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Simple Summary: Accurate individual cow identification is key to enhancing farm management effi-
ciency. The mainstream method of identifying cows through physical tags is somewhat invasive. This
study introduces a non-invasive approach that utilizes overhead cameras to recognize cows without
any physical contact. This method adapts well to changes in cow positions and partial obstructions
and does not require system adjustments when new cows are introduced. By focusing on unique
features in overhead images, this approach facilitates more convenient and effective monitoring and
management of cows, assisting farm operators in achieving efficient daily farm operations.

Abstract: The automated recognition of individual cows is foundational for implementing intelligent
farming. Traditional methods of individual cow recognition from an overhead perspective primarily
rely on singular back features and perform poorly for cows with diverse orientation distributions
and partial body visibility in the frame. This study proposes an open-set method for individual
cow recognition based on spatial feature transformation and metric learning to address these issues.
Initially, a spatial transformation deep feature extraction module, ResSTN, which incorporates
preprocessing techniques, was designed to effectively address the low recognition rate caused by
the diverse orientation distribution of individual cows. Subsequently, by constructing an open-set
recognition framework that integrates three attention mechanisms, four loss functions, and four
distance metric methods and exploring the impact of each component on recognition performance,
this study achieves refined and optimized model configurations. Lastly, introducing moderate
cropping and random occlusion strategies during the data-loading phase enhances the model’s ability
to recognize partially visible individuals. The method proposed in this study achieves a recognition
accuracy of 94.58% in open-set scenarios for individual cows in overhead images, with an average
accuracy improvement of 2.98 percentage points for cows with diverse orientation distributions, and
also demonstrates an improved recognition performance for partially visible and randomly occluded
individual cows. This validates the effectiveness of the proposed method in open-set recognition,
showing significant potential for application in precision cattle farming management.

Keywords: cow individual recognition; open-set recognition; overhead perspective; distance
metrics; STN

1. Introduction

In the modernization of the livestock industry, precise identification and monitoring
of dairy cows have become key to improving production efficiency [1]. Although tradi-
tional methods for dairy cow identification, such as ear tags or RFID, are widely used in
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practice [2,3], they often involve invasive procedures, high maintenance costs, and suscep-
tibility to damage. These issues not only affect the efficiency of farm management but
could also potentially impact the welfare of dairy cows. With advances in technology and
increased awareness of animal welfare, developing an efficient, non-invasive method of
individual identification has become particularly urgent. Currently, research based on
deep learning and machine vision has been widely applied across various industries [4–7],
and vision-based dairy cow identification offers a new solution to this problem with its
non-invasiveness, low cost, and high efficiency [8].

Holstein cows, as one of the most common and productive dairy breeds globally, have
unique black and white patterns that naturally benefit visual-based individual identifi-
cation [9–11]. Zhao et al. (2019) proposed a visual-system-based method for individual
dairy cow identification as a potential alternative to RFID. This method uses an adaptive
SOM technique to detect the cow’s outline and extract the largest inscribed rectangle to
locate the body area. By extracting and matching feature points from the body images,
they achieved an accuracy rate of 96.72% [12]. Xiao et al. (2022) explored individual cow
identification in an unconstrained barn setting and introduced a method based on an
enhanced Mask R-CNN and SVM classifier. They collected overhead images of cows, used
the improved Mask R-CNN for image segmentation and the extraction of dorsal shape
features, selected the best feature subset with the Fisher method, and employed an SVM
classifier for individual identification [13], achieving a 98.67% accuracy rate on a dataset in-
cluding 48 overhead cow images. Zhang et al. (2023) proposed a new method for dairy cow
individual identification based on image binarization and cascaded classification, aimed at
addressing the challenges of similar biometric features, unstable image quality in complex
environments, and rapid model parameter growth [14]. The study utilized 11,800 side-view
walking images of 118 cows to build the dataset, achieving an identification accuracy of
98.5%. In addition to other methods, the facial recognition of cattle remains a significant
research focus. Chen et al. (2022) proposed a deep learning model integrating global and
local network architectures with attention mechanisms for the enhanced facial recognition
of dairy cows [15]. Tests on a dataset containing 130,000 images of 3000 cows showed
that this model optimization improved accuracy by 2.8%. Weng et al. (2022) developed
a dual-branch convolutional neural network (TB-CNN) model to address variations in
posture and shooting angles in cattle facial recognition. This model processes images from
different angles using separate CNN channels, enhancing identification accuracy through
feature integration and global average pooling [16], achieving a recognition rate exceeding
99.7% across multiple datasets. Other researchers have also proposed various methods for
cattle facial recognition [17,18]. Additionally, some studies focus on identifying individuals
based on other body parts of cattle [19,20] and on model lightweighting [21–23]. However,
whether based on the cow’s back, face, or other body parts, most studies on individual
dairy cow recognition focus on closed-set identification, which only recognizes individuals
within the training set. In real farm production environments, recognition systems need to
quickly adapt to the inclusion of new individuals; the limitations of existing research mean
that even high accuracy rates may not be applicable in practical production.

Some researchers have attempted open-set identification as a promising application.
Andrew et al. (2021) first introduced a complete process for identifying both known and
unknown Holstein Friesian cattle. By establishing a robust embedding space based on a
few instances, they achieved the efficient identification of unknown cattle, with an average
accuracy rate of 93.75% [24]. However, the training sample size was small, and there is
still room for accuracy improvement. Wang et al. (2023) introduced the ResNAM network
that integrates the Normalized Attention Module (NAM) with the ResNet model. They
constructed an open-set facial recognition framework for pigs by incorporating multiple
loss functions and metrics, achieving a high accuracy of 95.28% [25]. Meanwhile, Wang
et al. (2023) [26] employed the ShuffleNet v2 model combined with triplet loss and cross-
entropy loss to enhance the network’s ability to distinguish similar individuals, reaching an
open-set recognition accuracy of 82.93% on a dataset of 87 cattle. These studies demonstrate
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the feasibility of using specific appearances for open-set individual animal recognition in
the livestock sector. In practical applications, due to limitations on the placement of visual
capture devices and obstructions caused by other animals or environmental structures, the
accuracy of recognizing images of faces, sides, and rears often suffers significantly from
environmental conditions. Overhead perspective-based individual recognition can better
mitigate potential impacts from such conditions.

While mitigating some limitations of traditional methods, existing vision-based iden-
tification technologies still show significant shortcomings in addressing challenges such
as the diversified orientation distribution of individual cows; partial image visibility; and
complex, varying lighting conditions. Additionally, the traditional use of closed-set identi-
fication methods can only recognize within a fixed, predefined set of individuals, which
clearly cannot meet the practical needs of the livestock industry. These challenges increase
the difficulty of identification and limit the widespread application of the technology.

This study addresses the challenges in individual cow recognition by proposing an
open-set recognition scheme for individual cows based on spatial feature transformation
and metric learning, innovatively incorporating the STN network [27], which enhances
recognition performance under diverse orientation distributions of individual cows. It
explores the impact of each component on recognition performance by integrating various
attention mechanisms, multiple loss functions, and distance metric methods. The intro-
duction of moderate cropping and random occlusion strategies during the data-loading
phase significantly improves the model’s ability to recognize partially visible individu-
als. It assesses the impact of different lighting conditions and enhancement measures on
performance. The main contributions of this study are as follows:

(1) By constructing an open-set individual cow recognition framework that combines
“spatial feature transformation and metric learning”, this study successfully vali-
dates the effectiveness of open-set recognition using complete cow images from an
overhead perspective.

(2) A new deep learning model, ResSTN, is designed, which significantly enhances the
model’s adaptability to challenges such as diverse orientation distributions, complex
lighting conditions, and partial occlusions of individual cows by integrating the STN
network and attention mechanisms.

(3) The detailed comparative analysis delves into the application effects of different
attention mechanisms, loss functions, and distance metric methods in the open-set
recognition of individual cows from an overhead perspective. It provides empirical
evidence for understanding the practicality and limitations of various methods in cow
individual recognition, laying the foundation for further research on optimizing and
improving open-set recognition algorithms in specific application scenarios.

(4) This research offers a high-performance cow monitoring solution for intelligent live-
stock farming, contributing to enhanced management efficiency in cow production
and showcasing the tremendous potential of “spatial feature transformation feature
extraction + metric learning” technology in the livestock industry.

2. Materials and Methods
2.1. Data Collection
2.1.1. Video Data Collection

The data for this study were collected in the summer of 2023 from a large commercial
dairy farm in Hohhot, Inner Mongolia, focusing on adult Holstein cows. The data were
captured using a DS-2DC4223IW-D spherical camera (Hikvision, Hangzhou, China) with
an 8 mm focal length and a 57.6° field of view. It features a pan-tilt head capable of
360° horizontal and −15° to 90° vertical movement, supporting 23× optical zoom and
16× digital zoom, and records at a resolution of 1920 × 1080. The camera was mounted
at a height of 4.3 m above the cowshed floor, positioned vertically to film the cows. Data
were continuously collected as video streams for 16 days and automatically stored in real-
time on the farm’s central NVR, model DS-7932N-R4 (Hikvision, Hangzhou, China). The
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cowshed was open, with no enclosures except for barrier railings, ensuring good ventilation
and lighting conditions. At night, lighting was provided by cowshed lamps, with lights
automatically turned off at 22:30 by a timer switch. Video data were accessed via a laptop
connected to the NVR on the farm’s local network, selecting 327 usable video files in H.265
format with .mp4 extensions. The video data collection scheme is shown in Figure 1.

Figure 1. Video data collection.

2.1.2. Data Preprocessing

In order to investigate the effects of different lighting conditions on open-set individual
identification, this study selected video data files from barns under conditions of natural
daylight and nighttime artificial lighting to acquire images under both natural sunlight
and artificial light. Given the high similarity between adjacent frames in video files, the
direct frame-by-frame extraction of images could lead to data redundancy, overfitting of
the final model, and a limited generalization capability. Therefore, this study processed the
video files as follows: The first step was to use FFMPEG software (3.2.19) to perform frame
extraction on all collected video files. Specifically, one frame was extracted every ten frames,
reducing data redundancy while retaining sufficient image data for a subsequent analysis.

In the second step, to enhance the diversity of the dataset and reduce redundancy,
we employed the Structural Similarity Index (SSIM) algorithm [28] for similarity analysis
of the extracted images, ultimately setting the SSIM threshold at 0.78. This decision was
based on recommended values from similar contexts in previous literature [29] as well
as preliminary observational experiments. Comparing datasets generated with various
adjacent SSIM values, we noted that when the threshold is set at 0.78, the images in the
dataset exhibit sufficient variability to support effective feature learning while maintaining
a reasonable volume of data. This threshold ensures that the images removed are primarily
those that are highly similar duplicates, thereby optimizing the quality and utility of the
training dataset.

In the third step, this study utilized ImageGlass (version V8.8.3.28) software for image
cropping and saving. The cropping guidelines were as follows: (1) Only the complete
cows in the image were saved as separate images. (2) The boundaries of the cropped
individual images were closely aligned with the target. (3) Ensure that the number of
images per individual is no less than 40. This approach ensured that the images of each
individual in the dataset were sufficiently diverse to support subsequent model training
and accurate identification.
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In the fourth step, a second dataset check was manually performed. It was verified
again whether images of the same cow were assigned to different folders or images of
different cows were assigned to the same folder. This process ensured the accuracy and
consistency of the dataset. After the selection, elimination, and merging steps above, the
final dataset selected comprised complete overhead images of 70 cows.

2.1.3. Dataset Construction

The sizes of the training, validation, and test sets of the final dataset are shown
in Table 1. Eight randomly selected cows were used as the test set to achieve open-set
individual cow identification. In comparison, the overhead images of the other 62 cows
were randomly divided in an 8:2 ratio to construct the training and validation sets. The
training set includes 7069 images of 62 cows, the validation set includes 1801 images of
62 cows, and the test set includes 1104 images of 8 cows. The final test set consists of positive
and negative sample pairs, with two images randomly drawn from the same cow in the
test set as a positive pair, totaling 273 randomly drawn positive image pairs. One image
is randomly drawn from different cows to form a negative pair, with 273 negative image
pairs randomly drawn to ensure an equal number of positive and negative sample pairs.

Table 1. Open-set cow-back-recognition dataset.

Dataset Number of Cows in
Natural Light

Number of Cows in
Artificial Light Total Number of Cows Total Number of Images

Train dataset 41 21 62 7069
Val dataset 41 21 62 1801
Test dataset 4 4 8 1104

Total 45 25 70 9974

The image samples collected in this study are primarily categorized into two types:
natural light and artificial light conditions. Natural light samples were collected outdoors
between 6:00 a.m. and 6:30 p.m., depending on external natural lighting. Artificial light
samples were gathered indoors under barn lighting conditions from 8:00 p.m. to 10:30 p.m.
The comparison of image samples under these two conditions is shown in Figure 2. From
Figure 2, it can be observed that images captured under natural light conditions are
characterized by high clarity, natural colors, and no shadows, whereas under artificial
lighting, the images are generally darker with noticeable shadows, some of which make
it difficult to distinguish between shadowed areas and parts of the cattle’s body. Figure 3
details the sample sizes for each cow under these two lighting conditions.

2.2. Overview of the Proposed Framework

The overall workflow of the cow individual identification framework in this study
is shown in Figure 4. The entire framework consists of two parts: the feature extraction
network and the open-set identification module. This study’s framework introduces an
individual identification method for cow overhead views by combining three types of
attention mechanisms, four loss functions, and four measurement metrics to explore the
open-set identification of cows from a non-contact overhead perspective. The specific pro-
cess is as follows: First, a feature extraction network for cow overhead views was designed,
performing horizontal rotation and random augmentation on the training set data during
the data-loading stage to improve the consistency of individual orientations and simulate
incomplete individuals and camera soiling in actual production environments. Subse-
quently, the feature extraction network’s feature maps output undergoes a spatial feature
alignment transformation through the STN network, followed by global average pooling to
generate feature vectors. Then, after horizontal rotation and random enhancement, positive
and negative sample pairs from the test set are input into the feature extraction network to
obtain corresponding pairs of feature maps. Finally, metric learning methods are used to
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measure the similarity of sample pairs, and the best threshold is obtained using a ten-fold
cross-validation method, achieving open-set individual identification of cows from an
overhead perspective.

(a)

(b)

Figure 2. The comparison of images under “natural light” and “artificial light”. (a) Image under
“natural light”, (b) Image under “artificial light”.

2.3. Dataloader and Image Enhancement

Since the original data were collected in a production setting, the bodies of the dairy
cows could be oriented at various angles, as shown in Figure 2. To minimize the impact of
posture changes and different orientations on model recognition efficiency and to enhance
the model’s ability to recognize and match features effectively, this study determined
whether to rotate images based on their aspect ratio during model training data loading. If
the image aspect ratio is greater than or equal to 1, the image is not rotated; if the aspect
ratio is less than 1, the image is uniformly rotated clockwise.

Figure 3. Dataset distribution.
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Figure 4. Framework.

Let the width and height of an image be w and h, respectively; the aspect ratio
AspectRatio can be defined as AspectRatio = w/h. The rule to determine whether to rotate
the image based on the aspect ratio can be expressed by Equation (1):

Rotation =

{
0◦ if Aspect Ratio ≥ 1
90◦ if Aspect Ratio < 1

(1)

Here, 0◦ means no rotation, while 90◦ indicates a clockwise rotation.
To better simulate actual production environments and enhance the model’s gen-

eralization capabilities, we use the Albumentations library to augment images during
model training data loading randomly. This includes a 50% chance of horizontal or vertical
flipping, a 30% chance of randomly cropping one-third of the image width from a side, a
30% chance of randomly cropping one-third of the image height from a side, and a 30%
chance of small target occlusions occurring (with a maximum height of 18, minimum
height of 10, maximum width of 18, and minimum width of 10). The cropping and random
occlusion strategies employed in this study aim to simulate visual obstacles that dairy cows
may encounter in actual production environments, such as partial occlusions and diverse
orientations. The design of these strategies is based on research into visual system prepro-
cessing [30]. Introducing these common real-world issues during training can enhance the
model’s adaptability and robustness in complex settings, as shown in Figure 5.

2.4. Feature Extraction Network

Extracting distinguishing features for individual cows from an overhead perspective
is a relatively complex task, primarily due to posture differences, orientation, occlusions,
background, and changes in lighting. These variability factors demand that the chosen
feature extraction network possesses high adaptability and robustness, enabling the ef-
fective extraction of individual features from complex backgrounds. The construction of
the feature extraction network primarily consists of four parts: the backbone network,
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attention mechanism, spatial transformation module for deep feature extraction, and the
loss function. The feature extraction network architecture is shown in Figure 6.

Figure 5. Dataloader and image enhancement.

Figure 6. Feature extraction network. Feature extraction network architecture comprising four main
components: the backbone network, the attention mechanism, the Spatial Transformer Network
(STN) for deep feature extraction, and the loss function. The process includes image augmentation
through the data loader and image enhancement module, feature mapping via ResNet101 with an
attention mechanism, and feature vector production through STN and average pooling.

2.4.1. Backbone Network with Integrated Attention Mechanism

In the study of overhead perspective-based individual cow identification, choosing the
appropriate feature extraction network is crucial as it determines the model’s recognition
efficiency for the current dataset. The Deep Residual Network (ResNet) is currently the
most commonly used feature extraction network and is employed to address the issue of
vanishing gradients in deep neural networks. It incorporates residual blocks with skip
connections or shortcuts in each block, allowing gradients to flow directly through these
connections to enhance the network’s depth. ResNet and its variants are widely used
in individual animal recognition [21,24,25] and are considered adequate. ResNet101 is a
variant of the ResNet [31] architecture that contains 101 layers. Compared to shallower
ResNet variants (such as ResNet50 and ResNet18), ResNet101 enhances the model’s feature-
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learning capabilities by increasing the number of layers, enabling it to capture more complex
features and thus perform better in various visual recognition tasks.

Attention mechanisms are a crucial means of enhancing model feature extraction capa-
bilities and have been proven effective in the field of individual animal recognition [16,25].
Given the diverse orientation distributions and complex lighting conditions in our dataset,
we selected seven common attention mechanisms for efficacy screening. These include
the BAM (Bottleneck Attention Module) [32], CBAM (Convolutional Block Attention Mod-
ule) [33], ECA (Efficient Channel Attention) [34], ParNet (Parallel Network) [35], SEA
(Squeeze and Excitation Attention) [36], SimAM (Simplified Attention Module) [37], and
SK (Selective Kernel Networks) [38].

The CBAM mechanism effectively enhances feature expression by sequentially com-
bining spatial and channel attention. For the individual recognition of dairy cows, spatial
attention helps the model focus on the most critical parts of the image, such as distinct
body regions. In contrast, channel attention enables the model to highlight feature channels
most relevant to the recognition task. The incorporation of CBAM significantly improves
the model’s adaptability to spatial locations and feature channels, thereby enhancing the
accuracy of the individual recognition of dairy cows in complex backgrounds and vari-
ous postures. SimAM introduces a simplified attention mechanism designed to provide
effective adaptive feature tuning without increasing computational complexity. This mech-
anism is particularly important for processing large-scale deep image data and optimizing
feature representation without significantly increasing the computational load. The ParNet
attention module reduces network depth by using parallel subnetworks instead of tradi-
tional layer-by-layer stacking while maintaining high performance. It uses a Skip Squeeze
and Excitation (SSE) layer based on the Squeeze and Excitation (SE) design, enhancing
the network’s receptive field through skip connections and a single fully connected layer
without increasing the network depth.

The effectiveness of attention mechanisms is closely related to their placement within
the model [39]. In deep neural networks, features at different layers have varying levels
of semantic complexity and abstraction. Stages 3 and 4 of ResNet101 are advanced stages
responsible for extracting complex abstract features. Adding attention mechanisms at
these levels allows for more precise recalibration and optimization of these high-order,
semantically rich features. This study specifically opts to insert attention modules at the
end of each residual block in Stages 3 and 4 as these layers are deeper within the network
and capable of handling more complex background information and varied dairy cow
postures. With the inclusion of attention modules, the model can more effectively focus
on key features and suppress irrelevant background noise. This strategy is particularly
important for processing overhead images of dairy cows as these images often contain
complex backgrounds and various occlusion conditions. Through this approach, we are
able to significantly improve the model’s accuracy in recognizing individual dairy cows in
complex environments, especially under occlusion and varying environmental conditions.

2.4.2. Spatial Transformation Depth Feature Extraction Module

From an overhead perspective of cows, there is a diverse orientation distribution
among individuals. Although preliminary angle adjustments were made through aspect
ratio determination in the data-loading phase of the experiment, a significant number of
individuals with reversed positions and horizontal angle deviations remain. Traditional
convolutional neural networks have certain limitations in handling such geometric defor-
mations, struggling to adjust image features to enhance recognition performance adaptively.

The Spatial Transformer Network (STN) is a trainable module designed to enable
neural networks to learn to perform spatial transformations of images, thereby enhancing
the model’s adaptability to geometric deformations. The STN achieves its functionality
through three main components: the Localization network, Grid generator, and Sampler.
The Localization network predicts the spatial transformation parameters; the Grid generator
creates a sampling grid based on these parameters; and the Sampler then uses this grid to
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sample from the input image, producing the transformed output image. This process allows
the network to perform image correction automatically without manual intervention.

The function of the Localization network is to predict the spatial transformation
parameters θ. It is a standard feedforward neural network that takes the input image I
and outputs the transformation parameters θ, which are then used to generate the Grid
generator. The Localization network can be represented by Equation (2):

θ = floc(I) (2)

Here, floc denotes the Localization network, I is the input image, and θ is the transfor-
mation parameters.

Based on the transformation parameters θ provided by the Localization network, the
Grid generator generates the corresponding sampling grid. This sampling grid defines
the new position of each pixel in the input image. For each output pixel position (xt

i , yt
i),

its corresponding position in the input image (xs
i , ys

i ) is calculated through the affine
transformation defined by Equation (3). Here, Tθ is the affine transformation matrix
defined by the parameters θ:(

xs
i

ys
i

)
= Tθ

xt
i

yt
i

1

 =

(
θ11 θ12 θ13
θ21 θ22 θ23

)xt
i

yt
i

1

 (3)

Tθ is the affine transformation matrix defined by the parameters θ.
The Sampler is responsible for sampling from the input image I according to the

sampling grid produced by the Grid generator, generating the transformed output image I′.
This process involves sampling each new position (xs

i , ys
i ) from the input image to construct

the transformed image, using bilinear interpolation for the sampling process.
In research on overhead perspective-based individual cow identification, selecting

an appropriate feature extraction network is crucial as it determines the final recognition
efficiency for the current dataset. We selected well-known feature extraction networks,
including MobileNet V2, ResNet101, ResNeSt101, and Vision Transformer (ViT), as base-
lines. These networks, encompassing lightweight, residual, and Transformer visual net-
works and their variants, have been proven effective in the field of individual animal
identification [17,21]. In this study, we focus on the model’s performance in processing
images of cows from an overhead perspective, characterized by complex backgrounds and
variable postures.

2.4.3. Loss Function

This paper integrates and explores four types of loss functions to enhance the per-
formance of the recognition framework: ArcFace loss [40], CosFace loss [41], Contrastive
Loss [42], and Center Loss [43]. These loss functions are applied to the model to optimize
the distribution of the feature space, aiming to explore the enhancement effects of different
loss functions on the model’s recognition capabilities, preparing for open-set recognition
based on metric learning. The selection of these loss functions is based on the following
considerations: ArcFace loss significantly enhances the distinguishability of individual
features by increasing inter-class separation and compressing intra-class distances, a feature
crucial for open-set recognition based on distance metrics. CosFace loss directly introduces
Cosine margins in the feature space, optimizing the distribution of features between and
within classes, which is particularly effective for processing dairy cow images with complex
backgrounds and pose variations. Contrastive Loss enhances the model’s discriminative
power by ensuring that the distances between samples of the same category are smaller
than those between samples of different categories. This is particularly useful for reducing
misclassification, especially in open-set environments with a diverse array of sample cate-
gories. Center Loss is used to minimize the distance between features of the same class and
their class center, effectively enhancing intra-class compactness. This helps the model to
stably recognize individual cows under varied viewing angles and occlusion conditions.
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ArcFace loss aims to optimize the feature space by enhancing the compactness within
classes and separability between classes with the calculation method provided in Equation (4):

LArcFace = − 1
N

N

∑
i=1

log
es·cos(θyi+m)

es·cos(θyi+m) + ∑C
j=1,j ̸=yi

es·cos(θj)
(4)

Herein, N represents the number of samples in a batch, ensuring that the loss value
is independent of the batch size; s is a scaling parameter used to adjust the magnitude of
the feature vectors; θyi denotes the angle between the sample i and its corresponding class
center; m is a preset margin angle, used to enhance separability between classes; and C
represents the total number of categories.

CosFace loss enhances the separability between classes by directly introducing a
Cosine margin into the feature space with the calculation method provided in Equation (5):

LCosFace = − 1
N

N

∑
i=1

log
es·(cos(θyi )−m)

es·(cos(θyi )−m) + ∑C
j=1,j ̸=yi

es·cos(θj)
(5)

The meanings of the variables here are the same as in the ArcFace loss, but the
CosFace loss directly subtracts the margin m from the Cosine values, optimizing the
calculation method.

Contrastive Loss is used to ensure that samples of the same class are closer in feature
space while samples of different classes are further apart, with the calculation method
provided in Equation (6):

LContrastive =
1

2N

N

∑
i=1

(1 − yij) · ∥ fi − f j∥2 + yij · max(0, m − ∥ fi − f j∥)2 (6)

Here, yij is a label indicator function, where 0 indicates that samples i and j belong
to the same class and 1 otherwise; fi and f j are the feature vectors of samples i and j,
respectively; and m sets the minimum boundary for inter-class distance.

Center Loss aims to minimize the distance between the features of samples of the
same class and their class center, as shown in Equation (7):

LCenter =
1
2

N

∑
i=1

∥ fi − cyi∥
2 (7)

Here, fi refers to the feature vector of sample i and cyi represents the feature center of
the class to which sample i belongs, i.e., the average feature of all samples in that class.

2.5. Open-Set Recognition Module

To accurately assess the performance of the open-set recognition system, this study
employed a sample-pair-based testing strategy, with the method for generating test set
sample pairs detailed in Section 2.1.3. The open-set recognition module involves the
random extraction of positive and negative sample pairs, exploration of the application of
various distance metrics, and threshold selection based on ten-fold cross-validation. These
strategies aim to simulate various scenarios in open-set recognition while optimizing the
recognition module’s final performance.

After feature extraction, to understand and determine the similarity of feature vectors
in the feature space from different perspectives, this paper explores four distance metrics
to determine whether two feature vectors come from the same cow individual based on
their similarity. The distance metrics specifically include the Euclidean distance, Cosine
distance, Mahalanobis distance, and Manhattan distance. The thresholds for each distance
metric are denoted by det, dct, dmaht, and dmant, with their value ranges being det ∈ [0, 15],
dct ∈ [0, 1], dmaht ∈ [0, 5], and dmant ∈ [0, 100], respectively.
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Using the ten-fold cross-validation method and verifying the framework algorithm’s
feasibility, this study also aims to find the most appropriate thresholds among these distance
metrics to achieve optimal recognition accuracy. In the ten-fold cross-validation process,
the test set is divided into ten equal parts, with nine parts selected for training and the
remaining part used for testing in each cycle, ensuring that each part can be used as the test
set. The top-1 accuracy is used as the standard for evaluating the model, and an exhaustive
search for each distance metric determines the best accuracy threshold. The search step size
for the Euclidean and Mahalanobis distances is 0.01, for the Cosine distance is 0.0001, and
for the Manhattan distance is 0.1. Finally, the optimal thresholds for each distance metric
are determined by the weighted average of the accuracy of each test set round, with the
collective optimal threshold calculation method shown in Equation (8):

dopt =
∑10

i=1 Acci × di

∑10
i=1 Acci

(8)

Herein, dopt represents the optimal threshold, which is determined by the weighted
average of the accuracy rates from each test set in ten-fold cross-validation, aimed at
comprehensively reflecting the unified threshold that best represents performance across
all cross-validation cycles. Acci denotes the accuracy on the test set during the ith iteration
of cross-validation, used to assess the model’s performance under that particular cross-
validation iteration. di represents the best threshold obtained during the ith iteration of
cross-validation. This value is achieved through exhaustive search or other optimization
methods in a specific cross-validation cycle, aiming to maximize model performance (e.g.,
accuracy). ∑10

i=1 Acci represents the sum of accuracies from all test sets across ten cross-
validation iterations, serving as the denominator in the weighted average calculation.

2.6. Evaluation Indicators

To comprehensively evaluate the performance of the proposed model on the individual
cow identification task, this study utilized top-1 and top-5 accuracy as the main evaluation
metrics. These metrics intuitively reflect the model’s accuracy and are commonly used stan-
dard assessment methods in the fields of image classification and individual identification.

The top-1 accuracy reflects the accuracy of the model in predicting the most likely
category; a high value indicates excellent performance in predicting the most probable
category. The calculation method is shown in Equation (9):

Top-1 Accuracy =
TP

TP + FN
(9)

Herein, TP represents True Positives, the number of samples correctly predicted as
positive by the model and FN stands for False Negatives, the number of samples incorrectly
predicted as unfavorable by the model.

The top-5 accuracy assesses whether the model’s predictions for the top five most likely
categories include the true category. This metric is particularly applicable to recognition
tasks with many categories and high similarity. It reflects the model’s tolerance when there
are more options. The calculation method is shown in Equation (10):

Top-5 Accuracy =
Number of T5P

Total number of predictions
(10)

Herein, “Number of T5P” refers to the number of samples for which the actual label is
among the top five categories predicted by the model, and “Total number of predictions”
refers to the total number of samples in the test set.

By considering both the top-1 and top-5 metrics, this study comprehensively evaluates
the model’s accuracy and generalizability in the task of individual cow identification,
thereby verifying the model’s effectiveness and reliability in practical application scenarios.
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3. Results
3.1. Experimental Setup and Parameters

The platform used for this experiment is a Linux server equipped with the Ubuntu
Server 22.04 operating system. The server’s hardware configuration includes two Intel(R)
Xeon(R) Gold 6139M CPUs @ 2.30 GHz (Intel, Santa Clara, CA, USA), 128 GB of RAM,
and 8 NVIDIA GeForce RTX 3090 graphics cards (NVIDIA, Santa Clara, CA, USA). On
the software side, the system environment comprises Python 3.10.11; CUDA 11.7; and
the deep learning frameworks Pytorch 2.0.1, MMEngine 0.10.3, and MMPretrain 1.2.0. As
shown in Table 2, The learning algorithm in this study was optimized using stochastic
gradient descent, with an initial learning rate set at 0.02, momentum at 0.9, and a weight
decay parameter of 0.0001. Considering the limitations of GPU memory, the batch size was
set to 96.

Table 2. Experimental parameter setting.

Hyperparameters Value

Optimizer SGD
Learning rate 0.02 with scheduler
Momentum 0.9

Weight decay 0.0001
Batch size 96

Max epochs 50
Warm up learning rate scheduler LinearLR (Epoch 1–5)

Main learning rate scheduler LinearLR (Epoch 6–50)
Learning rate update by epoch

3.2. Selection of Prototype Networks for Feature Extraction

In this study, we selected MobileNet V2 [44], ResNet101, ResNeSt101 [45], Vision
Transformer (ViT) [46], and ResSTN (ours) as the candidate feature extraction networks.
We conducted a comprehensive comparison based on their performance on the validation
set. As shown in Table 3, in the individual recognition of 62 cows in the validation set,
ResSTN performed the best, with a top-1 accuracy of 99.72 and a top-5 accuracy of 99.94.
MobileNet V2 performed the worst, yet its top-1 accuracy reached 91.11. ResNet101 was
next, with a top-1 accuracy of 94.63. ResNeSt101 and ViT performed slightly worse than
ResSTN, with top-1 accuracies of 96.83 and 97.83, respectively. However, the size of the
ViT model is about twice that of ResSTN. Considering the top-1 and top-5 accuracies, this
study selected ResSTN as the prototype network for cow individual recognition feature
extraction. Figure 7 shows the trend of top-1 accuracies for each algorithm during the
training process.

Table 3. Feature extraction prototype network comparison.

Model Size (MB) Accuracy/Top-1 (%) Accuracy/Top-5 (%)

MobileNet V2 9.32 91.11 93.72
ResNet101 163.51 94.63 96.83

ResNeSt101 98.2 96.83 98.83
Vision

Transformer (ViT) 327.78 97.83 99.78

ResSTN (ours) 167.85 99.72 99.94

3.3. Selection of Attention Mechanism for Backbone

As shown in Table 4, in this study, we evaluated the impact of seven common attention
mechanisms on the accuracy of the ResSTN model. Different attention mechanisms have
varying effects on model accuracy and size. In terms of the top-1 accuracy, CBAM, ParNet,
and SimAM exhibited the biggest improvements, reaching 99.85%, 99.91%, and 99.82%,
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respectively. These mechanisms also performed excellently in top-5 accuracy, scoring
99.96%, 99.97%, and 99.96%, respectively. Compared to the baseline ResSTN model, these
three attention mechanisms not only improved the accuracy but also maintained a relatively
reasonable model size, particularly CBAM, and SimAM, which had minor increases in the
model size. Other attention mechanisms like ECA and SEA, although smaller in model size,
resulted in decreased accuracy. Based on these assessments, we selected the three optimal
attention mechanisms, CBAM, ParNet, and SimAM, for ablation studies.

Figure 7. Changes in accuracy during model training.

Table 4. Attention mechanism selection.

Model Size (MB) Accuracy/Top-1 (%) Accuracy/Top-5 (%)

ResSTN 167.85 99.72 99.94
ResSTN-BAM 212.34 99.75 99.94

ResSTN-CBAM 186.21 99.85 99.96
ResSTN-ECA 167.87 97.52 98.68

ResSTN-ParNet 1761.6 99.91 99.97
ResSTN-SEA 185.96 97.06 98.57

ResSTN-SimAM 167.84 99.82 99.96
ResSTN-SK 1644.32 97.22 99.28

3.4. Ablation Experiment

This study conducted a series of ablation experiments to investigate the effects of
different distance calculation methods, attention mechanisms in feature extraction net-
works, and loss functions on the task of individual cow identification from an overhead
perspective. Initially, the ResNet101 model and ResNet101 models enhanced with three
types of attention mechanisms, CBAM, SimAM, and ParNet, were used as feature extrac-
tion networks; subsequently, ArcFace, CosFace, Contrastive Loss, and Center Loss were
employed as loss functions; finally, the Euclidean distance, Cosine distance, Mahalanobis
distance, and Manhattan distance were utilized for distance measurements. These exper-
iments aimed to meticulously analyze the specific impacts of each factor on the model
performance, optimize model design, enhance the accuracy and robustness of individual
cow identification, and achieve the best performance combination. As shown in Table 5,
the ResSTN model, when combined with the SimAM attention mechanism and ArcFace
loss function and utilizing the Cosine distance for the distance measurement, achieved
the highest accuracy of 94.58%, demonstrating exceptional performance in the task of
open-set individual cow identification from an overhead perspective. Furthermore, the
ResSTN+CBAM model, in combination with the Contrastive Loss function and the Man-
hattan distance for the distance measurement, also exhibited a high accuracy of 94.08%,
further validating the effectiveness of attention mechanisms in feature extraction and the
role of different loss functions in conjunction with various distance measurement methods
in enhancing model discriminability.
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Table 5. Ablation experiment.

Model Loss
Accuracy (%)

Euclidean Distance Cosine Distance Mahalanobis Distance Manhattan Distance

ResSTN

ArcFace 91.77 94.02 89.52 90.08
CosFace 79.95 79.38 72.06 81.07

Contrastive
Loss 90.08 90.08 79.95 90.08

Center Loss 77.13 86.14 71.50 74.88

ResSTN + CBAM

ArcFace 83.89 92.33 83.32 83.89
CosFace 82.76 90.64 71.50 81.64

Contrastive
Loss 92.96 93.52 86.80 94.08

Center Loss 91.77 92.33 90.08 92.90

ResSTN + SimAM

ArcFace 92.90 94.58 92.90 93.46
CosFace 87.27 83.89 79.95 87.83

Contrastive
Loss 92.90 92.90 84.45 90.64

Center Loss 82.20 91.77 73.75 79.38

ResSTN + ParNet

ArcFace 85.58 93.46 72.06 74.32
CosFace 69.25 91.77 64.75 67.56

Contrastive
Loss 68.12 82.76 62.49 65.31

Center Loss 79.95 83.89 79.95 79.95

3.5. Comparison of Individual Cow Identification under Different Light and Data Enhancement

This study compared the ResSTN, ResSTN-NE (ResSTN without data augmentation
during data loading), and ResNet101-NE (ResNet101 without data augmentation during
data loading) as baseline feature extraction models. In conjunction with the SimAM atten-
tion mechanism and ArcFace loss function, and using the Cosine distance as the metric, it
evaluated the recognition accuracy of whole individuals, randomly cropped individuals,
and randomly occluded individuals under natural and artificial lighting conditions. As
shown in Table 6, the ResSTN model exhibited the highest recognition accuracy under all
test conditions, highlighting the effectiveness of image enhancement techniques, as well
as the SimAM attention mechanism and ArcFace loss function. Particularly under natural
lighting conditions, the recognition accuracies for whole individuals, randomly cropped
individuals, and randomly occluded individuals were 95.23%, 90.85%, and 94.02%, respec-
tively, indicating that recognition performance under natural light generally surpassed
that under artificial light. It was also observed that using random data augmentation
during the data-loading phase effectively improved the recognition rates for randomly
cropped and randomly occluded conditions, with increases of 2.61 and 1.91 percentage
points, respectively. Comparing ResSTN-NE and ResNet101-NE, it is evident that the
spatial transformations and alignment provided by the STN network significantly enhance
the model’s recognition rate by up to 2.98 percentage points.

Table 6. Detection performance on the six test sets.

Evaluation Indicator
Nature Light Artificial Light

Full-Body Randomly
Cropped

Randomly
Occluded Full-Body Randomly

Cropped
Randomly
Occluded

ResSTN 95.23% 90.85% 94.02% 94.86% 90.02% 93.87%
ResSTN-NE 94.47% 88.24% 92.11% 93.20% 88.04% 91.61%

ResNet101-NE 91.35% 85.82% 90.25% 89.38% 85.32% 87.66%
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3.6. Comparison with Existing Studies

Table 7 presents the comparative results of this study with other studies. Currently,
individual livestock identification is mainly divided into two categories: closed-set iden-
tification and open-set identification. In the realm of closed-set identification, existing
research primarily focuses on individual identification based on parts of the cow such as the
face [17], back [13], side [12,14], and rear [20] using various models including EfficientNet-
B1, ResNet50, RetinaFaceNet, VGG-16+SVM, and MobileNet V2. These methods have
achieved high recognition accuracy within fixed, predefined sets of individual cows. Re-
search on open-set identification is less common and primarily focuses on the identification
of cow bodies and backs. For instance, Andrew et al. [24] achieved a 93.8% recognition
accuracy using the RetinaNet (based on ResNet50) model in a test set comprising 46 cows.
In contrast, Wang et al. [26] reached an accuracy of 82.93% using the ShuffleNet v2 model
on a dataset of 87 cows. Based on these studies, this paper proposes an improved open-set
identification framework based on ResSTN. This framework aims to address the challenges
posed by diverse orientation distributions and complex lighting conditions in production
settings while exploring an overhead perspective cow identification framework based on
multiple attention mechanisms, loss functions, and distance metrics. The model proposed
in this study ultimately achieved a recognition accuracy of 94.58% under varied orientation
distributions and complex lighting conditions, surpassing existing open-set identification
models and demonstrating the effectiveness of this method in recognizing individual cows
in production scenarios.

Table 7. Comparison with existing studies.

Recognition Type Paper Year Objects Parts Backbone Accuracy

Closed set

Hou et al. [20] 2021 195 cows Rump MobileNet V2 99.76%
Xu et al. [17] 2022 90 cows Face RetinaFace(MobileNet) 91.3%
Xiao et al. [13] 2022 48 cows Back Mask R-CNN + SVM 98.67%
Fu et al. [21] 2022 13 cows Body ResNet50 98.58%
Zhang et al. [14] 2023 118 cows Body EfficientNet-B1 98.5%

Open set
Andrew et al. [24] 2021 46 cows Back RetinaNet (ResNet 50) 93.8%
Wang et al. [26] 2023 87 cows Body ShuffleNet v2 82.93%
Ours 2024 70 cows Top-down view ResSTN% 94.58%

4. Discussion

According to the results in Table 3, the ResSTN model demonstrates exceptional
performance in the individual cow recognition task on the validation set, achieving top-1
and top-5 accuracies of 99.72% and 99.94%, respectively. Although the size of the ViT model
is approximately twice that of ResSTN, its performance does not surpass that of ResSTN,
indicating that increasing the model size does not always linearly improve performance in
individual recognition. Conversely, ResSTN achieves higher recognition accuracy while
maintaining a more petite model size. This suggests that the STN network within the
ResSTN structure reduces the impact of individual posture and angle variations on the
final model performance, decreasing the complexity of transformations and deformations
that ResNet needs to handle, thereby improving the quality of feature extraction. It also
indirectly reflects the importance of data alignment for individual recognition, consistent
with the research findings of Wang et al. (2023) [26].

According to the results shown in Table 4, CBAM and SimAM significantly improved
the top-1 and top-5 accuracy of the model with only a slight increase in the model size. In
contrast, although ParNet increased in size, its parallel structure enabled it to still exhibit
an outstanding performance in recognition tasks. These results indicate that in practical
applications, choosing the appropriate attention mechanism can effectively enhance model
performance without significantly increasing the consumption of computational resources.
Additionally, other attention mechanisms such as ECA and SEA, while advantageous in
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terms of model size, did not improve accuracy and even resulted in performance degra-
dation. This may be due to these mechanisms’ inability to adequately capture features
beneficial for improving classification accuracy in this research context.

Table 5 shows that although all model variants demonstrate a high recognition accu-
racy, this study finds that the Cosine distance achieves a good performance across various
configurations, especially when combined with the SimAM attention mechanism. Fur-
thermore, the results of ablation studies also reveal the significant impact of loss function
selection on model performance. For instance, the ArcFace loss function achieves high
accuracy across various attention mechanism configurations, indicating its advantage in
promoting the model to learn more discriminative features.

To mitigate the negative impact of sample class imbalance on recognition accuracy
and to evaluate the best threshold, this study employed a ten-fold cross-validation method
to estimate the model’s average accuracy. Specifically, the test sample pairs are divided into
ten parts, with nine parts selected in each round as the basis for determining the optimal
threshold, which is then used to evaluate the accuracy of the remaining part. This process
is repeated ten times, with a different part selected as the test set each time, thus obtaining
ten accuracy values. The weighted average of these accuracies is considered the model’s
average performance across the entire test set.

According to Table 8, the model exhibited an average accuracy of 94.58% when using
the Cosine distance as the distance metric, the highest among the four distance measure-
ment algorithms. Furthermore, both the Euclidean distance and Mahalanobis distance
showed the same average accuracy of 92.90%, while the Manhattan distance had an average
accuracy of 93.46%. The accuracy results from the ten-fold cross-validation are consistent
with the ablation experiment outcomes. Simultaneously, the optimal thresholds for the Eu-
clidean, Cosine, Mahalanobis, and Manhattan distance were identified as 2.45, 0.0047, 4.24,
and 72.2, respectively. Regardless of the average or highest accuracy, the Cosine distance
outperformed the other distances, indicating its suitability for individual identification
tasks, in agreement with the findings of Wang et al. (2023) [25]. The excellent performance
of the Cosine distance in this study may be attributed to its measurement approach, which
evaluates similarity by calculating the Cosine of the angle between two feature vectors, a
method insensitive to vector lengths and more focused on directional similarity.

As shown in Table 6, the recognition accuracy of whole-body images under natural
lighting surpassed that under artificial lighting, reaching 95.23% in natural light compared
to 94.86% under artificial light, indicating that natural lighting provides better lighting
consistency and feature clarity for model recognition. The accuracy difference between
natural and artificial lighting conditions was minimal for randomly cropped individuals,
likely because cropping reduced the impact of lighting changes on overall image features.
However, the recognition accuracy of randomly cropped images was lower than that of
whole-body images. However, an accuracy of 90.85% remained high, suggesting that the
random cropping of images during data loading positively impacts the model’s ability to
identify non-complete individuals.

Moreover, comparing the ResSTN-NE and ResNet101-NE models, which did not use
data augmentation strategies, further confirmed the significant role of data augmentation in
enhancing model robustness and adaptability. The recognition performance under natural
lighting conditions was generally superior to that under artificial lighting, emphasizing the
importance of considering lighting conditions in practical applications. Data augmentation
techniques for random cropping and occlusion significantly improved recognition accuracy,
indicating that data augmentation enhanced the model’s ability to utilize local image infor-
mation and process occluded and incomplete images. This finding aligns with the current
deep learning field’s general recognition of data augmentation techniques. Simulating
various disturbances that might occur during the training process improves the model’s
generalization ability and robustness. Comparing the performance of the ResSTN-NE
and ResNet101-NE models demonstrated the positive impact of spatial transformation
and alignment capabilities provided by the STN network on enhancing model recognition
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rates, with an average accuracy improvement of 2.98 percentage points. Especially when
processing whole-body, randomly cropped, and randomly occluded individuals under
natural light, the high accuracy displayed by the ResSTN model reaffirmed the effectiveness
of the STN structure in handling image geometric transformations and alignments, which
is crucial for improving the performance of vision-based individual identification systems.

Table 8. Ten-fold cross-validation.

Test
Euclidean Distance Cosine Distance Mahalanobis Distance Manhattan Distance

Optimal
Threshold Accuracy Optimal

Threshold Accuracy Optimal
Threshold Accuracy Optimal

Threshold Accuracy

Fold 1 2.45 94.85 0.0047 96.89 4.24 94.85 72.2 93.21
Fold 2 2.45 94.92 0.0047 95.95 4.24 94.92 72.2 93.54
Fold 3 2.45 94.85 0.0047 94.89 4.24 94.85 72.2 93.32
Fold 4 2.45 96.41 0.0047 97.88 4.24 96.41 72.2 96.70
Fold 5 2.45 92.84 0.0047 94.75 4.24 92.84 72.2 94.68
Fold 6 2.45 92.82 0.0047 94.85 4.24 92.82 72.2 93.58
Fold 7 2.45 88.91 0.0047 89.72 4.24 88.91 72.2 90.27
Fold 8 2.45 89.29 0.0047 91.68 4.24 89.29 72.2 91.59
Fold 9 2.45 91.54 0.0047 93.66 4.24 91.54 72.2 93.12

Fold 10 2.45 92.55 0.0047 95.56 4.24 92.55 72.2 94.63
Average

Accuracy - 92.90 - 94.58 - 92.90 - 93.46

This study conducted an in-depth analysis of individual cow recognition from an
overhead perspective. Despite using the advanced ResSTN model, combining attention
mechanisms and various distance metrics algorithms, the experimental results show a
recognition accuracy of up to 94.58%. However, recognition errors still occur under certain
conditions. Through a case analysis of misrecognition, this study found that the main rea-
sons for recognition errors can be categorized into five types, as shown in Figure 8. Figure 8a
shows a case of image distortion caused by the rapid movement of cows. When cows move
quickly, the images captured by the camera may become blurred or distorted, making the
individual cow’s feature information less distinct and affecting the model’s recognition ac-
curacy. Significantly, when the movement speed exceeds the camera’s capturing ability, the
degree of image distortion becomes more severe. Figure 8b shows that lighting conditions
also significantly affect model performance. Under low-light conditions, the black features
of cows blend with light shadows, increasing the likelihood of recognition errors. Figure 8c
shows that the individual cow has too few distinguishable features, with only sporadic
black spots on the right side and the rest of the area white. Random cropping or occlusion
for data augmentation to improve the model’s generalization capability may result in the
loss of some or all recognizable features, leading to insufficient feature information for
the cow individual and making it difficult for the model to extract adequate recognition
information from the image. As shown in Figure 8d, overexposure of the camera leads
to the loss of details in the image, especially when the background color is similar to the
cow’s fur. Overexposure can make the cow’s contour and features less distinct, affecting
the model’s ability to recognize. As shown in Figure 8e, shadows may form additional
black or gray patches on the cow’s back under certain lighting conditions. The model may
misidentify these patches as one of the cow’s features, leading to recognition errors. The
risk of misidentification may be greater, especially when the shadow’s shape is similar in
brightness to the cow’s natural markings.
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(a) (b) (c) (d) (e)

Figure 8. Examples of recognition errors. (a) Image distortion caused by rapid movement, (b) low
brightness under lighting conditions, (c) insufficient individual cow features + feature loss due to
random cropping, (d) camera overexposure, (e) additional black patches on the cow’s back due to
light shadows.

While this study has made certain progress in open-set individual cow recognition,
limitations may affect the model’s general applicability and final performance.

First, the training, validation, and testing of the model in this study were primarily
based on a relatively closed and controllable dataset. Therefore, the model may face
challenges when dealing with more extensive and diverse individual cow characteristics,
especially when there are few discernible features per individual cow. Although data
augmentation techniques can somewhat enhance the model’s generalization capabilities,
future research will need to train and validate more diverse datasets to improve the model’s
practicality and robustness further.

Secondly, this study directly referenced existing research on the placement of attention
mechanisms within the feature extraction network without conducting more in-depth
ablation analyses. It is possible that the current method of adding attention mechanisms
is not optimal. Future work could explore the impact of different placements of attention
mechanisms under an overhead perspective of cows on the ability to extract open-set
recognition features.

Thirdly, the parameter count of the ResNet-based feature extraction network models
is relatively large, especially after adding mechanisms such as attention. The larger model
parameter count increases the implementation cost in production, posing a significant chal-
lenge for the model’s application and promotion. Future work could explore lightweight
models suitable for end-point deployment and lightweight open-set recognition systems.

Lastly, this study has partially addressed the challenges of partial cow visibility and
diverse orientation distribution under an overhead perspective for individual identification.
However, it has not fully considered all challenges in actual production environments.
For example, the impact of temporary artificial markings on the cow’s back, severe back
contamination, skin diseases, and feature changes due to individual growth on the accuracy
of identification. Future research needs to study the impact of various and multiple
factors in complex production environments on model performance and corresponding
optimization strategies, thereby developing more robust and suitable individual cow
identification models for complex production environments.

Future research needs to delve deeper into the specific impact of these factors on model
performance, thereby identifying more robust and applicable cow individual recognition
models for complex production environments.
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5. Conclusions

This study constructed an open-set recognition framework that combines “deep fea-
ture extraction and metric learning”, effectively enhancing the model’s adaptability to
challenges such as the diverse orientation distribution of individual cows, complex lighting
conditions, and partial occlusions. This includes designing a new deep learning model,
ResSTN, integrating three types of attention mechanisms and four types of loss functions,
and exploring the impact of four metric learning methods on recognition performance.
Experimental results show that the ResSTN model achieves a recognition accuracy of
94.58% when combined with the SimAM attention mechanism and ArcFace loss function,
using the Cosine distance as the distance metric. Under natural lighting conditions, the
recognition accuracy for complete cow images reaches 95.23%. This study provides an
effective solution for the open-set recognition of individual cows on a technical level and
offers rich technical references for future research in related fields. However, transferring
the application to natural production environments presents some potential challenges.
In future work, we will focus on collecting a broader dataset and optimizing the model
architecture to address usability challenges in natural production environments.
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