe. The river Rhine, one of the largest rivers of Central Europe as 
well as for the riparian zones along it, will feature strong changes in the drainage regime. In 
comparison to former decades the length of the snow cover period is approximately 30–50% shorter in 
the lower and middle altitudes and shows an overall negative trend. The snow fall periods have 
similarly decreased [32]. Water, stored as snow throughout the winter and which leads to periodic 
flooding in the spring, flow off already in the winter months due to the higher temperatures.  
Furthermore, patterns of moist weather conditions with great rainfall quantities occur, increasing water 
levels even further [32–34]. However, this water level is generally not sufficient to achieve the 
previous complete flooding in the existing riparian zones and floodplain forests of the northern areas 
of the Upper Rhine. Within Germany, the Upper Rhine is one of the areas most affected by climate 
change [35]. In this region, the riparian habitats, typically showing a small scale mosaic of hillocks and 
depressions resulting in frequent and long-lasting to rare and short inundations, will suffer from 
increased drought conditions in the future. After the extreme drought of the summer 2003 no regular 
winter or spring flood occurred for the next nine years in the riparian zones of the Northern Upper 
Rhine Valley. Only three short-term partial floods took place in this timescale, which were caused 
mainly by seepage water. In past decades such partial floods occur often one to two times per year. If 
the flooding continues to fail for several years in a row, then these regions may lose their typical 
riparian character [36]. The diverse wet-dry niches and resources will vanish and may bring about a 
structural loss of well-adapted species. 

Since the year 2000 different working groups of the Johannes Gutenberg-University of Mainz 
investigate several ecosystems of the Northern Upper Rhine Valley. One of the main topics of these 
investigations is to find out survival strategies of different arthropod groups in the riparian zones along 
the river Rhine and how these taxa cope with the increasing number of extreme events like extreme 
drought and aperiodic flooding. To our knowledge there is a lack of information about the effects of 
extreme drought and aperiodic flooding on different arthropod taxa in middle European riparian zones. 
This literature review provides an overview of the strategies used by various carnivorous and 
detritivorous arthropod taxa during regular periods of flooding and drought as well as aperiodic 
flooding. These taxa include the springtails, spiders, millipedes and centipedes, which are some of the 
main investigated arthropod groups of the Northern Upper Rhine Valley. 
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2. Collembola (Springtails) 

Springtails inhabit every soil layer at very high densities and can even be found at the surface in great 
numbers, making them a key group among the soil arthropods. Over their long evolutionary history (the 
earliest date back to approximately 400 million years ago [37–39]), they have been able to colonize not 
only the deepest and uppermost levels of the soil, but have also populated plants and trees, the surface 
of water and other specialized and sometimes extreme habitats (e.g., deserts, the Arctic and the 
Antarctic) [40–47]. As a whole, this makes the Collembola one of the most ecologically diverse 
arthropod groups [48]. They are among the most important representatives of the soil food web [49] 
and according to Russell et al. [50], this order responds quite flexibly to disturbances to their habitats.  

There are several studies of the effects of flooding on the Collembola communities of riparian 
forests [50–57]. In particular, the work of Russell et al. [50] should be highlighted, in which they 
propose a new ecological classification of the Collembola at various study sites of the Upper Rhine 
based on their resistance to flooding. This subclassification might be a very useful tool for ecologists 
concerned with the classification of communities in flood areas. However, more study of the different 
species of Collembola is required. Furthermore, studies comparing this region with others comprised 
of different Collembola species should be conducted. 

2.1. Flood Adaptations and Predispositions  

Among the Collembola, there are numerous adaptations to life on or in water. These adaptations 
include morphological, physiological and behavioral traits. Morphological adaptations include special 
structures on the surface cuticle that inhibit descent below the water surface. The basic model of the 
Collembola epicuticular structure resembles a honeycomb pattern made up of hexagonal granular units 
composed of microtubercles (Figure 1) [58–60].  

Figure 1. Different skin patterns of three collembolan families. (A,B) Entomobryidae: Typical 
honeycomb pattern made up of hexagonal granular units composed of microtubercles. (C,D) 
Isotomidae: More quadringular structure of the units. Note the uncovered regions of the furcal spines 
(C). (E,F) Onychiuridae: Secondary structure made of simple macrotubercles (E) and more complex 
macrotubercles (F). Bars: 100 nm (B), 200 nm (F), 300 nm (A,D,E), 2 μm (C). © Stephan Borensztajn. 

  
(A)       (B) 
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Figure 1. Cont. 

  
(C)       (D) 

 

  
(E)       (F) 

 
This basic structure can vary among different species [61]. In addition to these microtubercles, 

some species have larger “warty” bumps called macrotubercles. Most forms that inhabit the ground 
(euedaphic species) have a relatively bare, hairless cuticle with hydrophobic properties that are 
strengthened by the formation of macrotubercles [62]. Ghiradella and Radigan [63] dyed the cuticles 
of Tomocerus (=Pogonognathellus) flavescens (Tullberg, 1871) (Tomoceridae) with lanthanum to 
demonstrate the presence of a hydrophobic lipid layer on the epicuticle. This species is an epedaphic 
form that inhabits the surface layer of the soil. The special composition of the surface structures in 
conjunction with the hydrophobic lipid layer likely helps to provide non-wettability of the cuticle. 
Furthermore the negative overhang causing a negative curvature in the profile of the ridges and 
tubercles are revealed as a highly effective design principle of collembolan skin [59]. Helbig and 
colleagues showed that due to this negative curvature an energy barrier must be overcome by the 
advancing liquid phase before wetting becomes irreversible even for liquids with very low surface 
tension [59]. This cuticular surface pattern is characterized as a structural plastron. A structural 
plastron is defined as any water-repellent structure of terrestrial and aquatic arthropods that allows  
air-breathing arthropods to use their respiration system under water. This consists of a thin air layer 
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with a thickness of a few micrometer around the entire body (cuticular-breather; Collembola) or over 
certain body parts connected with the stigmata (tracheal breathers) [60,64]. In many Collembola 
species, these properties lead to a passive movement along the drift lines of water bodies. This drift 
may also aid their distribution along the waterway. Griegel was able to extract a total of six species of 
Collembola from samples of drift line water from the lower Oder valley, as well as an additional four 
species from the alluvial substrate [52]. Coulson et al. [65] and Moore [66] describe the possibility that 
passive drift is responsible for a variety of Collembola species across large geographical barriers and 
even as far as different arctic zones. The results of Coulson and Birkemoe are instrumental in 
demonstrating this possibility, because they showed that some species are able to survive more than 
four years at �22 °C [67]. Thus, movement can occur in a frozen state in pack ice. Fridriksson [68] 
studied a South Coast Island that appeared as a result of volcanic activity in 1963. After ten years, six 
species of Collembola could already be documented. Spread in the air or by means of different birds 
cannot be ruled out in this study, although passive drift across the ocean is the most parsimonious 
explanation for the colonization of this habitat by Collembola [65]. One of the advantages of passive 
drifting in middle European floodplains is the possibility of a quick resilience after regular and 
aperiodic flood events. But the individual number of springtail species which are able to survive the 
drift decrease strongly with increasing distances and time. Due to this fact passive drifting can be 
stated as a risk strategy for many species of the collembolan community. Other morphological 
adaptations for life on the surface of water include widening of various segments of the furca (ventral 
forked abdominal appendage—springing organ) that enables jumping on the water’s surface and 
provides special hydrophobic areas to the tibiotarsal region. Palissa’s book on epineustic Collembola 
provides a good overview of the various morphological design adaptations in different epineustic 
species of Collembola [46]. 

Physiological adaptations in Collembola species inhabiting the soil include a metabolic shift under 
anaerobic conditions (anoxia) [69]. For example, Folsomia candida Willem, 1902 (Isotomidae) have 
distinctly elevated lactate levels following artificially induced anoxia [9,70,71]. In addition, this 
species has been shown to have an increased heart rate in oxygen-deprived environments (hypoxia). 
The adaptive change in blood circulation should maintain the partial pressure between the medium, the 
blood and the tissue [72]. With this adaptation, individuals of F. candida can exploit extremely low 
partial pressures of oxygen down to 6,666 Pa for respiration. In Anurida maritima (Guérin-Méneville, 
1836) (Neanuridae), the exploitable partial pressure of oxygen is even lower [73]. This species lives in 
the tidal zones and thus endures periodic flooding from ebbs and tides. At low tides, these animals feed 
on fine substrates such as the algae and suspended sediments of the surface. With increasing flooding, 
individuals gather in aggregations (“nests”) under stones in order to survive the flooded period in a 
common air pocket [74]. In such extreme conditions, making use of very low partial pressures of 
oxygen (as low as 1,000 Pa) can be very advantageous. A critical value for the animals could not be 
achieved experimentally by Zinkler et al. [73]. However, at 1,000 Pa, there was already a reduced but 
still regulated oxygen uptake. 

The soil biocenosis in the flood zones of the Eder dam in Germany that undergo annual drought 
periods was investigated by Tamm [13,14] and Tamm et al. [16] for endangered specialist 
communities or opportunistic colonizers from the immediate surroundings. They documented a 
zoological community in the Eder dam region that is similar to those that are typical of forest-free 
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riparian zones in Central Europe that have recently dried out. Five species of Collembola were found 
in the soil surface layer (Isotoma viridis Bourlet, 1839, Anurida tullbergi (Schött, 1891), Sminthurides
malmgreni (Tullberg, 1876), Sminthurinus aureus (Lubbock, 1862) and Sminthurus nigromaculatus 
(Linnaeus, 1758)), which accounted for 99.9% of all Collembola sampled. These species are 
characterized by the ability to survive a flood period as eggs. The larvae hatch shortly after the flooded 
habitat dries out and are able to exclusively colonize the area. This ability has been demonstrated by 
taking underwater sediment samples and then “incubating” the Collembola eggs in a climate-
controlled cabinet [14,15]. Even the species Isotomiella minor (Schäffer, 1896) (Isotomidae) and 
several other Symphypleona species, survival in the egg stage over long periods of flooding has been 
documented [75,76]. Some species of Collembola have the ability to survive for short periods in water 
(semiaquatic lifestyles). In these species, embryonic and post-embryonic development as well as the 
first molt, have been shown to take place under water [77].  

Beck [78] demonstrated that adults of large species of epigeal Collembola (Entomobryomorpha) 
avoid flood period and there is a mass appearance on the shores. However, this phenomenon was 
studied in the slowly increasing water levels in the Amazon region. In cases where flooding occurs 
rapidly, springtails usually cannot actively escape and instead drift passively because of the  
non-wettability of their cuticle [58,62,63]. However small scale escape strategies like vertical  
trunk migration during the flood or remigration from non-flooded refugees after the flood were 
demonstrated [9]. 

2.2. Drought Adaptations and Predispositions  

In contrast to the large number of studies of the adaptation of Collembola to flooding, there are 
relatively few that have examined adaptation to prolonged periods of drought [79–81]. On one hand, 
this deficit can be explained on the basis of the lifestyle of most Collembola species, which is closely 
related to the presence of water. On the other hand, habitats which require a high degree of drought 
resistance in Collembola are either difficult to access or can only be explored at great expense. For 
example, these include desert areas or the core areas of trees, which are sometimes subject to great 
fluctuations in water availability.  

Greenslade [43] formulated the following five protective mechanisms against desiccation for the 
species of Collembola in desert environments. (1) Tolerance to high temperatures and saturation 
deficits by means of morphological and physiological adaptations. (2) Reduction of the risk of 
desiccation by means of behavioral changes. (3) Dessication-resistent eggs and very short life cycles. 
(4) The potential to survive poor conditions by means of anhydrobiosis and ecomorphosis (both terms 
are described later in this section). (5) Colonization of residual moist surfaces in desert habitats. 
Similar adaptations against desiccation are also likely to exist in Collembola species in other regions 
and might also be true for drought periods in floodplains. One example of an adaptation against 
desiccation in Entomobrya nivalis (Linnaeus, 1758) and Orchesella cincta (Linnaeus, 1758) (both 
Entomobryidae) in Central European habitats is a thickened wax layer on the cuticle. Both species 
generally occur on trees at high densities and throughout the entire year [82–84].  

I. viridis and Isotomurus palustris (Lubbock, 1870) (both Isotomidae) have both been shown to 
have remarkable adaptations to desiccation. During periods of increasing soil drought, individuals of 
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these species undertake an intensive feeding bout and then retreat to small soil caverns and seal them 
with feces [46,85–87]. They are able to stay in these caverns in a lethargic state to survive the dry 
period. The advantage of this drought stasis is likely reduced evaporation resulting from immobility. 
However, the animals will still die in severe drought conditions [85–87]. A real anhydrobiosis was 
shown for the species Folsomides angularis (Axelson, 1905), which is able to live in desert 
ecosystems of South Europe but also can be found in Central and Northern Europe [88]. The 
anhydrobiotic state helps the animals to have better tolerance not only to higher temperatures but also 
to very low temperatures [88,89]. It is now understood that the predispositions against drought  
and extreme cold have the same origins and did not evolve independently from each other [90–93]. 
Hinton [94] provides a powerful example of this. He examined larvae of the species Polypedilum 
vanderplanki Hinton, 1951 (Chironomidae, Diptera), which are known for an effective anhydrobiosis, 
for their resistance to cold. He cooled the animals in an anhydrobiotic state to �270 °C, although the 
distribution of this species means they never actually encounter temperatures below zero.  

Altered climatic conditions can also lead to striking morphological changes in some species of 
Collembola. Cassagnau [95] found that unfavorable moisture conditions led to the loss of the 
bothriotricha and a shortening of the abdominal macrochaetes in I. palustris. These modifications are 
known as ecomorphosis. According to Palissa [46] the development of ecomorphs is generally the 
result of unfavorable hygrothermal conditions. 

Drought resistance in F. candida has been relatively well studied in recent years, because this 
Collembola species play a key role in ecotoxicological studies because of its parthenogenic (asexual) 
mode of reproduction [49,96]. In an experiment by Sjursen et al. [97], individuals of the species  
F. candida were exposed to varying intensities of drought conditions. With an experimental design 
with a brief pre-induced dryness, the results showed increased survival and longer activity stages. 
When this design was evaluated physiologically, there were lower myo-inositol values with sharply 
elevated trehalose levels. This result suggests that this species is capable of gradually adapting to 
increasing drought conditions. When drought conditions are rapidly induced for long term, the animals 
immediately enter an anhydrobiotic state with a significantly reduced survival rate. Hence, in natural 
environments Collembola likely experience greater physiological stress when faced with extreme and 
long term drought than with periodic or aperiodic flooding. In addition, the activity of Collembola is 
permanently disrupted as a result of the lower survival rates in the soil, which leads to significantly 
reduced rates of decomposition in the soil ecosystem. Pflug and Wolters [98] studied this effect in a 
field experiment and also found significant reductions in the abundance and diversity of the 
collembolan community. Similar results with respect to diversity and density of Collembola were 
found in a study of riparian forests near Heidenfahrt [54]. 

In another adaptation to drought, a significant change to the composition of phospholipids in the 
membrane of Protaphorura armata (Tullberg, 1869) (Onychiuridae) can be induced by drought 
conditions [99]. In a series of experiments, Holmstrup et al. [91] showed similar modifications in  
F. candida, which could counteract the effects of the changed moisture concentrations and altered 
water potential in dehydrated individuals. The importance of cuticle permeability, osmolyte production 
and specific body sizes for drought resistance is highlighted by Kaersgaard et al. [100]. Nevertheless, 
Bayley and Holmstrup [101] noted the need for further studies of the physiology of drought resistance 
in Collembola. Please see Table 1 for details.  
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Table 1. Different type of adaptations of Collembola to periodic and aperiodic flooding as well as drought events. 

Type of Adaptation Periodical flood Aperiodical flood Drought 

Morphological Adaptation 

Hydrophobic properties of the cuticle (structural 
plastron); 
Passive drifting; 
Modifications of furca and legs (epineustic species: 
e.g., Poduridae and Sminthurididae) 

Hydrophobic properties of the cuticle (structural 
plastron); 
Passive drifting 

Thickened wax layer on the epicuticle 
surface (E. nivalis, O. cincta); 
Ecomorphosis (I. palustris); 
Decreasing of cuticular permeability  
(P. armata, F. candida) 

Physiological Adaptation 

Metabolic change (lactate) (F. candida); 
Metabolic depression (F. candida, A. maritima); 
Egg-diapause (I. viridis, A. tullbergi, S. malmgreni,
S. aureus, S. nigromaculatus, I. minor, some 
symphypleonid species); 
Increasing heart rate;  
Use of extreme low O2 partial pressures  
(F. candida) 

Metabolic change (lactate) (F. candida); 
Metabolic depression (F. candida, A. maritima); 
Semiaquatic life style (Hypogastruridae) 

Metabolic depression (drought stasis)  
(I. viridis, I. palustris); 
Anhydrobiosis (F. angularis) 
Drought resistant eggs 

Behavioral and phenological 
Adaptation

Remigration after flood events from non-flooded 
sites and trees; 
Epineustic life form (epineustic species: e.g., 
Poduridae and Sminthurididae) 

Epineustic life form (epineustic species: e.g., 
Poduridae and Sminthurididae) 

Behavioral changes; 
Migrating to wet refugees; 
Short life cycles 
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3. Araneae (Spiders) 

In Central Europe, the floodplain forests that are characterized by a regular flooding regime are 
among the most diverse habitats when it comes to species richness and abundance of spiders. The 
highly diverse structure of the floodplain forests provides spiders that inhabit strictly defined 
microhabitats with a broad spectrum of ecological niches. Limiting factors include physical conditions 
such as temperature, light, humidity, wind and light intensity, as well as biological factors such as 
vegetation, availability of food, competition and predator pressure. Vegetation structure can be divided 
into four strata: ground level, field, shrub and tree/crown [102]. Each stratum has a unique 
microclimate, opportunities for retreat and predator-prey system. So they serve as key drivers for many 
different arthropod species. In Middle European floodplains regular and aperiodic flooding are the 
most important factors for the changing conditions. Ecological separation of different species of 
spiders is achieved not only by their different spatial distributions, but also by various modes of 
reproduction and periods of activity. Many species are able to utilize the same microhabitat because 
their main phase of activity is concentrated in different seasons or times of the day [103].  

3.1. Flood Adaptations and Predispositions 

However, species-rich settlement of the riparian forests of Central Europe can only take place by 
species of spiders that have previously developed predispositions which allow them to colonize areas 
that are subject to periodic flooding. Opportunistic species, especially canopy and dwarf spiders, 
(Linyphiidae), as well as wolf spiders (Lycosidae), intentionally immigrate to previously flooded 
riparian zones and make use of the loosened resources. These pioneer species have a dynamic 
settlement pattern and high reproductive capacity [104]. They do not have special morphological 
adaptations for high water. Aperiodic floodings during the summer therefore lead to significant 
population crashes [105]. However, heavy dispersal by the subsequent generation into the surrounding 
areas enables a re-colonization of the floodplain forest following a flooding event. Thus most pioneer 
species are not associated with specific habitats. These euryoecious species have no specific habitat 
preferences, but prefer disturbed and mostly open habitats. Sites with high intensity of disturbances are 
colonized first [106]. According to Siepe [107], in areas that are frequently flooded, euryoecious 
pioneer species, especially Linyphiidae, are found close to the water line, whereas the proportion of 
Lycosidae increases significantly as the frequency of flooding decreases.  

Wohlgemuth-von Reiche and Grube [108] described the aeronautic ballooning of many dwarf spiders 
(Micryphantinae) and juvenile Lycosidae as a special phenomenon associated with non-directional 
migration. The aeronautic ballooning also occur in many other spider families. The spiders climbed on 
wind-exposed sites (grasses, twigs, etc.) and cast a thread up into the blowing air masses [109]. The 
thread exposed to the wind currents is stronger than that from spiders protected underground and 
functions as a balloon [110]. Thus, using the tiny surface area-to-volume ratio, light spiders with long 
spinning threads can reach even the slightest upwinds in order to drift passively. According to Thomas 
and Jepson [111], the number of hours during which meteorological conditions are suitable for 
“ballooning” each day increases steadily from June until the end of August. The ideal horizontal wind 
velocity is 3 m/s. In these conditions, the ratio between vertical and horizontal wind currents is high 
and allows even larger spiders to lift off from the ground. The fall emigration and early summer 
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immigration using this aeronautic technique protects the spiders from periodic winter floods and 
according to Weigmann & Wohlgemuth-von Reiche [5] it is the key predisposition of euryoecious 
species that allows them to settle in riparian zones like floodplain forests and wetlands.  

Wolf spiders of the genus Pardosa are pre-adapted to both winter and summer floods because of their 
phenology. These animals overwinter as subadults in a diapause during which no molts take place [112]. 
The lowered metabolic rates during the winter diapause allow these spiders to survive periodic winter 
floods in hiding spots with air pockets [113]. In the spring, they molt into adults and pairing takes 
place in March [109]. After hatching in April and until molting into subadults in August, the larvae 
exhibit a highly developed migratory behavior. According to Manderbach [114], the adults can 
actively retreat from advancing floodwater. After an aperiodic summer flood, in August there is both a 
second mating among wolf spiders [114], and the spring generation returns to the dry habitat [109].  

In addition to these euryoecious examples of spiders, there are a good number of species in riparian 
zones that are stenotopic. These species are particularly dependent on shady and regularly flooded 
moist habitats. Although these species can survive floodings unharmed, their dominance decrease 
significantly as the flood intensity decreases [115]. However, most of these species do not have special 
morphological adaptations for flood resistance. Instead it is more likely that these animals escape 
advancing floodwater by migrating vertically on tree trunks and in the shrubbery and survive 
unharmed in these higher levels [116,117]. Only nursery-web spiders (Pisauridae) and a few wolf 
spiders have hydrophobic body hairs and the ability to move about using a synchronized motion of the 
legs (“rowing”) [118]. These hydrophobic hairs also allow different species of the wolf spider genus 
Pirata temporary diving and hunting below the water surface. They catch different mosquito and 
insect larvae, water slaters and small crustaceans by visual hunting [103]. But mainly the  
Pirata-species hunt on the water surface. One exception with a main foraging under water is the water 
spider Argyroneta aquatica (Clerck, 1757), which is able to pull air under the water’s surface by 
means of its body hairs and to build a diving bell [119]. These diving bells serve as structural 
plastrons. The ability of the saltmarsh lycosid Arctosa fulvolineata (Lucas, 1846) to survive 
submersion up to 34 hours (50% survival: 20 hours) show the possibility of a metabolic depression, 
which was called “hypoxic coma” by Pétillon et al. [120].  

3.2. Drought Adaptations and Predispositions 

The spider communities of Central Europe are predominantly composed of species that prefer open 
habitats. A large number are stenotopic inhabitants of warm sites with mosaic-like structure [121]. 
These habitats can be successfully colonized by spiders in high abundances since they have a variety 
of different morphological and behavioral adaptations to drought and heat. Like all arthropods, spiders 
are susceptible to high rates of evaporation because of their small body sizes and large surface  
area-to-volume ratios. Thus, one of the most important arthropod adaptations to drought is the 
reduction of transpiration via the cuticle and respiration [122]. The cuticle of spiders is similar in 
construction to that of insects [123,124]. The wax layer of the epicuticle is the chief barrier against 
water loss. It is therefore constructed especially effectively in thermo- and xerophilic species [125].  
In these species, the waxy layer has a high density since the hydrocarbons of which it is composed  
are mostly made up of branched alkanes [126]. At temperatures beyond 40 °C, the wax layer of 
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Geolycosa godeffroyi (L. Koch, 1865) loses its stability and becomes permeable to water [122,127]. 
Spiders are able to perceive changes in atmospheric humidity using hygroreceptive sensilla on the 
tarsal organ [128,129]. They respond to decreasing humidity by reducing the water content of the 
endocuticle and thus lower the overall permeability of their exoskeleton [130].  

The respiration system of spiders shows also different predispositions for living in dry environments. 
Respiration in most spiders (Tracheospira) occurs via diffusion across the epithelium of book lungs 
and tubular trachea. Whereas oxygen taken up via the book lungs must be transported via the 
haemolymph to the organs, diffusion via the trachea occurs directly to the tissues requiring oxygen. 
With book lungs blocked, living individuals of the lycosid species Pardosa amentata (Clerck, 1757) 
(which survive well for 15 minutes exposures) show a decrease in rate of transpiration by about a third 
to a fifth at temperatures up to 40 °C, above which evaporation is much more rapid. Consequently, 
respiratory water loss represents about a third or less of total transpiration in this species [122]. Spiders 
that are active walkers with high oxygen demands thus have a highly branched tracheal system and 
reduced book lungs [131]. The efficacy of respiration via the tubular tracheal system means the spiders 
can have a comparatively lower respiratory surface and hence lose less water. For this reason, some 
authors believe that the development of a complex tracheal system is an adaptation for life in dry 
habitats [132–134]. A behavioral adaptation to avoid water loss through respiration is the closing of 
the book lung openings through spiracles [127]. The spiders can keep the lung atria closed during 
periods of high physical stress and enter a state of oxygen deficit. This deficit is then balanced during 
long rest periods by means of heavy ventilation through the book lungs [135]. Spiders minimize water 
loss via excretion by the formation of highly concentrated urine [136], and the water that is lost is 
recovered through feeding and drinking of capillary water [137]. Coxal organs are reduced in more 
highly developed spiders; in Mygalomorpha (bird spiders) these organs function only in the regulation 
of the haemolymph-ionic balance [138]. 

There exist also some adaptations in early developmental stages against drought. The majority of 
spiders envelop their eggs with silk cocoons in which the embryo develops and from which the nymph 
hatches. Depending on the species, the young spiders leave the egg cocoon shortly after the first molt 
or overwinter within the protection of the cocoon. Species that overwinter in the cocoon protect the 
larva from desiccation, while the cocoons of species that do not overwinter offer the eggs no protection 
from transpiration [139]. According to Austin [140], the cocoons of Clubiona robusta (L. Koch, 1873, 
Clubionidae, sac spiders) have a higher humidity than the surrounding air and prevent the eggs from 
drying out. Schaefer [141] experimentally demonstrated that the eggs of Floronia bucculenta (Clerck, 
1757) (Linyphiidae) survive in the cocoon for 68 days at 32% relative humidity and 5 °C. Without 
cocoon, the eggs dry out in 37 days. In contrast, Austin and Anderson [142] showed that the cocoons 
of Nephila edulis (Labillardière, 1799) (Araneidae, orb-web spiders) offer no protection from desiccation.  

As poikilotherms, spiders are capable of actively regulating their body temperature by behavioral 
changes. Spiders that move actively avoid overheating by cooling off in shady spots [127].  
Web-spinning spiders place their bodies parallel to the incident light and thus reduce the amount of 
their body’s surface that is exposed to sunlight [143]. Furthermore, they have reflective guanine 
crystals in the cuticle of their opisthosoma to protect them from overheating [103]. Please see Table 2 
for details.  
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Table 2. Different type of adaptations of Araneae to periodic and aperiodic flooding as well as drought events. 

Type of Adaptation Periodical flood Aperiodical flood Drought 

Morphological Adaptation 
Hydrophobic hairs allow movement on the water 
surface (“rowing”) (Lycosidae and Pisauridae) 

Hydrophobic hairs allow movement on the 
water surface (“rowing”) (Lycosidae and 
Pisauridae) 

Decreasing of cuticular permeability  
(G. godeffroyi); 
Low water loss because of the tracheae 
(Tracheospira); 
Cuticle with light reflecting guanine crystals 

Physiological Adaptation 
Low metabolic rate during hibernation 
(Lycosidae); 
Metabolic depression (A. fulvolineata) 

-- 
Highly-concentrated urine; 
Transpiration reducing egg cocoons  
(C. robusta, F. bucculenta) 

Behavioral and phenological 
Adaptation

Emigration in autumn an remigration in early 
summer (“ballooning”) (Micryphantinae, juvenile 
Lycosidae, Different other families); 
Horizontal and vertical migration 

Horizontal and vertical migration; 
Second mating after summer flood 
(Lycosidae) 

Closing of book lungs with spiracles during high 
physical load;  
Active body moving parallel to the incident 
sunlight (web-spinning spiders) 

 
Table 3. Different type of adaptations of Diplopoda and Chilopoda to periodic and aperiodic flooding as well as drought events. 

Type of Adaptation Periodical flood Aperiodical flood Drought 

Morphological Adaptation Structural plastron Structural plastron 
Decreasing of the cuticular permeability  
(O. ornatus, Thyropygus sp., P. lagurus) 

Physiological Adaptation 
Long submersion times in cold and oxygen-rich 
water (some polydesmid species) 

-- -- 

Behavioral and phenological 
Adaptation

Hibernation in the egg-stage (L. emarginatus,  
P. denticulatus);  
Short developmental times (L. emarginatus) 

-- 

Migration in deeper soil layers;  
Decreasing of transpiration due to curling  
(Henia vesuviana);  
Production of ootheca and water absorption by the 
eggs (Archispirostreptus tumuliporus judaicus) 
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4. Diplopoda and Chilopoda (Myriapoda: Millipedes and Centipedes) 

4.1. Flood Adaptations and Predispositions 

Because for a long term inhabiting of riparian habitats the ability to survive periods of flooding is 
an important factor, this characteristic also significantly influences the myriapod species composition 
found in these habitats. Adis [1] studied the different strategies used by terrestrial arthropods of the 
Central Amazon and was able to show that even myriapods have a variety of adaptations to flooding, 
such as a diapause within roots by Ribautiella amazonica Scheller, 1984 (Scolopendrellidae),  
small-scale changes of location along trunk in the arboreal species Epinannolene arborea Hoffmann, 
1984 (Pseudoannolenidae), or the flood resistance in the eggs of the parthenogenic chilopod  
Lamyctes sp. (Henicopidae), which can develop into adults within six to eight weeks. Gonographis
adisi Hoffmann, 1985 (Pyrgodesmidae) can survive in the upper stratus of the water for up to  
11 months with the aid of plastron respiration and feeding on algae [144]. Mestosoma hylaeicum 
Jeekel, 1963 has a life cycle close adapted to flooding [145]. In Central Europe, however, regular 
winter and spring as well as aperiodic flooding events generally occur more irregularly and with a 
rapid increase in water level; these facts can have long-term consequences for the animals that live 
there. Longer periods of flooding may lead to almost complete decimation of the diplopod and 
chilopod populations [146]. With increasing frequency, intensity and duration of flooding events, the 
number of species decreases. The species Lamyctes emarginatus (Newport, 1844) is an example of a 
centipede with an opportunistic risk strategy [5]. A parthenogenic mode of reproduction and short 
development times of 6 to 12 weeks until adulthood and the ability of eggs to survive inundation 
periods and low temperature in winter allow this chilopod to permanently re-colonize areas that 
undergo regular and long-lasting floods [147,148].  

Resistance to flooding is a key physiological predisposition. Diplopods that only colonize riparian 
forests in small numbers, survive submersion for a few hours up to several days [148–150]. In contrast, 
the flat-backed millipedes (Polydesmida) Polydesmus denticulatus (C.L. Koch, 1847) and 
Brachydesmus superus (Latzel, 1884) can survive under water for over 70 days [148] and Polyzonium
germanicum Brandt, 1837 (Polyzoniidae) can survive up to 43 days [149]. In the one-year species  
L. emarginatus, only the eggs overwinter, and these remain capable of development even through 
several week-long winter or spring floodings and make it possible for the species to rapidly re-colonize 
the flooded areas [147,148]. 

However, these high levels of tolerance are only achieved in cool (4–10 °C) and oxygen-saturated 
water. The question remains, nonetheless, whether all populations achieve such high tolerance, since 
the selection pressure imposed by flooding can vary greatly amongst populations. In P. denticulatus, 
Zulka [148] was able to show that there was significantly higher tolerance to submersion in one 
population that was frequently exposed to flooding, compared to a population 3 km away that had not 
experienced a flood in 65 years. In water that is low in oxygen, for example warm, stagnant water or 
rising groundwater, even submersion-tolerant species survive only for a few hours [148]. A summer 
flood therefore has far more negative impacts on the existing coenosis compared to flooding events at 
cooler times of the year. There are no special phenological adaptations in the Central European 
riparian forests. The one-year species L. emarginatus is a good example of a relatively well adapted 
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species that can survive in the egg stage through winter and summer flooding [5]. P. denticulatus, with 
its summer activity and reproductive period [151,152] and the short development time of the 
Polydesmides of Central Europe are also phenologically well-adapted to flooding events [148].  

Directional and deliberate migrations have not yet been identified in diplopods and chilopods in 
areas subject to flooding. Active escape from a high water line is only possible to a limited extent, 
because of the slow mode of locomotion, which is particularly a factor for the diplopods. In addition, 
the various species also respond quite differently to rising water and show varying abilities to 
coordinate underwater, which does not necessarily always correlate well with their ties to riparian 
zones or submersion tolerance [148]. Diplopods have a low specific density, making them able to float 
on still water surfaces for only a few hours to days before they sink [150].  

4.2. Drought Adaptations and Predispositions 

In contrast to the insects, chilopods have no waxy cuticle and therefore always depend on a moist 
environment. Therefore the stronger heat periods which are predicted for Central Europe affect them in 
particular. Under unfavorable conditions such as heat, dryness or cold, they thus retreat to deeper soil 
levels or into crevice [153]. The geophilomorph species Henia vesuviana (Newport, 1845) decreases 
its transpiration rate during rest periods during which they roll themselves into a tight spiral [154]. The 
exoskeleton of diplopods is highly calcified and is permeable to water in large quantities, which is why 
most species are found only in moist environments or on moist microhabitats. Most species are active 
only at dusk, during the night or early mornings on the surface, when the atmospheric humidity is 
greater than it is during the day [155]. Diplopods have hygroreceptors (e.g., the organ of Tomosvary) 
on their sternites and largely photonegative behavior, which together allow the animals to seek out 
suitably moist shelters [156]. In both temperature and tropical regions, most species spend drier and 
warmer periods within the soil [157–159]. Mammal dens or termite hills or existing holes in the 
ground are also used to survive through periods of drought [159]. However, many species can also 
adapt to drier habitats. Animals that are not yet ready to reproduce construct thick-walled molt 
chambers during droughts. By wrapping themselves up, the animals reduce transpiration via the 
tracheal openings, since these cannot be actively closed by the animals [160]. Species that are well-
adapted to drought, such as the American desert millipede Orthoporus ornatus (Girard, 1853) or the 
Indian millipede Thyropygus sp. (Spirostreptidae), reduce water loss across the exoskeleton by means 
of the epicuticle [156,161]. This layer is composed of lipoproteins and sudanophilic lipids, which 
unlike insects, do not lose stability even in very low or high temperatures and thus lead to uniform 
water loss. The production of ootheca from soil and plant material reduces the moisture gradients 
between the eggs or larva and the surroundings, depending on the water retention capacity of the 
materials used [162]. The eggs of Archispirostreptus tumuliporus judaicus (Attems, 1927) 
(Spirostreptidae) can actively absorb water from the surrounding environment (up to 10% of the egg’s 
weight) [163]. Eisenbeis and Wichard [58] showed that the bristly millipede Polyxenus lagurus 
(Linnaeus, 1758) (Polyxenidae) has very low loss from transpiration and an uptake of water vapor 
from the air. The animals were maintained in completely dry air (0% relative atmospheric humidity) 
for several days. The hourly reduction of water mass under these extreme conditions was less than 1%. 
In 98% relative humidity, absorption of water vapor was measured that was the equivalent of a weight 
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increase of more than 3% per hour. The absorption took place between 5 and 6 AM. This matches the 
timing of dew formation, when a high environmental humidity is expected. These adaptations are very 
important in the habitat of P. lagurus, since this species must deal with a relatively dry environment in 
trunk habitats. Please see Table 3 for details.  

5. General Aspects of the Bioindication Value and Impacts of the Predicted Climate Change Scenario 

Springtails demonstrate a wide range of different adaptations and predispositions to regular flood 
events. The species composition of undisturbed riparian zones and floodplain forests show high 
densities of different hygrophilic and hygrotolerant species after regular flooding. The bioindication 
value of these species can be estimated as very high. Russell and Griegel [55] detected a distinct 
succession of ecologically isovalent collembolan groups according to the flood intensity in the Upper 
Rhine Valley. Strong hygrophilic species like Sminthurides ssp., Podura aquatica and Isotomurus 
palustris are limited to frequently flooded sites, whereas hygrotolerant species like Sminthurinus
aureus and some other Isotomurus species prefer less flood affected sites. Flood-intolerant species 
were only found in higher non-flooded sites or only after many weeks or months after inundation due 
to a slow migration to the flooded sites. The predicted climate change with prolonged drought periods 
and aperiodic flood events cause strong changes in the collembolan community of riparian habitats. In 
times of prolonged drought the well adapted hygrophilic and hygrotolerant species are replaced by 
more ubiqituous and opportunistic species [9]. The opportunistic species show mostly no effective 
adaptation or predisposition against flood. Thus after regular or aperiodic flooding the abundance of 
these species markedly decreases and the riparian habitats show a poor collembolan community 
concerning density and species number.  

Most millipede and centipede species are not well adapted to regular and aperiodic flood events. 
Some species show a “risk strategy” with a combination of high reproduction rates, dispersal and 
reimmigration following flood events. Thus only a few opportunistic species are able to inhabit the 
riparian zones and floodplain forests of Central European river habitats. The bioindication value of 
these species is lower than that of springtails, because these species occur in frequently inundated sites 
as well as in non-flooded sites. The predicted climate change could result in smaller effects for the 
myriapod community. Many species are well adapted to drought conditions. Long-lasting drought 
events will be survived curled in deeper soil layers [122]. Therefore the species composition of the 
different riparian zones and floodplain forests will not change basically, but changes in the abundance 
of some species are possible. 

Spiders are in contrast to springtails, millipedes and centipedes more mobile and can therefore 
change habitats which offer unfavorable conditions. Spiders are considered as an arthropod group with 
very high bioindication level, which is illustrated in their use in many different plan-approval 
procedures. Central European riparian zones and floodplain forests are inhabited by a good number of 
stenotopic spider species. They are well adapted to regular and aperiodic flood events. Extreme and 
long-lasting drought events cause in strong decreasing densities and finally in the disappearance of the 
stenotopic species. They will be replaced by more ubiqituous and opportunistic species. Such an effect 
was observed after the extreme hot and dry summer 2003 in the Northern Upper Rhine Valley. 
However, the use of stenotopic riparian species as indicators to estimate flood intensity is difficult. 
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Their distribution in regularly flooded regions is not consistent, since the range of stenotopic species 
varies greatly depending on geographic location (pers. comm. Z. Krumpálová). Furthermore due to the 
high mobility of many species yearly changes of the species composition and density are possible. 
Thus the use of spiders as single bioindicator group is not sufficient for the classification of riparian 
sites in Central Europe.  

The effects of regional climate change with aperiodic flooding and prolonged drought events on the 
above mentioned arthropod coenoses can still not be estimated in total. However, it can be assumed 
that some riparian zone specialist species will be permanently lost because of changed flood dynamics, 
although opportunistic and euryoecious species may stand a better chance of survival. These 
observations were made in floodplain forests and polder sites of the Northern Upper Rhine Valley after 
the extreme summer drought of 2003 with an absence of regular flooding for eight years until spring 
2012. 

6. Conclusions 

In summary, in the Central European floodplain forests and wetlands, just as in the Amazonian 
floodplain forests, there are many different adaptations and predispositions for survival of periodic 
flooding and drought in a number of different arthropod taxa. Mainly the different phenological and 
morphological predispositions are very valuable to survive periodic flooding and normal drought 
events in the floodplain habitats. But aperiodic flooding and extreme drought events are of outstanding 
influence for the arthropod community of riparian habitats. A few stenotopic species bear adaptations 
to survive these conditions, but many well adapted floodplain species show markedly decreases in 
abundance and disappear after long-term disturbance by these events. In the future, the consequences 
of such species depletion in sensitive floodplain forests, riparian sites and wetlands should be a major 
focus in the programs of Central European floodplain research. 
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