Effect of Divergent Genetic Selection for Growth on Spawning Quality in Gilthead Seabream (Sparus aurata)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Evaluation of Spawning Quality
2.3. Statistical Analysis
3. Results
3.1. Comparison Between the Total Production of the Two Divergent Selection Genetic Lines
3.2. Comparison of Spawning Quality Traits Between Fortnights Within and Between Divergent Selected Genetic Lines
3.3. Relationships Between Spawning Quality Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AA | Arachidonic Acid |
| BLUP | Best linear unbiased prediction |
| DPH | Days post hatching |
| EBV | Estimated Breeding Value |
| EPA | Eicosapentaenoic acid |
| FO | Fish oil |
| HG | High growth |
| LG | Low growth |
| n-3 HUFA | Highly unsaturated fatty acids |
References
- APROMAR, Asociación Empresarial de Acuicultura de España. Aquaculture in Spain; Spanish Aquaculture Business Association (APROMAR): Cádiz, Spain, 2024; Available online: https://apromar.es/informes/ (accessed on 3 July 2025).
- León-Bernabeu, S.; Shin, H.S.; Lorenzo-Felipe, Á.; García-Pérez, C.; Berbel, C.; Elalfy, I.S.; Armero, E.; Pérez-Sánchez, J.; Arizcun, M.; Zamorano, M.J.; et al. Genetic parameter estimations of new traits of morphological quality on gilthead seabream (Sparus aurata) by using IMAFISH_ML software. Aquac. Rep. 2021, 21, 100883. [Google Scholar] [CrossRef]
- Mhalhel, K.; Levanti, M.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Porcino, C.; Briglia, M.; Germanà, A.; Montalbano, G. Review on Gilthead Seabream (Sparus aurata) Aquaculture: Life Cycle, Growth, Aquaculture Practices and Challenges. J. Mar. Sci. Eng. 2023, 11, 2008. [Google Scholar] [CrossRef]
- Kjørsvik, E.; Hoehne-Reitan, K.; Reitan, K.I. Egg and larval quality criteria as predictive measures for juvenile production in turbot (Scophthalmus maximus L.). Aquaculture 2003, 227, 9–20. [Google Scholar] [CrossRef]
- Bonnet, E.; Fostier, A.; Bobe, J. Characterization of rainbow trout egg quality: A case study using four different breeding protocols, with emphasis on the incidence of embryonic malformations. Theriogenology 2007, 67, 786–794. [Google Scholar] [CrossRef]
- Tandler, A.; Har’el, M.; Wilks, M.; Levinson, A.; Brickell, L.; Christie, S.; Avital, E.; Barr, Y. Effect of environmental temperature on survival, growth and population structure in the mass rearing of the gilthead seabream, Sparus aurata. Aquaculture 1989, 78, 277–284. [Google Scholar] [CrossRef]
- Afonso, J.M.; Roo, J. Anomalías Morfológicas en Peces Cultivados: Heredabilidad y Selección. In Genética y Genómica en Acuicultura; Espinosa de los Monteros, J., Martinez-Portela, P., Figueras-Huerta, A., Eds.; Publicaciones Científicas y Tecnológicas del Observatorio Español de Acuicultura: Madrid, Spain, 2007; pp. 215–240. [Google Scholar]
- Lorenzo-Felipe, Á.; Shin, H.S.; León-Bernabeu, S.; Pérez-García, C.; Zamorano, M.J.; Pérez-Sánchez, J.; Afonso-López, J.M. The Effect of the deformity genetic background of the breeders on he spawning quality of gilthead seabream (Sparus aurata L.). Front. Mar. Sci. 2021, 8, 656901. [Google Scholar] [CrossRef]
- Ortega, A. Cuadernos de Acuicultura, Cultivo de Dorada. 2008. Available online: https://www.observatorio-acuicultura.es/publicaciones/1-cultivo-de-dorada-sparus-aurata/ (accessed on 21 April 2025).
- García-Celdrán, M.; Ramis, G.; María-Dolores, E.; Peñalver, J.; Borrell, Y.J.; Manchado, M.; Estévez, A.; Afonso, J.M.; Armero, E. Genetic assessment of three gilthead seabream (Sparus aurata L.) populations along the Spanish coast and of three broodstocks managements. Aquac. Int. 2016, 24, 1409–1420. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introducción a la Genética Cuantitativa, 1st ed.; Acribia S.A.: Zaragoza, Spain, 2001; pp. 246–247. [Google Scholar]
- Janssen, K.; Chavanne, H.; Berentsen, P.; Komen, H. Impact of selective breeding on European aquaculture. Aquaculture 2017, 472, 8–16. [Google Scholar] [CrossRef]
- Papadaki, M.; Mylonas, C.C.; Fakriadis, I.; Divanach, P.; Kentouri, M. Reproductive performance of Sparus aurata broodstocks over five consecutive spawning seasons under simulated natural photoperiod and constant temperature. Aquaculture 2024, 582, 739745. [Google Scholar]
- Cota Mamani, N.; Carrera Santos, L.J.; Castro-Fuentes, A.; León Dominguez, O.; Flores Ramos, L.; Ruiz Soto, A.; Lazo, J.P.; Duncan, N. Reproductive performance and egg and larvae quality from first generation Peruvian grunt Anisotremus scapularis (Tschudi, 1846): A comparative analysis with spawns from wild broodstock. Front. Mar. Sci. 2023, 10, 1287439. [Google Scholar] [CrossRef]
- Badran, A.; El-Danasoury, M.; Sharaf, S.; Hassan, A. Effect of artificial photoperiod program on the maturation stages of gilthead seabream (Sparus aurata). Suez Canal Vet. Med. J. 2019, 201924, 113–122. [Google Scholar] [CrossRef]
- Ginés, R.; Afonso, J.M.; Argüello, A.; Zamorano, M.J.; López, J.L. Growth in adult gilthead sea bream (Sparus aurata L.) as a result of interference in sexual maturation by different photoperiod regimes. Aquac. Res. 2003, 34, 73–83. [Google Scholar] [CrossRef]
- Fernández-Palacios, H.; Hernández, C.; Fernández-Palacios, J.; Vergara, J.; Robaina, L. Influencia de distintas proporciones hembra: Macho en la puesta de dorada (Sparus aurata L.). In Proceedings of the III National Congress on Aquaculture, Santiago de Compostela, Spain, 24–27 September 1990. [Google Scholar]
- Fernández-Palacios, H.; Izquierdo, M.S.; Robaina, L.; Valencia, A.; Salhi, M.; Vergara, J.M. Effect of n-3 HUFA level in broodstock diets on egg quality of gilthead seabream (Sparus aurata L.). Aquaculture 1995, 132, 325–337. [Google Scholar] [CrossRef]
- El-Dahhar, A.A.; Abde-Salam, A.; El-Zaeem, S.Y.; Abdel-Rahim, M.M.; Mourad, M.M. The impact of various selenium forms during the maturation period of Gilthead seabream (Sparus aurata) broodstock on the reproductive performance, egg, and offspring quality. Sci. Rep. 2025, 15, 40392. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.S.; Fernández-Palacios, H.; Tacon, A.G.J. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 2001, 197, 25–42. [Google Scholar] [CrossRef]
- Jerez, S.; Rodríguez, C.; Cejas, J.R.; Martín, M.V.; Bolaños, A.; Lorenzo, A. Influence of age of female gilthead seabream (Sparus aurata L.) broodstock on spawning quality throughout the reproductive season. Aquaculture 2012, 350–353, 54–62. [Google Scholar] [CrossRef]
- Ferosekhan, S.; Turkmen, S.; Pérez-García, C.; Xu, H.; Gómez, A.; Shamna, N.; Afonso, J.M.; Rosenlund, G.; Fontanillas, R.; Gracia, A.; et al. Influence of genetic selection for growth and broodstock diet n-3 LC-PUFA levels on reproductive performance of Gilthead seabream, Sparus aurata. Animals 2021, 11, 519. [Google Scholar] [CrossRef]
- Ferosekhan, S.; Sarih, S.; Afonso, J.M.; Zamorano, M.J.; Fontanillas, R.; Izquierdo, M.; Kaushik, S.; Montero, D. Selection for high growth improves reproductive performance of gilthead seabream Sparus aurata under mass spawning conditions, regardless of the dietary lipid source. Anim. Reprod. Sci. 2022, 241, 106989. [Google Scholar] [CrossRef]
- Afonso, J.M.; Manchado, M.; Estévez, A.; Ramis, G.; Lee-Montero, I.; Ponce, M.; Sánchez, J.A.; Armero, E.; Navarro, A.; Puertas, M.A.; et al. PROGENSA®: Development of a genetic improvement program in gilthead seabream Sparus aurata L. between industry and research centers in Spain. In Proceedings of the AQUA 2012, Prague, Czech Republic, 1–5 September 2012. [Google Scholar]
- Groeneveld, E.; Kovâc, M.; Mielenz, N. VCE User’s Guide and Reference Manual Version 6.0. 2010. Available online: https://www.openagrar.de/servlets/MCRFileNodeServlet/openagrar_derivate_00022208/ (accessed on 27 November 2025).
- Neumaier, A.; Groeneveld, E. Restricted maximum likelihood estimation of covariances in sparse linear models. Genet. Sel. Evol. 1998, 30, 3–26. [Google Scholar] [CrossRef]
- Lee-Montero, I.; Navarro, A.; Borrell, Y.; García-Celdrán, M.; Martín, N.; Negrín-Báez, D.; Blanco, G.; Armero, E.; Berbel, C.; Zamorano, M.J.; et al. Development of the first standardised panel of two new microsatellite multiplex PCRs for gilthead seabream (Sparus aurata L.). Anim. Genet. 2010, 44, 533–546. [Google Scholar] [CrossRef]
- Vandeputte, M.; Mauger, S.; Dupont-Nivet, M. An evaluation of allowing for mismatches as a way to manage genotyping errors in parentage assignment by exclusion. Mol. Ecol. Notes 2006, 6, 265–267. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E. Maximizing the response of selection with a predefined rate of inbreeding. J. Anim. Sci. 1997, 75, 934–940. [Google Scholar] [CrossRef]
- Silva-García, A.J. Growth of juvenile gilthead seabream (Sparus aurata L.) reared under different photoperiod regimes. Isr. J. Aquac. Bamidgeh 1996, 48, 84–93. [Google Scholar]
- Kissil, G.W.; Lupatsch, I.; Elizur, A.; Zohar, Y. Long photoperiod delayed spawning and increased somatic growth in gilthead seabream (Sparus aurata). Aquaculture 2001, 200, 363–379. [Google Scholar] [CrossRef]
- Ginés, R.; Afonso, J.M.; Argüello, A.; Zamorano, M.J.; López, J.L. The effects of long-day photoperiod on growth, body composition and skin colour in immature gilthead seabream (Sparus aurata L.). Aquac. Res. 2004, 35, 1207–1212. [Google Scholar] [CrossRef]
- Mylonas, C.; Zohar, Y.; Pankhurst, N.; Kagawa, H. Reproduction and broodstock management. In Sparidae: Biology and Aquaculture of Gilthead Sea Bream and Other Species, 1st ed.; Pavlidis, M.A., Mylonas, C.C., Eds.; Wiley-Blackwell: West Sussex, UK, 2011; pp. 95–131. [Google Scholar]
- Kjørsvik, E.; Mangor-Jensen, A.; Holmefjord, I. Egg quality in marine fishes. Adv. Mar. Biol. 1990, 26, 71–113. [Google Scholar]
- AQUAEXCEL Deliverable 3.2 Best Practices & Cross-Applicability of Methods to Measure Phenotypes. Available online: https://www.ecoaqua.eu/sites/ecoaqua1214/img/AQUAEXCEL-ATOL_aquaexcel_d32-validated.pdf (accessed on 21 April 2025).
- Panini, E.; Mylonas, C.C.; Zanuy, S.; Carrillo, M.; Ramos, J.; Bruce, M. Incubation of embryos and larvae of marine fish using microtiter plates. Aquac. Int. 2001, 9, 189–196. [Google Scholar] [CrossRef]
- Sarih, S.; Djellata, A.; La Barbera, A.; Fernádez-Palacios Vallejo, H.; Roo, J.; Izquierdo, M.; Fernádez-Palacios, H. High-quality spontaneous spawning in greater amberjack (Seriola dumerili, Risso 1810) and its comparison with GnRHa implants or injections. Aquac. Res. 2018, 49, 3442–3450. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson: Essex, UK, 2014; p. 226. [Google Scholar]
- Bromage, N.; Jones, J.; Randall, C.; Thrush, M.; Davies, B.; Springate, J.; Dustin, J.; Barker, G. Broodstock management, fecundity, egg quality and the timing of egg production in the rainbow trout (Oncorhynchus mykiss). Aquaculture 1992, 100, 141–166. [Google Scholar] [CrossRef]
- Bobe, J.; Labbé, C. Egg and sperm quality in fish. Gen. Comp. Endocrinol. 2010, 165, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Migaud, H.; Bell, G.; Cabrita, E.; McAndrew, B.; Davie, A.; Bobe, J.; Herráez, M.P.; Carrillo, M. Gamete quality and broodstock management in temperate fish. Rev. Aquac. 2013, 5, S194–S223. [Google Scholar] [CrossRef]
- Theodorou, J.A.; Perdikaris, C.; Venou, B. Origin of broodstock and effects on the deformities of gilthead seabream (Sparus aurata L. 1758) in a Mediterranean commercial hatchery. Int. Aquat. Res. 2016, 8, 275–282. [Google Scholar] [CrossRef]
- Polo, A.; Yúfera, M.; Pascual, E. Effects of temperature on egg and larval development of Sparus aurata L. Aquaculture 1991, 92, 367–375. [Google Scholar] [CrossRef]
- Paul, K.; Pélissier, P.; Goardon, L.; Dechamp, N.; Danon, J.; Jaffrelo, L.; Poncet, C.; Dupont-Nivet, M.; Phocas, F. Maternal and genetic effects on embryonic survival from fertilization to swim up stage and reproductive success in a farmed rainbow trout line. Aquac. Rep. 2023, 29, 101523. [Google Scholar] [CrossRef]
- Kanis, E.; Refstie, T.; Gjedrem, T. A genetic analysis of egg, alevin and fry mortality in salmon (Salmo salar), sea trout (Salmo trutta) and rainbow trout (Salmo gairdneri). Aquaculture 1976, 8, 259–268. [Google Scholar] [CrossRef]
- Houde, A.L.S.; Black, C.A.; Wilson, C.C.; Pitcher, T.E.; Neff, B.D. Genetic and maternal effects on juvenile survival and fitness-related traits in three populations of Atlantic salmon. Can. J. Fish. Aquat. Sci. 2015, 72, 751–758. [Google Scholar] [CrossRef]
- Saborido-Rey, F.; Kjesbu, O.S.; Thorsen, A. Buoyancy of Atlantic cod larvae in relation to developmental stage and maternal influences. J. Plankton Res. 2003, 25, 291–307. [Google Scholar] [CrossRef]
- Bardon, A.; Vandeputte, M.; Dupont-Nivet, M.; Chavanne, H.; Haffray, P.; Vergnet, A.; Chatain, B. What is the heritable component of spinal deformities in the European sea bass (Dicentrarchus labrax)? Aquaculture 2009, 294, 194–201. [Google Scholar] [CrossRef]
- Karahan, B.; Chatain, B.; Chavanne, H.; Vergnet, A.; Bardon, A.; Haffray, P.; Dupont- Nivet, M.; Vandeputte, M. Heritabilities and correlations of deformities and growth-related traits in the European sea bass (Dicentrarchus labrax, L) in four different sites. Aquac. Res. 2013, 44, 289–299. [Google Scholar] [CrossRef]
- Kolstad, K.; Thorland, I.; Refstie, T.; Gjerde, B. Body weight, sexual maturity, and spinal deformity in strains and families of Atlantic cod (Gadus morhua) at two years of age at different locations along the Norwegian coast. ICES J. Mar. Sci. 2006, 63, 246–252. [Google Scholar] [CrossRef]
- Lee-Montero, I.; Navarro, A.; Negrín-Báez, D.; Zamorano, M.J.; Berbel, C.; Sánchez, J.A.; García-Celdrán, M.; Manchado, M.; Estevez, A.; Armero, E.; et al. Genetic parameters and genotype–environment interactions for skeleton deformities and growth traits at different ages on gilthead seabream (Sparus aurata L.) in four Spanish. Anim. Genet. 2015, 46, 164–174. [Google Scholar] [CrossRef] [PubMed]


| Broodstock Features | LG | HG |
|---|---|---|
| Male weight (g) | 891.35 ± 246.42 | 1039.84 ± 288.73 |
| Male length (cm) | 33.54 ± 2.98 | 34.94 ± 2.78 |
| Female weight (g) | 793.04 ± 131.89 | 1213.95 ± 524.5 |
| Female length (cm) | 32.34 ± 1.56 | 35.85 ± 4.17 |
| Male biomass (kg) | 33 | 24 |
| Female biomass (kg) | 22 | 17 |
| Total biomass | 55 | 41 |
| Biomass rate, male: female | 1.5 | 1.4 |
| Fortnights | Code | Period | |
|---|---|---|---|
| Acclimatation | |||
| 1, 2, 3 | F1, F2, F3 | From 29th December 2018 to 31st January 2019 | |
| Evaluation | |||
| 4 | F4 | From 1st to 15th February 2019 | |
| 5 | F5 | From 16th to 28th February 2019 | |
| 6 | F6 | From 1st to 15th March 2019 | |
| 7 | F7 | From 16th to 31st March 2019 | |
| 8 | F8 | From 1st to15th April 2019 | |
| 9 | F9 | From 16th to 30th April 2019 | |
| 10 | F10 | From 1st to15th May 2019 | |
| 11 | F11 | From 16th to 31st May 2019 | |
| 12 | F12 | From 1st to 7th June 2019 |
| Trait | Genetic | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | Total Spawning Season |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Oocyte yield (×103) | LG | 38.24 ± 3.03 abA | 38.82 ± 4.11 ab | 36.74 ± 1.64 aA | 31.62 ± 2.72 abc | 33.75 ± 2.70 ab | 27.45 ± 2.32 abcd | 23.15 ± 1.86 bcd | 15.53 ± 3.00 cd | 7.07 ± 1.76 d | 29.44 ± 1.27 A |
| HG | 25.78 ± 3.38 abB | 28.82 ± 4.34 a | 27.89 ± 2.60 aB | 31.33 ± 2.50 a | 28.01 ± 2.31 a | 23.11 ± 2.97 abc | 18.78 ± 1.86 abc | 9.12 ± 1.96 c | 6.42 ± 1.06 bc | 23.40 ± 1.19 B | |
| Fertilised eggs (×103) | LG | 38.01 ± 3.01 aA | 38.52 ± 4.08 aA | 36.08 ± 1.86 aA | 31.41 ± 2.72 ab | 33.50 ± 2.72 a | 27.78 ± 2.32 abc | 22.98 ± 1.84 abc | 15.36 ± 2.96 bc | 7.01 ± 1.75 c | 29.17 ± 1.26 A |
| HG | 25.71 ± 3.38 abB | 28.73 ± 4.33 aB | 27.73 ± 2.57 aB | 31.21 ± 2.50 a | 27.89 ± 2.31 a | 23.00 ± 2.97 abc | 18.70 ± 1.85 abc | 9.08 ± 1.95 c | 6.37 ± 1.05 bc | 23.31 ± 1.19 B | |
| Viable eggs (×103) | LG | 25.06 ± 3.17 ab | 22.60 ± 2.53 abc | 27.64 ± 1.44 a | 17.99 ± 2.97 abc | 22.32 ± 2.26 abc | 15.33 ± 1.99 abcd | 12.27 ± 2.24 bcd | 10.03 ± 2.57 cd | 2.49 ± 0.91 d | 18.34 ± 1.04 |
| HG | 21.58 ± 3.16 ab | 24.64 ± 4.56 a | 23.86 ± 1.98 a | 25.49 ± 2.47 a | 23.18 ± 2.09 a | 19.09 ± 3.24 abc | 15.41 ± 1.60 abc | 6.38 ± 1.54 c | 4.39 ± 0.38 bc | 19.33 ± 1.11 | |
| Hatched eggs (×103) | LG | 22.93 ± 3.27 ab | 20.53 ± 1.97 abc | 26.43 ± 1.13 a | 17.21 ± 3.14 abc | 20.86 ± 2.12 abc | 13.47 ± 2.09 bc | 10.88 ± 2.16 bc | 9.81 ± 2.89 bc | 2.92 ± 1.04 c | 17.61 ± 1.01 |
| HG | 19.72 ± 2.87 ab | 22.71 ± 4.39 a | 22.32 ± 2.37 a | 24.49 ± 2.56 a | 32.29 ± 6.98 a | 25.52 ± 7.28 ab | 14.58 ± 1.54 ab | 5.97 ± 1.61 b | 4.64 ± 0.15 ab | 20.93 ± 1.67 | |
| N° live larvae (×103) | LG | 17.61 ± 2.83 a | 12.32 ± 2.84 ab | 17.80 ± 1.57 a | 12.53 ± 2.02 ab | 18.06 ± 1.89 a | 10.19 ± 1.47 ab | 9.17 ± 1.90 ab | 7.92 ± 2.70 ab | 1.66 ± 0.40 b | 13.04 ± 0.85 |
| HG | 18.07 ± 2.88 a | 20.23 ± 1.72 a | 15.46 ± 2.86 ab | 16.26 ± 2.34 ab | 27.34 ± 6.83 a | 19.85 ± 5.50 ab | 10.88 ± 1.52 ab | 4.65 ± 1.46 b | 3.34 ± 0.69 ab | 16.78 ± 1.52 | |
| Fertilisation rate (%) | LG | 99.38 ± 0.14 | 99.24 ± 0.25 B | 97.74 ± 1.23 B | 99.12 ± 0.27 B | 99.17 ± 0.20 | 99.32 ± 0.10 | 99.31 ± 0.20 | 98.99 ± 0.35 B | 99.17 ± 0.40 | 98.11 ± 0.93 B |
| HG | 99.68 ± 0.06 | 99.67 ± 0.16 A | 99.46 ± 0.22 A | 99.64 ± 0.06 A | 99.55 ± 0.10 | 99.43 ± 0.09 | 99.58 ± 0.08 | 99.71 ± 0.16 A | 99.30 ± 0.40 | 99.57 ± 0.05 A | |
| Viability rate (%) | LG | 65.64 ± 7.14 B | 61.59 ± 6.17 B | 75.61 ± 12.70 B | 54.34 ± 6.41 B | 65.78 ± 3.35 B | 56.47 ± 5.77 B | 50.95 ± 8.15 B | 56.45 ± 6.99 | 47.81 ± 10.95 | 60.31 ± 2.15 B |
| HG | 83.93 ± 3.74 A | 81.08 ± 7.05 A | 86.97 ± 2.84 A | 80.46 ± 5.36 A | 82.69 ± 2.44 A | 79.06 ± 6.59 A | 82.63 ± 2.62 A | 72.26 ± 7.82 | 71.73 ± 5.60 | 80.79 ± 1.71 A | |
| Hatching rate (%) | LG | 90.37 ± 4.12 | 92.14 ± 2.46 | 96.23 ± 1.36 | 91.38 ± 4.06 B | 93.79 ± 1.85 | 89.02 ± 3.33 B | 87.03 ± 3.13 | 84.51 ± 4.44 | 86.59 ± 1.51 B | 90.72 ± 1.08 B |
| HG | 92.06 ± 1.50 b | 88.54 ± 3.73 b | 91.48 ± 5.50 ab | 98.44 ± 0.30 aA | 95.48 ± 1.87 ab | 98.83 ± 0.40 aA | 94.87 ± 1.73 ab | 92.42 ± 1.89 b | 95.66 ± 2.56 abA | 94.22 ± 0.91 A | |
| Larval survival rate (%) | LG | 78.04 ± 5.94 | 56.14 ± 9.69 B | 67.21 ± 5.30 | 74.76 ± 2.76 | 86.26 ± 2.08 | 78.20 ± 3.33 | 83.86 ± 3.68 A | 70.23 ± 8.42 | 67.86 ± 10.89 | 74.25 ± 2.05 |
| HG | 90.33 ± 2.98 a | 87.80 ± 4.48 abA | 66.71 ± 8.14 ab | 66.96 ± 5.31 b | 80.40 ± 3.77 a | 75.54 ± 4.00 ab | 71.23 ± 4.39 abB | 71.62 ± 5.35 ab | 70.55 ± 16.77 ab | 76.37 ± 1.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-García, C.; Lorenzo-Felipe, Á.; Ferosekhan, S.; Shin, H.S.; León-Bernabeu, S.; Izquierdo, M.; Montero, D.; Ginés, R.; Afonso-López, J.M.; Zamorano, M.J. Effect of Divergent Genetic Selection for Growth on Spawning Quality in Gilthead Seabream (Sparus aurata). Animals 2025, 15, 3527. https://doi.org/10.3390/ani15243527
Pérez-García C, Lorenzo-Felipe Á, Ferosekhan S, Shin HS, León-Bernabeu S, Izquierdo M, Montero D, Ginés R, Afonso-López JM, Zamorano MJ. Effect of Divergent Genetic Selection for Growth on Spawning Quality in Gilthead Seabream (Sparus aurata). Animals. 2025; 15(24):3527. https://doi.org/10.3390/ani15243527
Chicago/Turabian StylePérez-García, Cathaysa, Álvaro Lorenzo-Felipe, Shajahan Ferosekhan, Hyun Suk Shin, Sergi León-Bernabeu, Marisol Izquierdo, Daniel Montero, Rafael Ginés, Juan Manuel Afonso-López, and María Jesús Zamorano. 2025. "Effect of Divergent Genetic Selection for Growth on Spawning Quality in Gilthead Seabream (Sparus aurata)" Animals 15, no. 24: 3527. https://doi.org/10.3390/ani15243527
APA StylePérez-García, C., Lorenzo-Felipe, Á., Ferosekhan, S., Shin, H. S., León-Bernabeu, S., Izquierdo, M., Montero, D., Ginés, R., Afonso-López, J. M., & Zamorano, M. J. (2025). Effect of Divergent Genetic Selection for Growth on Spawning Quality in Gilthead Seabream (Sparus aurata). Animals, 15(24), 3527. https://doi.org/10.3390/ani15243527

