The Role of Phosphorus Sources and Phytase in Growth Performance and Feed Digestibility in Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Committee
2.2. Experimental Ingredients and Diets
2.3. Bird Husbandry
2.4. Growth Performance
2.5. Ileal Digestibility of Nutrients
2.6. Statistical Analysis
3. Results
3.1. Growth Performances
3.2. Ileal Digestibility
4. Discussion
4.1. Growth Performances
4.2. Ileal Digestibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
P | Phosphorus |
Ca | Calcium |
MCP | Monocalcium Phosphate |
CHP | Calcium Humophosphate |
FTU | Phytase Activity Expressed in Units |
ADG | Average Daily Gain |
ADFI | Average Daily Feed Intake |
FCR | Feed Conversion Ratio |
DM | Dry Matter |
OM | Organic Matter |
Ti | Titanium |
References
- Korver, D.R. Review: Current Challenges in Poultry Nutrition, Health, and Welfare. Animal 2023, 17, 100755. [Google Scholar] [CrossRef] [PubMed]
- Sinclair-Black, M.; Garcia, R.A.; Ellestad, L.E. Physiological Regulation of Calcium and Phosphorus Utilization in Laying Hens. Front. Physiol. 2023, 14, 1112499. [Google Scholar] [CrossRef] [PubMed]
- Cozannet, P.; Jlali, M.; Moore, D.; Archibeque, M.; Preynat, A. Evaluation of Phytase Dose Effect on Performance, Bone Mineralization, and Prececal Phosphorus Digestibility in Broilers Fed Diets with Varying Metabolizable Energy, Digestible Amino Acids, and Available Phosphorus Concentration. Poult. Sci. 2023, 102, 102755. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Alagawany, M.; Abd El-Hack, M.E.; Saeed, M.; Arain, M.A.; Elnesr, S.S. Humic Acid as a Feed Additive in Poultry Diets: A Review. Iran. J. Vet. Res. 2019, 20, 167–172. [Google Scholar] [PubMed]
- Wang, Z.; Yin, L.; Liu, L.; Lan, X.; He, J.; Wan, F.; Shen, W.; Tang, S.; Tan, Z.; Yang, Y. Tannic Acid Reduced Apparent Protein Digestibility and Induced Oxidative Stress and Inflammatory Response without Altering Growth Performance and Ruminal Microbiota Diversity of Xiangdong Black Goats. Front. Vet. Sci. 2022, 9, 1004841. [Google Scholar] [CrossRef] [PubMed]
- Sauvant, D.; Perez, J.-M.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials. In Tables of Composition and Nutritional Value of Feed Materials; Wageningen Academic: Wageningen, The Netherlands, 2004; ISBN 978-90-8686-668-7. [Google Scholar]
- Varella, G.O.M.; Riveros, R.L.; Leme, B.B.; Ribeiro, B.; Poujol, M.; Sakomura, N.K. Evaluation of the Calcium Humophosphate Supplemented with Phytase on Phosphorus Digestibility and Performance in 21-Day Old Broiler Chickens. J. Appl. Poult. Res. 2025, 34, 100526. [Google Scholar] [CrossRef]
- Huang, K.H.; Ravindran, V.; Li, X.; Bryden, W.L. Influence of Age on the Apparent Ileal Amino Acid Digestibility of Feed Ingredients for Broiler Chickens. Br. Poult. Sci. 2005, 46, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Kong, C. Standardized Ileal Digestibility of Calcium and Phosphorus in Feed Ingredients for 21-Day-Old Broilers. Animals 2024, 14, 2603. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.R.; Duangnumsawang, Y.; Kwakkel, R.P.; Steenfeldt, S.; Bootwalla, S.M.; Ravindran, V. Investigation of the Interaction between Separate Calcium Feeding and Phytase Supplementation on Growth Performance, Calcium Intake, Nutrient Digestibility and Energy Utilisation in Broiler Starters. Anim. Feed. Sci. Technol. 2016, 219, 48–58. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Jendza, J.A.; Ader, P.; Xue, P.; Adedokun, S.A.; Adeola, O. Response of Broiler Chickens in the Starter and Finisher Phases to 3 Sources of Microbial Phytase. Poult. Sci. 2020, 99, 3997–4008. [Google Scholar] [CrossRef] [PubMed]
- Adejumo, I.O.; Bryson, B.; Olojede, O.C.; Bedford, M.R.; Adedokun, S.A. Effect of Sodium Sources and Exogenous Phytase Supplementation on Growth Performance, Nutrient Digestibility, and Digesta pH of 21-Day-Old Broilers. Poult. Sci. 2021, 100, 101467. [Google Scholar] [CrossRef] [PubMed]
- Woyengo, T.A.; Nyachoti, C.M. Review: Anti-Nutritional Effects of Phytic Acid in Diets for Pigs and Poultry—Current Knowledge and Directions for Future Research. Can. J. Anim. Sci. 2013, 93, 9–21. [Google Scholar] [CrossRef]
- Walk, C.L.; Rama Rao, S.V. Dietary Phytate Has a Greater Anti-Nutrient Effect on Feed Conversion Ratio Compared to Body Weight Gain and Greater Doses of Phytase Are Required to Alleviate This Effect as Evidenced by Prediction Equations on Growth Performance, Bone Ash and Phytate Degradation in Broilers. Poult. Sci. 2020, 99, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Aiello, D.; Carnamucio, F.; Cordaro, M.; Foti, C.; Napoli, A.; Giuffrè, O. Ca2+ Complexation With Relevant Bioligands in Aqueous Solution: A Speciation Study With Implications for Biological Fluids. Front. Chem. 2021, 9, 640219. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-Y.; Kim, W.K. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Taklimi, S.M.S.M.; Ghahri, H.; Isakan, M.A. Influence of Different Levels of Humic Acid and Esterified Glucomannan on Growth Performance and Intestinal Morphology of Broiler Chickens. Agric. Sci. 2012, 3, 663–668. [Google Scholar] [CrossRef]
- Eren, M.; Cengiz, S.; Deniz, G.; Orhan, F. Effects of Liquid Humate Supplemented to Drinking Water on the Performance and Eggshell Quality of Hens in Different Laying Periods. Rev. Med. Vet. 2008, 159, 91–95. [Google Scholar]
- Marcinčák, S.; Semjon, B.; Marcinčáková, D.; Reitznerová, A.; Mudroňová, D.; Vašková, J.; Nagy, J. Humic Substances as a Feed Supplement and the Benefits of Produced Chicken Meat. Life 2023, 13, 927. [Google Scholar] [CrossRef] [PubMed]
Source of Phosphate | MCP 1 | CHP 1 |
---|---|---|
Ingredient (%) | ||
Corn | 62.9 | 62.8 |
Soybean meal | 31.8 | 31.9 |
Soy oil | 2.24 | 2.27 |
Limestone | 1.20 | 1.23 |
Monocalcium phosphate | 0.53 | - |
HumIPHORA | - | 0.55 |
Sodium chloride | 0.35 | 0.35 |
DL-Methionine | 0.28 | 0.28 |
Premix 2 | 0.40 | 0.40 |
L-lysine HCl | 0.21 | 0.21 |
L-threonine | 0.08 | 0.08 |
L-valine | 0.02 | 0.02 |
Determined analysis (%) | ||
Moisture | 11.9 | 11.5 |
Ash | 4.92 | 5.07 |
Crude protein | 19.7 | 19.9 |
Ether extract | 4.53 | 4.77 |
Crude fiber | 2.63 | 2.67 |
Calcium | 0.72 | 0.72 |
Phosphorus | 0.51 | 0.52 |
Calculated analysis (%) | ||
AMEn (kcal/kg) | 3030 | 3030 |
Digestible amino acids | ||
Lys | 1.08 | 1.08 |
Met | 0.56 | 0.56 |
Met+Cys | 0.83 | 0.83 |
Thr | 0.72 | 0.72 |
Trp | 0.20 | 0.20 |
Ile | 0.74 | 0.74 |
Val | 0.86 | 0.86 |
Main Effects | Interaction | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P Source | Phytase Activity (FTU/kg) | MCP | CHP | p-Value | ||||||||||
MCP | CHP | 0 | 1000 | 2000 | 0 FTU/kg | 1000 FTU/kg | 2000 FTU/kg | 0 FTU/kg | 1000 FTU/kg | 2000 FTU/kg | P Source | Phytase | Interaction | |
0 days | 45.4 | 45.6 | 45.3 | 45.8 | 45.5 | 45.2 | 45.7 | 45.4 | 45.3 | 45.9 | 45.6 | 0.383 | 0.256 | 0.944 |
10 days | 313 | 312 | 315 | 310 | 313 | 317 | 307 | 317 | 314 | 314 | 309 | 0.747 | 0.487 | 0.211 |
21 days | 1051 | 1047 | 1045 | 1049 | 1054 | 1049 | 1048 | 1057 | 1040 | 1050 | 1051 | 0.614 | 0.596 | 0.836 |
0 to 10 d | ||||||||||||||
ADG, g/d | 26.8 | 26.7 | 27.0 | 26.4 | 26.7 | 27.1 | 26.1 | 27.2 | 26.9 | 26.8 | 26.3 | 0.691 | 0.398 | 0.193 |
ADFI, g/d | 29.7 | 29.7 | 29.8 | 29.5 | 29.8 | 29.9 | 29.2 | 30.0 | 29.7 | 29.8 | 29.5 | 0.958 | 0.646 | 0.295 |
FCR, g/g | 1.109 | 1.114 | 1.105 | 1.116 | 1.114 | 1.104 | 1.118 | 1.105 | 1.106 | 1.114 | 1.124 | 0.458 | 0.411 | 0.391 |
11 to 21 d | ||||||||||||||
ADG, g/d | 67.1 | 66.8 | 66.3 | 67.2 | 67.4 | 66.6 | 67.4 | 67.3 | 66.0 | 67.0 | 67.5 | 0.691 | 0.333 | 0.870 |
ADFI, g/d | 89.0 | 88.0 | 89.0 | 88.1 | 88.5 | 89.4 | 88.6 | 89.1 | 88.7 | 87.5 | 87.8 | 0.223 | 0.648 | 0.963 |
FCR, g/g | 1.327 | 1.317 | 1.343 b | 1.311 a | 1.313 a | 1.343 | 1.315 | 1.324 | 1.343 | 1.307 | 1.303 | 0.218 | 0.003 | 0.539 |
0 to 21 d | ||||||||||||||
ADG, g/d | 47.9 | 47.7 | 47.6 | 47.8 | 48.0 | 47.8 | 47.7 | 48.2 | 47.4 | 47.8 | 47.9 | 0.593 | 0.608 | 0.839 |
ADFI, g/d | 60.8 | 60.2 | 60.8 | 60.2 | 60.5 | 61.1 | 60.3 | 60.9 | 60.6 | 60.0 | 60.1 | 0.258 | 0.540 | 0.895 |
FCR, g/g | 1.269 | 1.263 | 1.278 b | 1.259 a | 1.259 a | 1.278 | 1.264 | 1.264 | 1.278 | 1.255 | 1.255 | 0.325 | 0.016 | 0.747 |
Main Effects | Interaction | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P Source | Phytase Activity (FTU/kg) | MCP | CHP | p-Value | ||||||||||
MCP | CHP | 0 | 1000 | 2000 | 0 FTU/kg | 1000 FTU/kg | 2000 FTU/kg | 0 FTU/kg | 1000 FTU/kg | 2000 FTU/kg | P Source | Phytase | Interaction | |
Dry matter | 61.8 | 65.3 | 64.4 a | 64.2 a | 61.9 b | 62.2 b | 61.1 b’ | 61.9 | 66.5 a | 67.4 a’ | 61.9 | <0.001 | <0.001 | <0.001 |
Organic matter | 63.3 | 66.8 | 66.0 a | 65.8 a | 63.4 b | 63.9 b | 62.6 b | 63.4 b | 68.1 a | 69.0 a | 63.3 b | <0.001 | <0.001 | <0.001 |
Calcium | 49.7 | 51.0 | 52.5 | 50.0 | 48.6 | 50.9 | 51.0 | 47.4 | 54.1 | 49.1 | 49.8 | 0.334 | 0.052 | 0.234 |
P | 60.3 b | 64.0 a | 49.7 c | 65.8 b | 70.9 a | 46.8 | 64.9 | 69.1 | 52.5 | 66.7 | 72.7 | <0.001 | <0.001 | 0.271 |
Ash | 34.4 | 37.6 | 34.7 | 36.9 | 36.3 | 31.8 b | 34.9 ab | 36.4 ab | 37.7 a | 38.9 a | 36.2 ab | 0.010 | 0.186 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coudert, E.; Corrales, N.L.; Juanchich, A.; Poujol, M.; Ribeiro, B.; Chalvon-Demersay, T.; Fondevila, G. The Role of Phosphorus Sources and Phytase in Growth Performance and Feed Digestibility in Broilers. Animals 2025, 15, 2111. https://doi.org/10.3390/ani15142111
Coudert E, Corrales NL, Juanchich A, Poujol M, Ribeiro B, Chalvon-Demersay T, Fondevila G. The Role of Phosphorus Sources and Phytase in Growth Performance and Feed Digestibility in Broilers. Animals. 2025; 15(14):2111. https://doi.org/10.3390/ani15142111
Chicago/Turabian StyleCoudert, Edouard, Nereida L. Corrales, Amélie Juanchich, Margot Poujol, Benjamin Ribeiro, Tristan Chalvon-Demersay, and Guillermo Fondevila. 2025. "The Role of Phosphorus Sources and Phytase in Growth Performance and Feed Digestibility in Broilers" Animals 15, no. 14: 2111. https://doi.org/10.3390/ani15142111
APA StyleCoudert, E., Corrales, N. L., Juanchich, A., Poujol, M., Ribeiro, B., Chalvon-Demersay, T., & Fondevila, G. (2025). The Role of Phosphorus Sources and Phytase in Growth Performance and Feed Digestibility in Broilers. Animals, 15(14), 2111. https://doi.org/10.3390/ani15142111