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Simple Summary: Bile acids are synthesized from cholesterol in the liver and play a crucial role in 

the metabolism of dietary lipids as emulsifiers. Exogenous bile acids supplementation can promote 

the growth of fish reared at optimal water temperatures by increasing feed intake and digestion, 

enhancing antioxidant capacity, and improving gut health. However, whether they also have posi-

tive effects on fish reared at high water temperatures remains unclear. In this study, we investigated 

the effects of dietary bile acids on growth, glucose metabolism, and intestinal health in spotted sea-

bass reared at high temperatures (33 °C). The results demonstrated that dietary bile acids promoted 

fish growth, improved glucose metabolism, and maintained intestinal health in spotted seabass. 

Abstract: An 8-week feeding trial was performed to investigate the effects of dietary bile acids on growth, 

glucose metabolism, and intestinal health in spotted seabass (Lateolabrax maculatus) reared at high tem-

peratures (33 °C). The fish (20.09 ± 1.12 g) were fed diets supplemented with bile acids: 0 (Con), 400 

(BA400), 800 (BA800), and 1200 (BA1200) mg/kg, respectively. The results showed that the growth was 

promoted in fish at the BA800 treatment compared with the control (p < 0.05). Increased enzyme activities 

and transcripts of gluconeogenesis in the liver were observed, whereas decreased enzyme activities and 

transcripts of glycolysis, as well as glycogen content, were shown in the BA800 treatment (p < 0.05). The 

transcripts of bile acid receptors fxr in the liver were up-regulated in the BA800 treatment (p < 0.05). A 

bile acid supplementation of 800 mg/kg improved the morphological structure in the intestine. Mean-

while, intestinal antioxidant physiology and activities of lipase and trypsin were enhanced in the BA800 

treatment. The transcripts of genes and immunofluorescence intensity related to pro-inflammation cyto-

kines (il-1β, il-8, and tnf-α) were inhibited, while those of genes related to anti-inflammation (il-10 and tgf-

β) were induced in the BA800 treatment. Furthermore, transcripts of genes related to the NF-κB pathway 

in the intestine (nfκb, ikkα, ikkꞵ, and ikbα1) were down-regulated in the BA800 treatment. This study 

demonstrates that a dietary bile acid supplementation of 800 mg/kg could promote growth, improve 

glucose metabolism in the liver, and enhance intestinal health by increasing digestive enzyme activity 

and antioxidant capacity and inhibiting inflammatory response in L. maculatus. 
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1. Introduction 

Spotted seabass (Lateolabrax maculatus) has become a major fish cultured in southern 

China due to its high nutritional and economic value [1]. Its total production reached ap-

proximately 218,000 tons in 2022 [2]. The optimal water temperature range for L. maculatus 

is from 16 °C to 28 °C [3]. In the main farming areas for L. maculatus, however, water tem-

perature often reached 33 °C or higher along the southeast coast of China in summer. 

Water temperature is one of the most pervasive and influential environmental factors in 

intensive aquaculture, which directly impacts almost all aspects of fish physiology [4,5]. 

A high water temperature may lead to an excessive accumulation of reactive oxygen spe-

cies (ROS) [6,7], causing energy metabolism disorders in organisms [8,9], ultimately re-

sulting in various adverse effects on growth, antioxidant capacity, immunity response, 

and survival in fish [10–12]. Our recent studies demonstrated that a high water tempera-

ture of 33 °C may lead to a decrease in growth [1], antioxidant capacity, immune response, 

and the survival of L. maculatus, causing hepatic metabolic disorders [13] and intestinal 

mucosal damage [14] in L. maculatus. Thus, the negative effects of high temperatures on 

fish have become one of the main obstacles to the development of the aquaculture indus-

try [15]. 

Bile acid is synthesized by cholesterol in the liver and is mainly stored in the gallblad-

der as bile salts [16]. In general, bile acids primarily enhance the efficiency of dietary lipid 

digestion in fish by acting as emulsifiers and also play a crucial role in activating lipases 

[17,18] and improving the absorption and transportation of lipid and lipid-soluble nutri-

ents in fish [19]. Meanwhile, as a signaling molecule, bile acids may be involved in regu-

lating the metabolism of lipids and glucose in organisms [20]. Furthermore, further re-

search indicated that dietary supplementation of bile acids can also promote antioxidant 

capacity [21], improve anti-inflammatory properties [22], enhance immune response [23], 

and maintain intestinal health [24] in fish. 

Given the importance of bile acids in the physiological metabolism of the body, their 

multiple biological properties for fish are also increasingly recognized [25–27]. Surpris-

ingly, a previous study in turbot (Scophthalmus maximus) has found that high water tem-

perature inhibited the expression of the cyp27a1 gene in bile acid synthesis compared with 

the optimal water temperature [28]. In agreement with this, the data of bile acid metabo-

lomics from our study indicated that the synthesis of endogenous bile acid in L. maculatus 

reared at a high water temperature (33 °C) was significantly lower (p < 0.05) than that of 

fish reared at the optimal temperature (27 °C) (See Figure S1). However, it remains largely 

unclear whether bile acid supplementation can mitigate the negative effects of high water 

temperature on fish. We tested the hypothesis that the supplementation of appropriate 

levels of exogenous bile acids could be beneficial in mitigating the negative effects on 

growth and physiological homeostasis caused by high temperatures on fish. Thus, the 

main objective of this study was to evaluate the effects of dietary supplementation of bile 

acids on growth performance, glucose metabolism, and intestinal health in L. maculatus 

reared under high water-temperature conditions (33 °C). 

2. Materials and Methods 

2.1. Ethics Statement 

All the animal trials in this study were conducted according to the guidelines of the 

Ethics Committee of Care and Use for Laboratory Animals of Jimei University, Xiamen, 

Fujian, China (No. JMU202303004, Approval date: 10 March 2023). 
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2.2. Preparation of Experimental Diets 

Four isonitrogenous (43.0% crude protein) and isolipidic (12% crude lipid) diets were 

prepared, four diets of which were supplemented with different levels of bile acids mix-

ture (0, 400, 800, and 1200 mg/kg). These treatments were defined as Con, BA400, BA800, 

and BA1200, respectively. The bile acid mixture (including 75.2% hyodeoxycholic acid 

(HDCA), 17.4% chenodeoxycholic acid (CDCA), and 4.2% hyodeoxycholicacid (HCA)) 

was observed from Longchang Animal Health Co., Ltd. (Dezhou, Shandong, China). In 

this study, fishmeal, soybean meal, and poultry by-product meal were used as the main 

protein sources, and fish oil and soybean oil were used as lipid sources. The formulation 

and proximate composition of five diets for juvenile L. maculatus are shown in Table 1. The 

diets were prepared as described in our previous study [1]. Prior to diet preparation, all 

ingredients were crushed and sieved below 60-mesh. After mixing all the dry ingredients, 

the oil mixture was added, followed by the addition of 30% (w/w) deionized distilled water 

to form a dough. The feed at ~2.5 mm diameter was made using a cold-extruded pellet 

producer. The feeds were dried at 50 °C for 10 h, then stored at −20 °C until use. 

Table 1. Formulation and proximate composition of the experimental diets (g/kg dry-matter basis). 

Ingredients 
Bile Acids Supplementation (mg/kg Diet) 

Con BA400 BA800 BA1200 

Fishmeal 1 300.00 300.00 300.00 300.00 

Poultry by-product meal 80.00 80.00 80.00 80.00 

Wheat gluten 30.00 30.00 30.00 30.00 

Soybean meal 285.00 285.00 285.00 285.00 

Wheat flour 200.00 200.00 200.00 200.00 

Squid paste 10.00 10.00 10.00 10.00 

Fish oil 20.00 20.00 20.00 20.00 

Soybean oil 20.00 20.00 20.00 20.00 

Lecithin 20.00 20.00 20.00 20.00 

Ca(H2PO4)2 18.00 18.00 18.00 18.00 

L-Ascorbate-2-phosphate 0.50 0.50 0.50 0.50 

Vitamin Premix 2 2.00 2.00 2.00 2.00 

Mineral Premix 3 5.00 5.00 5.00 5.00 

Choline chloride 5.00 5.00 5.00 5.00 

Microcrystalline cellulose 4.50 4.10 3.70 3.30 

Bile acids 4 0.00 0.40 0.80 1.20 

Proximate composition     

Crude protein 426.00 430.0 431.00 432.00 

Crude lipid 121.00 118.00 119.70 117.00 

Crude ash 80.40 79.80 80.40 80.30 
1 Xiamen Jiakang feed Co., Ltd., Xiamen, China, imported from Peru (crude protein: 68.00%, crude 

lipid:12.00%). 2 Vitamin premix (mg/kg diet): Thiamin, 10 mg; Riboflavin, 8 mg; Pyridoxine HCl, 10 

mg; Vitamin B12, 0.2 mg; Vitamin K3, 10 mg; Inositol, 100 mg; Pantothenic acid, 20 mg; Niacin acid, 

50 mg; Folic acid, 2 mg; Biotin, 2 mg; Retinol acetate, 400 mg; Cholecalciferol, 5 mg; alpha-Tocoph-

erol, 100 mg; Eethoxyquin, 150 mg; Wheat middling, 1.1328 g [1]. 3 Mineral premix (mg/kg diet): 

NaF, 2 mg; CuSO4·5H2O, 10 mg; KI, 0.8 mg; CoCl2·6H2O (1%), 50 mg; FeSO4·H2O, 80 mg; ZnSO4·H2O, 

50 mg; MnSO4·H2O, 25 mg; MgSO4·7H2O, 200 mg; Zoelite, 4.582 g [1]. 4 Bile acid mixture (purity > 

97%, including 75.2% hyodeoxycholic acid (HDCA), 17.4% chenodeoxycholic acid (CDCA), and 

4.2% hyodeoxycholicacid (HCA)) was observed from Longchang Animal Health Co., Ltd., Dezhou, 

Shandong, China. 

2.3. Experimental Design and Feeding Trial 

One thousand juvenile L. maculatus were obtained from the commercial fish breeding 

farm (Zhangzhou, Fujian, China) and transferred to the aquaculture research facilities of 

Jimei University. The fish were housed in a 1000 L semi-static system with a pre-set tem-

perature of 33 °C. They were fed the same control diets twice daily for 2 weeks to acclimate 
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to the experimental environment. After acclimation, 240 fish (20.09 ± 1.12 g) were ran-

domly grouped into twelve 150 L tanks (20 fish per tank) connected to a recirculating aq-

uaculture system with a pre-set temperature of 33 °C. Three replicates were allocated to 

each dietary bile acid treatment. During the feeding trial for 8 weeks, fish were fed the bile 

acid-supplemented diet at ~3% of their weight twice daily at 8:00 and 17:00. Uneaten food 

and feces were removed after 30 min of feeding. The dechlorinated tap water was re-

newed, and feed intake was recorded daily. The conditions of the culture were as follows: 

water temperature at 33 ± 0.5 °C, 12 h light–12 h dark photoperiod, total ammonia–nitro-

gen < 0.35 mg/L, dissolved oxygen ≥ 6.2 mg/L, and pH 7.0~7.4. 

2.4. Sample Collection 

At the end of the feeding experiment, the experimental fish were starved for 24 h to 

allow emptying of the intestine. All fish from each tank were anesthetized with eugenol 

(0.1 mL/L) for ~1 min to record the body length and weight and for subsequent sample 

collection. Two fish were pooled as one composite sample randomly selected from each 

tank and stored at −20 °C to determine the proximate composition of whole body (n = 3). 

The livers of 2 fish were pooled as one composite sample per tank (n = 3) was collected for 

measuring the enzyme activity related to glucose metabolism. The livers of 2 fish were 

pooled as one composite sample per tank was collected for measuring the transcripts of 

genes related to bile acid receptors and glucose metabolism (n = 3). The midgut of 2 fish 

were pooled as one composite sample per tank was collected for measuring the antioxi-

dant capacity and digestive enzyme activity (n = 3). The midgut of 2 fish were pooled as 

one composite sample per tank was collected for measuring the transcripts of genes re-

lated to inflammatory cytokines and NF-κB pathway (n = 3). The midgut of 2 fish per tank 

was fixed in a 4% paraformaldehyde solution (Biosharp, Beijing, China) for histological 

examinations and immunofluorescence detection (n = 6). 

2.5. Proximate Composition of Diets and Whole Fish 

The proximate compositions of diets and whole-body were measured according to 

the standard procedures [29]. Crude protein content was measured using a Kjeldahl Sys-

tem (2300-Auto-analyzer, FOSS, Hillerød, Denmark). Crude lipid content was analyzed 

following Soxhlet’s extraction method. For the determination of moisture content, sam-

ples were dried to a constant weight at 105 °C. Ash content was measured by combusting 

using a muffle furnace at 550 °C for 8 h. 

2.6. Glucose Metabolism of Liver 

The liver weighing 0.1 g from each replicate was weighed, homogenized at 4 °C using 

a 9-fold volume-to-weight ratio of phosphate-buffered saline (PBS, pH = 7.4), and centri-

fuged at 2500 rpm for 10 min. The supernatants were collected and allocated for the sub-

sequent assays. Enzyme activities of hexokinase (HK, No. A077-3-1), pyruvate kinase (PK, 

No. A076-1-1), phosphofructokinase (PFK, No. A129-1-1), phosphoenolpyruvate carbox-

ykinase (PEPCK, No. A131-1-1), and phosphoenolpyruvate carboxylase (PEPC, No. A130-

1-1) in the liver samples were determined following the protocols of commercial assay kits 

from Jiancheng Bioengineering Institute (Nanjing, China). Results were obtained based 

on the wet weight of the samples. 

The liver glycogen content was measured in strict accordance with the instructions 

provided by Nanjing Jiancheng Bioengineering Institute (No. A043-1-1). In brief, 95 mg of 

liver samples were hydrolyzed in a boiling water bath for 20 min with an acidic solution 

(1:3 weight to volume ratio). The resulting hydrolysate was diluted with deionized water 

to prepare the glycogen assay solution. A 0.1 mL aliquot of this solution was mixed with 

0.9 mL deionized water, and a chromogenic agent was heated for 5 min. OD values were 

then measured at 620 nm after cooling. 
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2.7. Intestinal Antioxidant Capacity and Digestive Enzyme Activity 

The mid-intestine weighing 0.1 g from each replicate was weighed, homogenized at 

4 °C using a 9-fold volume-to-weight ratio of phosphate-buffered saline (PBS, pH = 7.4), 

and centrifuged at 2500 rpm for 10 min. The activities of three digestive enzymes (lipase, 

trypsin, and amylase) as well as total antioxidant capacity (T-AOC, No. A015-2-1), super-

oxide dismutase (SOD, No. A001-3-2) activity, and malondialdehyde (MDA, No. A003-1-

2) content in the intestine of experimental fish were determined according to the methods 

described in the commercial assay kits (Jiancheng Bioengineering Institute, Nanjing, 

China). 

2.8. Histological Analyses and Immunofluorescence Detection in the Intestine 

Histological analyses of the mid-intestine samples were performed following the 

method with minor modifications [30]. In brief, paraformaldehyde-fixed intestines were 

cut off with a length of ~0.6 cm, followed by dehydration in graded alcohols and clearance 

in xylene. Afterward, the muscle samples were embedded in paraffin wax, sectioned at 6 

μm thickness, and stained with hematoxylin and eosin (H&E). Six randomly chosen fields 

of the intestine from each treatment were observed under a microscope (Leica DM5500B, 

Heidelberg, Baden-Württemberg, Germany). The villus length (VL), villus width (VW), 

and thicknesses of muscularis (MT) were determined using the Image-Pro Plus 0.53 soft-

ware connected to the microscope (n = 6). 

The procedures of immunofluorescence staining for inflammatory cytokines (IL-1β, 

IL-8, TNF-α) were carried out consistently with H&E staining prior to embedding. Subse-

quently, antigen retrieval was performed, followed by encircling sealing serum, addition 

of primary and secondary antibodies, staining of cell nuclei with DAPI staining solution, 

tissue staining with autofluorescence quencher B solution, and sealing with anti-fluores-

cence quenching sealer before being placed under an orthogonal fluorescence microscope 

(Nikon, NIKON ECLIPSE C1, Tokyo, Tokyo Metropolis, Japan) for observation [31]. 

2.9. RNA Extraction and Quantitative Real-Time PCR (qPCR) Assay 

The total RNA extraction, RNA quantity and quality, synthesis cDNA, and qPCR 

procedures were conducted following the previously described method with modifica-

tions [30]. Extraction of total RNA from the liver and intestine was performed according 

to the instructions of FastPure Cell/Tissue Total RNA Isolation Kit (Vazyme Biotechnology 

Co., Ltd., Nanjing, China). The concentration and purity of extracted total RNA were 

quantified using a spectrophotometer (NanoDrop Technologies, Waltham, MA, USA) at a 

wavelength of 260/280 nm, and then the integrity of the RNA was assessed through 1.5% 

agarose gel electrophoresis. For each sample, 3 μg (0.15 μg/μL) RNA was reverse-tran-

scribed into cDNA for quantitative real-time PCR (RT-qPCR) following the protocol of 

commercial kit (R211-01, Vazyme, Nanjing, Jiangsu, China). The transcriptional expres-

sion of genes in the liver and intestine was quantified by real-time quantitative PCR 

(QuantStudio™ 6 Flex, AppliedBiosystems, Waltham, MA, USA). In brief, the RT-qPCR 

program was run at 95 °C for 30 s, followed by 40 cycles of 95 °C for 15 s and 60 °C for 30 

s. After the PCR reaction, melting curve analysis was performed to confirm the specificity 

of the genes. 

In this study, the sequences of the primers were designed using Primer 5.0 software 

and synthesized by Genewiz Co., Ltd., Suzhou, China (Table 2). The relative expression of 

target genes was normalized to β-actin and 18s using the 2−ΔΔCt method [32]. In addition, 

the amplification efficiency of all primers in this study was verified between 90 and 110%. 
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Table 2. Sequences of the PCR primers of L. maculatus used in this study. 

Target Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) AT/°C AE 

pepck CGGGAGAACATCACACACCT CAGTGGGTCGATGATGGGAC 60 1.07 

g6pase CAGGTCATGGGGTACTGCTC TTCCCGCTTTGGTTTCACCT 60 1.06 

fbp AACTGAGAAAGTCCCCCGAC CCGGCCAAAACCTCGTATCT 60 0.92 

hk CTGGCTTGTGGGGACAGATT GAGGCTGGCCCTCTTTATCC 60 1.05 

pk GTGGCCCAATCCAAATGTCC GCAAGAGTGAGAGTTGGGGT 60 1.08 

pfk CGAGGGGCTAAATGTCAGGG AAGGGGCATTCCGGTGATTT 60 0.91 

gys CGCATCCAGGAGTTCATCAGAGG GTAGCGTCCAGCAATGAAGAAGAAG 60 1.09 

pygl TGTGATGGTTCTGTCGCTGGAG AAGGAGTGGACGAAGATGGTGATC 60 0.98 

fxr GGAGGACAGGATACGCAAGAGTG CAGGATGGTTACGGTGGTGAGG 60 0.96 

tgr5 AGCGGTATGGTGATGGCGTAG CATGACGGACAGCAACGACTC 60 1.03 

tnf-α GATCGTCATCCCACAAACCG  GCTTTGCTGCCTATGGAGTC 60 1.03 

il-1β GTCAACTTACGTGCACCCTG AAATCGTACCATGTCGCTGC 60 0.95 

il-8 GGATCAGTTTCTTCACCCAGG CAGGTGGAGTCGAGGATCAT 60 1.00 

tgf-β ACCGACAATGAGCAGGGTTT GGTGGCTGCTGATGTTTTGG 60 0.96 

il-4 ACCATGCATTACTACAGCACTG CACATTCAGGGGCGTTTGTC 60 1.06 

il-10 TTCAAAACTCCGTTCGCCTG  TCACTCTTGAGCTCGTCGAA 60 0.97 

nfκb TGTGGTGTACGTACCGCTTC TTCTCACACGGCTGGACTAC 60 1.03 

ikbα GCACGAGTGGAAGACGCAGATC CGTCCGCCTGGTTCGTTATTACA 60 0.93 

ikkβ TCGGCAGCAGCTCCATCACA AGGTGGTGCGTCTGGTGGTT  60 1.03 

ikkα ACAGCCAGCACCTCTTCATCCA ACCAGCATCCAGCACGACCTT 60 1.05 

β-actin CAACTGGGATGACATGGAGAAG TTGGCTTTGGGGTTCAGG 60 1.08 

18S GGGTCCGAAGCGTTTACT TCACCTCTAGCGGCACAA 60 0.94 

Abbreviation: AT, annealing temperature; AE, amplification efficiency; pepck, phosphoenolpyruvate 

carboxykinase; pk, pyruvate kinase; pfk, phosphofructokinase; g6pase, glucose-6-phosphatase; hk, 

hexokinase; gys, glycogen synthase; fbp, fructose 1,6-bisphosphatase; pygl, phosphorylase glycogen 

L; il-8, interleukin-8; il-1β, interleukin-1β; il-6, interleukin-6; il-10, interleukin-10; tnf-α, tumor ne-

crosis factor-α; tgf-β, transforming growth factor-β; fxr, farnesoid X receptor; tgr5, trans-membrane 

G protein-coupled receptor-5; nfκb, nuclear factor κb; ikk, inhibitor of κb kinase; ikbα, NF-κB inhibi-

tory protein α; 18S, 18S ribosomal RNA gene. 

2.10. Statistical Analyses 

All data were analyzed following one-way analysis of variance (ANOVA) using SPSS 

22.0 statistical software. Prior to statistical analysis, Kolmogorov−Smirnov and Levene’s 

tests were used to test the assumptions of normality and homogeneity of variance, respec-

tively. Multiple comparisons were performed using Tukey’s test to analyze the differences 

between the experimental groups. The level of significance was set at p < 0.05. All results 

are presented as mean ± standard error of the mean (SE). 

3. Results 

3.1. Growth Performance and Proximate Composition Analyses 

After an 8-week feeding trial, the final body weight (FBW) and weight gain (WG) of 

L. maculatus were significantly increased in the BA800 treatment compared to the control 

fish (Table 3) (p < 0.05). Meanwhile, the feed intake (FI) was elevated in the BA400, BA800, 

and BA1200 treatments (p < 0.05). However, no significant differences in the feed conver-

sion rate (FCR), abdominal fat ratio (AFR), or survival of L. maculatus were observed 

among all treatments. 
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Table 3. The growth, feed utilization, and morphometric parameters of L. maculatus fed different 

levels of bile acids for 8 weeks. 

Items Con BA400 BA800 BA1200 

FBW (g) 130.5 ± 3.46 a 135.53 ± 5.94 ab 147.6 ± 2.19 b 136.43 ± 6.54 ab 

WG (%) 539.38 ± 17.14 a 562.83 ± 29.47 ab 625.18 ± 10.54 b 566.54 ± 31.65 ab 

FCR 1.22 ± 0.02 1.31 ± 0.04 1.22 ± 0.05 1.28 ± 0.08 

FI (g/fish) 133.34 ± 4.8 a 148.84 ± 3.76 b 154.55 ± 4.35 b 147.24 ± 2.33 b 

AFR (%) 4.41 ± 0.1 4.70 ± 0.17 4.89 ± 0.03 4.99 ± 0.40 

Survival (%) 98.33 ± 1.67 95.00 ± 0.00 100.00 ± 0.00 98.33 ± 1.67 

Values are mean ± SE (n = 3 for each treatment). Values in the same column having different super-

script letters are significantly different (p < 0.05). Abbreviations: FBW, final body weight (g); WG, 

weight gain; FCR, feed conversion rate; FI, feed intake; AFR, abdominal fat ratio. 

The results of proximate composition analyses in the whole fish were reported in 

Table 4. In comparison to the control treatment, an increased content of crude lipid was 

observed in the BA800 treatment (p < 0.05), while an opposite result was shown in crude 

ash content (p < 0.05). Furthermore, there were no significant differences in the moisture 

and crude protein content of L. maculatus among all treatments (p > 0.05). 

Table 4. The proximate composition (%, wet weight) in the whole fish of L. maculatus fed different 

levels of bile acids for 8 weeks. 

Items Con BA400 BA800 BA1200 

Moisture 69.98 ± 0.35 69.46 ± 0.41 69.15 ± 0.46 70.03 ± 0.24 

Crude protein 16.7 ± 0.19 16.55 ± 0.29 16.23 ± 0.39 16.5 ± 0.08 

Crude lipid 7.08 ± 0.38 a 7.4 ± 0.2 ab 8.15 ± 0.52 b 7.3 ± 0.04 ab 

Crude ash 5.01 ± 0.11 b 4.71 ± 0.15 ab 4.57 ± 0.04 a 4.75 ± 0.12 ab 

Values are mean ± SE (n = 3 for each treatment). Values in the same column having different super-

script letters are significantly different (p < 0.05). 

3.2. Glucose Metabolism of Liver 

As shown in Figure 1, compared to the control treatment, glycogen content and ac-

tivities of phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate car-

boxylase (PEPC) in the liver of L. maculatus were significantly reduced (p < 0.05) in the 

BA800 treatment, whereas there was no difference among the other treatments (p > 0.05). 

Activities of hexokinase (HK) in the liver of fish were increased (p < 0.05) in the BA800 

treatment. Meanwhile, activities of pyruvate kinase (PK) and phosphofructokinase (PFK) 

in the liver of fish were increased (p < 0.05) in the BA400 and BA800 treatments but de-

creased at the BA1200 treatment. The maximum values of these three parameters were 

obtained in the BA800, BA800, and BA400 treatments, respectively. 
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Figure 1. Effects of dietary bile acid on the glycogen content (panel (A)) and enzyme activities of 

hexokinase (panel (B), HK), pyruvate kinase (panel (C), PK), phosphofructokinase (panel (D), PFK), 

phosphoenolpyruvate carboxykinase (panel (E), PEPCK), phosphoenolpyruvate carboxylase (panel 

(F), PEPC) in the liver of L. maculatus. Bars with different letters are different at p < 0.05. 

The transcripts of the farnesoid X receptor (fxr) related to bile acid receptors in the 

liver from the BA800 treatment were significantly up-regulated (p < 0.05) compared to the 

control treatment, whereas the transcripts of trans-membrane G protein-coupled receptor-

5 (tgr5) were not affected by the addition of dietary bile acids (p > 0.05) (Figure 2A). Tran-

scripts of glycogen synthase (gys) and phosphorylase glycogen L (pygl) in the liver dis-

played an initial down-regulation followed by an up-regulation with the increase in die-

tary bile acid levels and were significantly lower in the BA800 treatment compared to the 

other treatments (p < 0.05) (Figure 2B). Meanwhile, the transcripts of glucose-6-phospha-

tase (g6pase) in the liver were inhibited by dietary bile acid, whereas transcripts of pepck 

and fructose 1,6-bisphosphatase (fbp) were only inhibited in the BA800 treatment (p < 0.05), 

with no alteration among the other treatments (p > 0.05) (Figure 2C). Furthermore, tran-

scripts of pfk, hk, and pk in the liver were significantly up-regulated in the BA800 treatment 

compared to the control treatment (p < 0.05), while no differences were found among the 

other treatments (p > 0.05) (Figure 2C). 
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Figure 2. Effects of dietary bile acids on the transcriptional expression of genes related to bile acid 

receptors (panel (A)), glycogen synthesis (gys), glycogen catabolism (pygl) (panel (B)), and glycolysis 

(g6pase, pepck, and fbp) and gluconeogenesis (pfk, hk, and pk) (panel (C)) in the liver of L. maculatus. 

Bars with different letters are different at p < 0.05. 

3.3. Histological and Morphological Analyses in the Intestine 

The histological analysis showed that control fish showed a typical inflammatory re-

sponse in the intestine, including irregular arrangement of intestinal mucosa epithelium 

(Figure 3A). However, the damage to the morphology of the intestinal villus was signifi-

cantly improved with the supplementation of dietary bile acids. The number and length 

of villus exhibited an increasing trend with increasing the levels of dietary bile acid sup-

plementation, with both being significantly higher in the BA800 treatment compared to 

control fish (Figure 3B,C) (p < 0.05). Meanwhile, the width of the villus exhibited an oppo-

site trend, and a significant decrease in villus width was observed in the BA400 and BA800 

treatments compared to control fish (Figure 3D) (p < 0.05). In addition, the muscular thick-

ness of the intestine was not altered by dietary bile acid supplementation. 
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Figure 3. Representative images of intestinal morphology (bar: 500 μm) in L. maculatus fed different 

levels of bile acids for 8 weeks (panel (A)) and morphological alterations (panels (B–E)). VL: villus 

length; VW: villus width; MT: muscular thickness (n = 3). Bars with different letters are different at 

p < 0.05. 

3.4. Antioxidant Capacity in the Intestine 

The antioxidant capacity in the intestine of L. maculatus was elevated by increasing 

the levels of dietary bile acids supplementation. Compared to the control treatment, total 

antioxidant capacity (T-AOC) was increased in the BA800 and BA1200 treatments (Figure 

4A), while the activity of superoxide dismutase (SOD) was significantly induced by the 

BA400 and BA800 treatments (Figure 4B) (p < 0.05). Meanwhile, with the elevation of bile 

acid levels, MDA content in the BA400 and BA800 treatments exhibited a significant re-

duction compared to the control (Figure 4C) (p < 0.05). 

 

Figure 4. Effects of dietary bile acids on the total antioxidant capacity (T-AOC, panel (A)) and activ-

ity of superoxide dismutase (SOD, panel (B)) and malondialdehyde (MDA, panel (C)) in the intes-

tine of L. maculatus. Bars with different letters are different at p < 0.05. 

3.5. Digestive Enzyme Activities in the Intestine 

The activity of digestive enzymes in the intestine of L. maculatus was altered by in-

creasing the levels of dietary bile acid supplementation. The activities of lipase and trypsin 

exhibited an initial increase followed by a subsequent decrease, with their highest value 
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observed in the BA800 treatment (Figure 5A) (p < 0.05). The activity of amylase was no 

different among the dietary bile acid supplementation treatments (Figure 5C) (p > 0.05). 

 

Figure 5. Effects of dietary bile acids on the activities of lipase (panel (A)), trypsin (panel (B)), and 

amylase (panel (C)) in the intestine of L. maculatus. Bars with different letters are different at p < 0.05. 

3.6. Immunofluorescence and Transcriptional Expression of Genes Related to  

Inflammatory Cytokines 

The immunofluorescence and transcriptional expression of genes related to inflam-

matory cytokines in the intestine are shown in Figures 6 and 7. The fluorescence intensities 

of intestinal pro-inflammatory cytokines interleukin-1β (IL-1ꞵ), interleukin-8 (IL-8), and 

tumor necrosis factor-α (TNF-α) in the BA800 treatment were significantly lower than in 

the other treatments (Figure 6) (p < 0.05). Similarly, transcripts of il-1ꞵ, il-8, and tnf-α were 

down-regulated as bile acid levels increased up to the BA800 diet and then up-regulated 

(Figure 7A) (p < 0.05). Meanwhile, transcripts of intestinal anti-inflammatory cytokines il-

10 and transforming growth factor-β (tgf-β) were significantly up-regulated as bile acid 

levels increased up to the BA800 diet, followed by down-regulation (Figure 7B) (p < 0.05). 

However, the transcriptional expression of il-4 was no different among the dietary bile 

acid supplementation treatments (p > 0.05). 

 

Figure 6. Representative immunofluorescence images of inflammatory cytokines in the intestine of 

L. maculatus fed different levels of bile acids for 60 d (bar: 100 μm). (A) IL-1ꞵ, interleukin-1β; (B) IL-

8, interleukin-8; (C) TNF-α, tumor necrosis factor-α (n = 3). The nucleus is stained blue, and the 

target inflammatory cytokines are stained red in the image above. Bars with different letters are 

different at p < 0.05. 
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Figure 7. Effects of dietary bile acids on the transcriptional expression of genes related to pro-in-

flammatory (panel (A)) and anti-inflammatory cytokines (panel (B)) in the intestine of L. maculatus. 

Bars with different letters are different at p < 0.05. 

3.7. Transcriptional Expression of Genes Related to NF-κB Pathway 

As shown in Figure 8, transcripts of nuclear factor κB (nf-κb), an inhibitor of κB ki-

nase-α (ikkα), and NF-κB inhibitory protein α1 (ikbα1) in the intestine of L. maculatus were 

significantly down-regulated as bile acid levels increased up to BA800 diet, followed by 

up-regulation (Figure 8) (p < 0.05). For the inhibitor of κB kinase-α (ikkα), compared to the 

control, there was no difference in the transcripts across all dietary bile acid supplemen-

tation treatments, but the transcript of ikkα in the BA800 treatment was lower than that in 

the BA1200 treatment. 

 

Figure 8. Effects of dietary bile acids on the transcriptional expression of genes related to nuclear 

factor κB (NF-κB) pathway in the intestine of L. maculatus. Bars with different letters are different at 

p < 0.05. 

4. Discussion 

As indicated by many previous studies [14,33,34], three biological replicates were set 

up for each treatment in this study, and the samples from two fish were mixed together 

as one replicate to reduce variability between individual samples. Due to limitations in 

sample size and difficulties in obtaining certain samples (i.e., serum), such experimental 

methods are often used in research on aquatic animals [30]. In this study, the FBW and 

WG of L. maculatus were promoted by supplementing 800 mg/kg of bile acids in the diet, 

suggesting that the appropriate level of exogenous bile acid supplementation in the diet 

can promote the growth of L. maculatus. Similarly, the promoting effect of appropriate 

supplementation levels of dietary bile acids on the growth of fish has been widely re-

ported in tilapia (Oreochromis niloticus) [35], largemouth bass (Micropterus salmoides) [36], 

European eel (Anguilla anguilla) [37], grass carp (Ctenopharyngodon idella) [27], turbot 

(Scophthalmus maximus) [38]. Meanwhile, the FI of L. maculatus increased with the increase 
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in dietary bile acid levels, which seemed to be attributed to the promotion of growth. Pre-

vious studies have also indicated that the promotion of fish growth by bile acid is often 

positively correlated with increased FI [39], which is an undisputed result. Bile acids play 

a crucial role in regulating lipid metabolism by effectively enhancing the emulsification 

and transportation of lipids [40], as evidenced by the slight increase in abdominal fat ratio 

and significant accumulation in crude lipids in the whole fish with dietary supplementa-

tion of bile acids up to 800 mg/kg in this study. Furthermore, increased activity of intesti-

nal lipase in fish fed with the diet supplemented with 800 mg/kg of bile acids also further 

demonstrates the beneficial effect of bile acids on lipid absorption. More similar results on 

the promotion of lipid digestion and absorption by the supplementation of exogenous bile 

acids have been obtained in large yellow croaker [33], largemouth bass [41], tilapia (Oreo-

chromis niloticus) [26], and rainbow trout (Oncorhynchus mykiss) [42]. 

The liver is an important tissue that regulates glucose metabolism in organisms [43]. 

TGR5 and FXR are the two most important receptors for bile acids in animals, playing a 

crucial role in the molecular pathways regulating glucose metabolism involving bile acids 

[44,45]. It has been reported that FXR, as a nuclear transcription factor, regulates glucose 

and lipid metabolism balance through pyruvate dehydrogenase kinase 4 [46]. In this 

study, the up-regulated transcript of fxr was found in the liver of fish fed with a diet sup-

plemented with 800 mg/kg of bile acids. Meanwhile, the same dietary bile acids level 

down-regulated transcripts of the genes related to gluconeogenesis (g6pase, pepck, and fbp) 

and up-regulated the genes related to glycolysis (pfk, hk, and pk). These findings are con-

sistent with the effect of 800 mg/kg dietary bile acids on the activity of enzymes related to 

glucose metabolism in the liver. A previous study has also shown that bile acids and FXR 

inhibit the activities of PEPCK, G6Pase, and FBPase, all of which are enzymes involved in 

the hepatic gluconeogenesis pathway [47]. In addition, in this study, the reduction of he-

patic glycogen content at the level of 800 mg/kg dietary bile acids further strengthens our 

evidence, suggesting that dietary bile acid supplementation promotes the conversion of 

glycogen to glucose for energy supply, thereby reducing the accumulation of glycogen in 

the liver of L. maculatus reared at high water temperature. Overall, these previous studies, 

together with our own results, confirm that the supplementing exogenous bile acids may 

inhibit hepatic gluconeogenesis and promote hepatic glycolysis by activating the bile acid 

receptor FXR, regulating glucose metabolism in fish [44]. 

Intestinal health is crucial for maintaining the normal growth and survival of fish 

[48]. The intestine in fish serves as the primary site for the digestion of food and absorption 

of nutrients, relying on the microvilli at the edges of the single-layer columnar epithelial 

cells [30]. Once intestinal mucosa is impaired, it can lead to the malabsorption of nutrients, 

increased membrane permeability, and inflammatory infiltration, thereby causing a po-

tential risk to the growth and health of fish [49]. In the present study, the control fish ex-

hibited a typical intestinal inflammation accompanied by a short and irregular arrange-

ment of intestinal mucosa epithelium. However, dietary bile acid supplementation of 800 

mg/kg increased the number and length of villus and decreased the villus width. Mean-

while, in this study, dietary bile acid supplementation of 800 mg/kg down-regulated the 

transcripts and fluorescence intensities of pro-inflammatory cytokines (il-1β, il-8, and tnf-

α) and up-regulated the transcripts of anti-inflammatory cytokines (il-10 and tgf-ꞵ) in the 

intestine. These findings are consistent with a previous study showing that dietary bile 

acid supplementation inhibits the transcripts of il-1β, il-8, and tnf-α in the intestine by ac-

tivating intestinal bile acid reporter TGR5 in grass carp [27]. NF-κB is one of the key nu-

clear transcription factors involved in inflammatory responses in organisms, regulating 

the transcription of many genes related to inflammation [50]. Previous studies have 

demonstrated that bile acids inhibit the nuclear translocation of nfκb to down-regulate the 

transcription of nfκb-dependent pro-inflammatory cytokines (i.e., il-1β, il-8, and tnf-α), 

thereby achieving the goal of inhibiting intestinal inflammation [27]. In the present study, 

dietary bile acid supplementation of 800 mg/kg down-regulated the transcripts of nfκb 

and its downstream regulation of key genes (ikkα, ikkꞵ, and ikbα1). Overall, synthesizing 
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our previous research, it is clear that thermal stress-induced intestinal inflammation can 

cause damage to the intestinal mucosa in L. maculatus [14]. Nevertheless, optimal exoge-

nous bile acid supplementation in diets has been shown to effectively mitigate this nega-

tive impact, protect intestinal barrier integrity, and promote intestinal health in L. macula-

tus. 

Intestinal digestive enzymes also play a crucial role in the digestion and absorption 

of nutrients [51]. In this study, the increased activity of lipase can be recognized as an 

indicator that lipid utilization is promoted, which has been discussed in the preceding 

text. Meanwhile, dietary bile acid supplementation of 800 mg/kg increased trypsin activity 

in the intestine of L. maculatus and may imply an overall promotional effect of bile acids 

on the digestion and absorption of nutrients in feed rather than just the utilization of li-

pids. A similar result has also been reported that trypsin activity was induced when die-

tary bile acid was given at 130 mg/kg in thinlip mullet [39]. 

Antioxidant capacity is a crucial index for evaluating the health and oxidative stress 

status of fish [52]. Generally, oxidative stress occurs due to an imbalance between the gen-

eration and elimination of ROS in organisms [53]. The accumulation of undetoxified ROS 

can lead to lipid peroxidative damage to the cell membrane [30]. The increase in MDA 

content can reflect the degree of lipid peroxidation and cellular damage [54]. Bile acids 

may exert antioxidant effects by scavenging free radicals and inhibiting oxidative stress, 

helping to protect cells from oxidative damage in fish [21]. Previous studies have indicated 

that the dietary supplementation of bile acids reduces MDA content and increases the 

activities of SOD and T-AOC in largemouth bass (Micropterus salmoides) [21], large yellow 

croaker [25], striped catfish (Pangasianodon hypophthalmus) [16], and tongue sole (Cynoglos-

sus semilaevis) [55]. In agreement with these, our results showed that the MDA content in 

the intestine was reduced when dietary bile acids were given as high as 800 mg/kg, 

whereas the T-AOC level and the activity of SOD were induced in the same level of bile 

acid supplementation in the diets, indicating that optimal exogenous bile acid supplemen-

tation helps prevent lipid peroxidation and maintain normal oxidative/antioxidant phys-

iological homeostasis in fish via the rapid clearance of excessive ROS [21]. 

5. Conclusions 

In summary, this study demonstrates that dietary supplementation with bile acids at 

800 mg/kg improves growth and increases intestinal digestive enzyme activity and anti-

oxidant capacity, thereby protecting barrier integrity in the intestine of L. maculatus. Fur-

thermore, bile acids may promote glucose metabolism in the liver by activating the FXR 

receptor, and they may alleviate intestinal inflammatory responses by inhibiting the tran-

scripts of the NF-κB pathway and inflammatory cytokines. 
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