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Simple Summary: Wildlife rescue centers frequently admit animals with injuries and bone fractures.
Open fractures are common in birds due to their anatomy, and this can lead to complications like
osteomyelitis, which implies a serious bone infection and often necrosis, or death of the affected
bone tissue. Antibiotic therapy is crucial, but the rise in antimicrobial-resistant isolates in wildlife
raises concerns about treatment efficacy. A study focused on isolating, identifying, and assessing
antimicrobial resistance in bacteria from wounds and fractures in wild birds. Among 36 isolates,
Staphylococcus spp. dominated (63.8%), with 82.6% exhibiting antimicrobial resistance, particularly
to clindamycin, an antimicrobial key in the treatment of infected bone fractures. This escalating
resistance poses a dual threat to wildlife—therapeutic failure and the spread of resistant bacteria
in ecosystems.

Abstract: Injuries and bone fractures are the most frequent causes of admission at wildlife rescue
centers. Wild birds are more susceptible to open fractures due to their anatomical structure, which
can lead to osteomyelitis and necrosis. Antibiotic therapy in these cases is indispensable, but the
increase of antimicrobial-resistant isolates in wildlife has become a significant concern in recent years.
In this context, the likelihood of antibiotic failure and death of animals with infectious issues is high.
This study aimed to isolate, identify, and assess the antimicrobial resistance pattern of bacteria in
wounds and open fractures in wild birds. To this end, injured birds admitted to a wildlife rescue
center were sampled, and bacterial isolation and identification were performed. Then, antimicrobial
susceptibility testing was assessed according to the disk diffusion method. In total, 36 isolates were
obtained from 26 different birds. The genera detected were Staphylococcus spp. (63.8%), Escherichia
(13.9%), Bacillus (11.1%), Streptococcus (8.3%), and Micrococcus (2.8%). Among Staphylococcus isolates,
S. lentus and S. aureus were the most frequent species. Antimicrobial resistance was detected in 82.6%
of the isolates, among which clindamycin resistance stood out, and 31.6% of resistant isolates were
considered multidrug-resistant. Results from this study highlight the escalating scope of antimicrobial
resistance in wildlife. This level of resistance poses a dual concern for wildlife: firstly, the risk of
therapeutic failure in species of significant environmental value, and, secondly, the circulation of
resistant bacteria in ecosystems.
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1. Introduction

According to the International Union for Conservation of Nature (IUCN), 159 bird
species have become extinct during the last 20 years, and now 12% of the described bird
species are threatened [1]. Specifically in Europe, bird populations have declined by
600 million individuals since 1980 [2]. As species abundance has been described as a
synonym of a healthy ecosystem, biodiversity conservation becomes key to ensuring global
health for humans, animals, and the wild [3]. In this context, the role of wildlife rescue
centers (WRCs) is essential as an ex situ action to ensure animal welfare, treating and caring
for injured, sick, and stray native animals [4]. However, despite WRC efforts, the release
rate ranges between 27% and 56% for wildlife admitted to WRCs, depending on the animal
class and the region [5–8].

Among the causes of admission to a WRC, those linked to human activity, such as
electrocutions, car or window collisions, or gunshots, are the most frequent [9,10]. In
contrast, injuries due to other animals’ attacks are not so common but still are represented
among traumatic causes of admission. Due to the anatomical adaptations of the bones
for flight, birds are more prone to suffer open fractures with bone exposure [11,12]. In
those species, the trauma category represents around 30–65% of the total admissions,
and the prevalence of injuries and bone fractures in wild birds admitted to a WRC are,
therefore, higher and the most common cause of morbidity and mortality [4–7]. A high
percentage of wild birds admitted due to a traumatic cause, involving injuries and/or
fractures, had a negative outcome, either by death or euthanasia [6]. This, coupled with the
time elapsed from the trauma until the animal’s capture and arrival at the WRC, increases
the risk of infection that can lead to osteomyelitis and necrosis [5,13–15]. The majority
of avian wounds are older than 8 h and/or contaminated by the time they present for
treatment [16]. The anatomical point of fracture, the extension of soft-tissue lesions, the
infection and osteomyelitis, or the bone and soft-tissue necrosis are some of the criteria that
help veterinarians assess euthanasia [6,17]. Unlike in mammals, osteomyelitis in birds is
typically not systemic unless it involves a pneumatic bone, like the humerus or femur. This
communication between the fracture and infection focus and the respiratory system can
lead to fatal pneumonia [18].

The bacterial genera most frequently involved in wounds and open fractures in wild
birds are mainly Staphylococcus, Enterococcus, Bacillus, Aeromonas, and other bacteria from
the Enterobacteriaceae family, such as Escherichia, Enterobacter, Shigella, and Proteus [13,14].
Staphylococcus spp. is a ubiquitous bacterium in the normal microbiota of humans and
animals, with the ability to cause a broad spectrum of infections [19]. Concretely, Staphylo-
coccus aureus is one of the seven ESKAPE micro-organisms producing resistant infections
in hospitals worldwide. The name of this group of highly virulent and antimicrobial-
resistant bacteria (ARB) is the acronym of their seven scientific names: Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aerugi-
nosa, Enterobacter spp., and Escherichia coli [20]. The infection with S. aureus is the most
common and can exacerbate osteomyelitis development through exfoliative and pore-
forming toxins and superantigens that promote osteoclastogenesis and bone resorption [18].
Moreover, S. aureus has been described as one of the species with the highest rate of antimi-
crobial resistance (AMR) and resistant strains, which have been associated with more than
700,000 deaths worldwide in 2019 [21].

Despite the fact that wild bird rehabilitation from trauma usually entails antibiotic
therapy, it must be conducted in a way so as to avoid the development and increase of new
resistant bacteria. Nowadays, antimicrobial resistance (AMR) is one of the biggest health
issues in the world, causing millions of human deaths yearly. Treating these bacterial infec-
tions has become arduous due to increased antimicrobial resistance [21]. In recent years,
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many authors have published the isolation of ARBs from wild birds, even though wildlife
should not have direct contact with clinical settings [14,19,22,23]. This is due to the infinite
interactions between humans and wildlife, direct or indirect, and the ecosystem’s pollution
with antimicrobial residues [24,25]. Moreover, migratory birds have been suggested to
have a higher probability of carrying ARBs in their microbiome and disseminating them
through different regions due to the vast territory they cover [25,26]. Therefore, wild birds
are crucial in disseminating ARB between environments and habitats [26].

This study aimed to isolate and characterize the bacteria in wounds and open fractures
in wild birds admitted to a WRC from Spain. As a secondary objective, antimicrobial
susceptibility tests were conducted to refine treatment protocols for wild birds accurately.

2. Materials and Methods
2.1. Sample Collection

From November 2018 to May 2020, wild birds admitted because of trauma at the WRC
managed by Grupo de Rehabilitación para la Fauna Autóctona y su Hábitat (GREFA) were
examined and sampled if their health status allowed it. Wound or open fracture samples were
collected for microbiological diagnosis and antimicrobial susceptibility test with a sterile swab
during their first examination. Samples were preserved in a liquid nutrient transport medium
with fructose-1,6-bisphosphatase (FBP) (Oxoid®, Basingstoke, UK) and 0.5% active charcoal
(Sigma-Aldrich®, Saint Louis, MO, USA) [27]. Then, samples were frozen at −20 ◦C until
analysis at the laboratory. Handling procedures complied with Spanish legislation (Royal
Decree 53/2013) [28]. Ethical review and approval were waived for this study because of the
standard protocol for the sanitary status analysis of animals admitted to the GREFA Wildlife
Hospital. Therefore, no extra handling of the animals was necessary to collect the samples,
and no extra samples were collected outside the hospital’s standard workflow protocol.

2.2. Bacterial Culture and Isolation

At the laboratory, samples were unfrozen at room temperature (20–15 ◦C). After
homogenization in a vortex, 100 µL of each sample were collected and transferred onto
two agar media: Columbia Agar with 5% sheep blood and MacConkey (Oxoid Ltd.®,
Basingstoke, UK). The blood agar culture was performed in aerobic and anaerobic condi-
tions with AnaeroGen® (Thermofisher Scientific®, Waltham, MA, USA). All plates were
incubated at 37 ± 1 ◦C for 24 h. Then, the macroscopic characteristics of different colonies
formed on each plate were observed (size, shape, and color of the colonies; presence of
alpha- or beta-hemolysis or no hemolysis on blood agar cultures; and whether there was
lactose fermentation or not on MacConkey cultures) and used to sort them out. Plates
without growth in the first 24 h were kept for another 24 h under the same conditions
before confirming negative growth. Then, a single colony of each morphology present
was selected from each plate with growth and stroked on Columbia Base (Oxoid Ltd.®,
Basingstoke, UK) to obtain a monoclonal culture after 24 h of incubation at 37 ± 1 ◦C. A
sample of each monoclonal culture was preserved in cryovials with nutritive broth and
glycerol (80–20%, respectively) at −80 ◦C for further analysis.

2.3. Bacterial Identification

Bacterial identifications were performed by microscopical morphology, shape, and
staining characteristics with Gram stain (Panreac AppliChem®, Darmstadt, Germany) and
classical biochemical tests, including catalase, potassium hydroxide (KOH) (MERCK®,
Darmstadt, Germany), and oxidase (MAST® ID, Merseyside, UK) [29]. Additionally,
isolates whose characteristics were compatible with Staphylococcus spp. were identified
at the species level using Analytical Profile Index (API) STAPH multisubstrate galleries
(bioMérieux®, Marcy l’Etoile, France). In the same way, isolates compatible with E. coli
were confirmed with API 20E multisubstrate galleries (bioMérieux®, Marcy l’Etoile, France).
Positive controls of S. aureus (ATCC 25923) and E. coli (ATCC 4157) were included in the
analysis with API STAPH and API 20E galleries, respectively.
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2.4. Antimicrobial Susceptibility Test

Antimicrobial susceptibility test (AST) was performed according to the disk diffusion
or Kirby–Bauer method and the European Committee on Antimicrobial Susceptibility
Testing (EUCAST) guidelines [30]. Isolates were retrieved from cryovials and plated onto
Columbia Agar supplemented with 5% sheep blood (Becton Dickinson GmbH, Heidelberg,
Germany). A suspension of the inoculum was prepared in a sterile 0.8% saline solution
to achieve a turbidity equivalent to 0.5 McFarland. Subsequently, the inoculum was trans-
ferred onto Mueller–Hinton agar (Becton, Dickinson GmbH, Heidelberg, Germany), and
antimicrobial disks were placed on the surface. The selection of antimicrobials for the
susceptibility test was based on the panel of antimicrobials routinely used in treating
wild birds at GREFA Wildlife Hospital. According to EUCAST recommendations, the an-
timicrobial susceptibility analysis of staphylococci includes chloramphenicol, clindamycin,
erythromycin, tetracycline, linezolid, and tedizolid [31]. However, the latter two are scarcely
used in veterinary medicine, especially in wildlife, so they were not included in the test.
In exchange, ampicillin, ciprofloxacin, and trimethoprim-sulfamethoxazole were added,
as they are commonly used in wildlife clinical practice. In total, susceptibility to seven
groups of antibiotics was analyzed: penicillins, quinolones, sulphonamides, macrolides,
lincosamides, amphenicols, and tetracyclines (Table 1). After 24 h at 37 ± 1 ◦C, susceptibil-
ity or resistance was determined by growth inhibition diameter regarding standardized
breakpoint tables from EUCAST [31]. For the antimicrobial without cut-off values in EU-
CAST tables (chloramphenicol), the breakpoint was established following the Clinical and
Laboratory Standards Institute (CLSI) guidelines [32]. Multidrug resistance (MDR) was
considered when the isolate was non-susceptible to at least one antimicrobial agent in three
or more different classes of antimicrobial [33].

Table 1. Details about antimicrobial disks used in the antimicrobial susceptibility test. Bio-Rad®,
Hercules, CA, USA; Oxoid®, Basingstoke, United Kingdom.

Class of
Antimicrobial Antimicrobial Code Concentration

(µg) Supplier Diameter Cut-Off
(mm)

Penicillins Ampicillin AMP 10 Oxoid® ≤18
Quinolones Ciprofloxacin CIP 5 Oxoid® ≤17

Sulphonamides Trimethoprim-sulfamethoxazole SXT 25 Bio-Rad® ≤14
Macrolides Erythromycin ERY 15 Bio-Rad® ≤21

Lincosamides Clindamycin CMN 2 Bio-Rad® ≤22
Amphenicols Chloramphenicol CHL 30 Oxoid® ≤12
Tetracyclines Tetracycline TET 30 Oxoid® ≤22

3. Results

Samples of 26 individuals belonging to 11 different species of birds were analyzed:
black kite, booted eagle, Eurasian eagle-owl, Tawny owl, little owl, mallard, white stork,
grey heron, lesser black-backed gull, common blackbird, and rock dove (Table 2).

Table 2. Taxonomic details about the individuals included in the study, population distribution, and
bacteria isolated from the different lesions.

Order Family Species Number of Birds Lession Bacteria Isolated

Birds of prey

Accipitriformes Accipitridae

Black kite
(Milvus migrans) 6

Open fracture (n = 5) S. aureus, Bacillus spp.

Wound (n = 1) S. aureus, S. sciuri,
S. warneri

Booted eagle
(Aquila pennata) 3

Open fracture (n = 1) Negative culture

Wound (n = 2) S. lentus, Bacillus spp.,
E. coli
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Table 2. Cont.

Order Family Species Number of Birds Lession Bacteria Isolated

Strigiformes Strigidae

Eurasian eagle-owl
(Bubo bubo) 1 Open fracture (n = 1) S. lentus, S. intermedius,

E. coli
Tawny owl
(Strix aluco) 2

Open fracture (n = 1) Negative culture
Wound (n = 1) Negative culture

Little owl
(Athene noctua) 2 Open fracture (n = 2) Negative culture

Aquatic birds

Anseriformes Anatidae Mallard
(Anas platyrhynchos) 2 Open fracture (n = 2) Negative culture

Pelecaniformes Ardeidae Grey heron
(Ardea cinerea) 1 Open fracture (n = 1) S. lentus, Micrococcus

spp., E. coli

Charadriiformes Laridae
Lesser black-backed gull

(Larus fuscus) 2
Open fracture (n = 1) Negative culture

Wound (n = 1) S. intermedius

Urban birds

Ciconiformes Ciconidae
White stork

(Ciconia ciconia) 5

Open fracture (n = 1)

Staphylococcus spp.,
S. lentus,

Streptococcus spp.,
E. coli

Wound (n = 4)

S. lentus, S. epidemidis,
S. warneri,

Streptococcus spp.,
E. coli

Columbiformes Columbidae Rock dove
(Streptotelia decaopto) 1 Open fracture (n = 1) Negative culture

Passeriformes Turdidae Common blackbird
(Turdus merula) 1 Open fracture (n = 1) Negative culture

3.1. Bacterial Isolation and Identification

Positive bacterial growth was obtained in 14 of the 26 including birds (53.8%), while
the other 12 birds had no bacterial growth in any of the media used. In total, 36 different
colonies were isolated. After basic biochemical tests and Gram staining, they could be
classified at the genus level: 63.8% (23/36) Staphylococcus spp., 13.9% (5/36) Escherichia,
11.1% (4/36) Bacillus spp., 8.3% (3/36) Streptococcus spp., and 2.8% (1/36) Micrococcus spp.
(Figure 1). Moreover, Staphylococcus isolates could be identified at the species level using
API STAPH® galleries, with reliability ≥ 90%: S. lentus (34.8%, 8/23), S. aureus (21.7%,
5/23), S. warneri (8.7%, 2/23), S. intermedius (8.7%, 2/23), S. epidermidis (4.3%, 1/23), and
S. sciuri (4.3%, 1/23) (Figure 2). S. lentus was the species most isolated from open-wound
and fracture samples. The staphylococci species could not be identified in four isolates
(17.3%) (Table 2). All the Escherichia isolates belonged to the species E. coli.

3.2. Antimicrobial Susceptibility Results

As Staphylococcus was the genus most frequent and because it has been considered a
sentinel for AMR surveillance, AST was performed only with Staphylococcus isolates. Of
the 23 staphylococci isolates, 82.6% were resistant to at least one antimicrobial (19/23).
Six isolates were susceptible to all the antimicrobials tested: two from Eurasian eagle-
owls, two from white storks, one from a black kite, and the last one from a booted eagle.
Still, none showed efficacy in all the isolates. The highest percentage of resistance found
was to clindamycin (CMN) (52.2%, 12/23), followed in decreasing order by ampicillin
(AMP), erythromycin (ERY), tetracycline (TET), and trimethoprim-sulfamethoxazole (SXT),
ciprofloxacin (CIP), and, finally, chloramphenicol (CHL) (Table 3).
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Table 3. Antimicrobial resistance patterns among the staphylococci isolated obtained from wild bird’s
wounds or open fractures. Resistant isolates: light grey.

Bird Species Staphylococcus
Species ID

Zone Diameter a (mm)
AMP CIP ERY CMN CHL TET SXT

Black kite
(Milvus migrans)

S. aureus

8 44 11 26 26 30 32 30
9 45 11 25 27 32 32 30
16 15 30 24 22 30 32 24
18 15 30 26 26 32 32 28

S. sciuri 17 27 31 28 18 30 37 26
S. warneri 29 40 23 33 33 23 35 38
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Table 3. Cont.

Bird Species Staphylococcus
Species ID

Zone Diameter a (mm)
AMP CIP ERY CMN CHL TET SXT

Booted eagle
(Aquila pennata)

S. lentus
11 37 25 36 34 19 25 22
13 11 30 14 0 25 18 25

Eurasian eagle-owl
(Bubo bubo)

S. intermedius 1 29 42 27 28 34 23 32
S. lentus 2 25 34 29 30 30 26 30

Grey heron
(Ardea cinerea) S. lentus

33 0 40 11 0 30 23 0
35 0 38 10 0 30 25 0

Lesser
black-backed gull
(Larus fuscus)

S. intermedius 7 37 30 24 1 19 25 29

White stork
(Ciconia ciconia)

S. aureus 20 20 35 0 31 30 43 34
S. epidermidis 19 55 35 30 28 34 40 33

S. lentus
3 17 40 10 0 30 25 26
4 14 37 10 0 30 24 28
25 18 34 30 36 26 23 0

S. warneri 30 20 40 28 31 20 27 40

Staphylococcus
spp.

22 24 30 23 9 25 26 28
24 22 22 24 7 22 28 32
31 0 29 22 0 22 22 20
32 25 25 21 0 27 22 26

Prevalence 39.1%
(9/23)

8.7%
(2/23)

30.4%
(7/23)

52.2%
(12/23)

0%
(0/23)

13%
(3/23)

13%
(3/23)

a Antimicrobials: AMP: ampicillin, CIP: ciprofloxacin, ERY: erythromycin, CMN: clindamycin, CHL: chloram-
phenicol, TET: tetracycline, SXT: trimethoprim-sulfamethoxazole.

Overall, 31.6% of resistant isolates (6/19) were considered MDR since they were
resistant to at least three different antimicrobial classes, half of them (50%, 3/6) to four
antimicrobial classes. All MDR isolates were resistant to CMN combined with different
antimicrobials, mainly cephalosporins, penicillins, and/or erythromycin. S. lentus was the
species with a higher rate of MDR. Regarding bird species, the grey heron has the highest
rate of MDR staphylococci, followed by the white stork. In contrast, lesser black-backed
gulls and Eurasian eagle-owls were the only species without MDR strains.

4. Discussion

The role of WRC in treating injured wildlife could be key for the restoration of en-
dangered populations as an ex situ tool [4]. As one of the main causes of admission of
wild birds is trauma, the management of injuries and fractures becomes essential for the
successful in wildlife rehabilitation, even more so in wild birds due to their anatomical
adaptations to flight [11]. However, there is a lack of studies about the distribution of
bacteria in injuries and open fractures in wild birds, as well as their antimicrobial resistance
patterns, which is of great importance in establishing the best treatment. Moreover, the
presence of resistant bacteria in wild birds could represent a potential hazard to global
health in the dissemination of resistant pathogens, many with zoonotic potential, such as
Escherichia coli, Salmonella enterica, or Staphylococcus aureus. During their daily movements
and migration, they can transport these resistant pathogens to new areas and spread them
to the environment [14,25]. The present study assessed the bacterial genera most present in
open fractures and wounds in wild birds admitted at a WRC.

In this work, the genus most frequently isolated was Staphylococcus (63.8%), followed
by Escherichia (13.9%), Bacillus (11.1%), Streptococcus (8.3%), and Micrococcus (2.8%). These
results contrast with those published by Gambino et al. [23], where the prevalence of
Staphylococcus and Streptococcus were lower (11.4% and 3.1%, respectively), and no Bacillus
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were detected. Staphylococcus in birds was the most frequent genus in the samples analyzed
and is highly relevant in human and veterinary medicine due to its ability to cause infections
in the heart, bone, skin, and other tissues [34,35]. It is one of the genera with the highest
resistance to antimicrobials, which makes its treatment extremely difficult, and S. aureus is
considered one of the most lethal resistant bacteria worldwide, which globally had been
indirectly associated with more than 4 million deaths in 2019 [21]. In addition, due to its
ubiquity and easy cultivation, it has been used in numerous studies as a sentinel bacterium
to study AMR trends [36,37]. The source of these bacteria colonizing injuries from wild
birds might be related to scratches or bites from other animals, especially in urban wild
birds. A mixed aerobic/anaerobic population is often isolated from infected bite wounds
from small animals like felids and canids, which are also known to carry bacterial groups
like Staphylococcus spp. and Streptococcus spp. on their gingival tissue and teeth. This is
why antimicrobial therapy is always indicated in any bird attacked by other animals [38].

Within the genus Staphylococcus, the most frequently isolated species was S. lentus
(34.8%) (proposed to be reclassified as Mammallicoccus lentus by Madhaiyan et al. [39]),
which agrees with a study performed on nocturnal raptors where the prevalence of that
species was 29.7% [19]. It has previously been identified in the trachea of healthy wild
birds as a component of the respiratory microbiota and is also found on the skin of healthy
pigeons [40,41]. Moreover, S. lentus has been isolated from the skin of people working
with pigeons and described as a neglected pathogen for humans, but, to the best of our
knowledge, there is no scientific report about zoonotic transmission [41,42]. In the present
study, S. lentus was isolated from six individuals: three of them had open fractures of
pneumatic bones (humerus and femur), so the presence of S. lentus in these fractures could
be related to the respiratory microbiota. Instead, S. aureus was the second species most
detected from open fractures and wounds; our detection rate is moderate (21.7%), according
to Silva et al. [19]. The role of S. aureus as a zoonotic pathogen with high AMR rates is
well-documented in both humans and animals, even in wild birds [19,21]. In a lower
percentage, two isolates of S. intermedius and S. warneri, a species found in the feathers of
migratory birds without associated symptoms, were obtained [43]. As a coagulase-positive
Staphylococcus (CoPS), S. intermedius had an increased pathogenicity. On the contrary,
S. sciuri is the most common coagulase-negative staphylococcal (CoNS) species in healthy
wild animals, including birds, but it has a high zoonotic potential [40,43,44]. Now proposed
also as Mammallicoccus sciuri [39], it was one of our study’s less dominant staphylococci
species. These CoNS were considered less pathogenic than S. aureus, but recent studies have
demonstrated an increasing clinical impact and can act as opportunistic pathogens [45,46].
Interestingly, a recent study on wild birds from Spain reported S. sciuri as the most frequent
staphylococci species [40]. In another study, Sousa et al. [47] confirmed the presence
of S. sciuri in rodents, rats, and squirrels, which can be part of the birds’ prey diet and
could be a source of infection. Finally, only one isolate of S. epidermidis was obtained,
which is considered an essential opportunistic species in human infectious diseases, and
it has been described as part of the respiratory and digestive microbiota of birds in low
concentration [40,47].

The antimicrobial susceptibility test of Staphylococcus spp. isolates showed a concern-
ing proportion of AMR isolates (82.6%) from infected open fractures and wounds from wild
birds. Even though ARB should be expected to be in a lower proportion in wild birds, some
species, such as white storks (Ciconia Ciconia) or Columbiformes, are considered urban
birds and have closer contact with human activities and garbage, increasing the risk of
acquiring ARB [25,48]. Clindamycin was the antimicrobial with the highest rate of resis-
tance (54.5%), which agrees with previous reports from wildlife [14,19,23,37,49]. Ruiz-Ripa
et al. [40] detected 90% of CMN-resistant staphylococci, highlighting a potential conflict
with veterinary clinical procedures as clindamycin is widely used, especially for pododer-
matitis and osteomyelitis treatment in wild birds [5,14]. In this context, a recent in-vitro
experiment has demonstrated that lower doses of CMN can favor osteoblast proliferation
and differentiation, as well as calcium deposition [50]. Beta-lactams are also common in
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both human and veterinary practice as the first choice, and resistance to this antimicrobial
family is frequent in staphylococci isolated from wildlife [51]. Among penicillins, the rate
of resistance to AMP was high (39.1%), which agrees with the data published by some
authors [23,49]. This resistance against AMP has also been reported in livestock, companion
animals, and humans in similar or higher proportions. This finding, added to the critical
role of wildlife in disseminating and maintaining AMR in the ecosystems, confirms the
connections between humans, animals, and the environment, and the need for a One
Health approach to monitoring and curbing the dissemination of AMR [52,53]. While some
authors recommend using clindamycin in osteomyelitis treatment, others suggest that
cephalosporins such as ceftiofur or cefotaxime could give better outcomes [14]. However,
third-, fourth-, and fifth-generation cephalosporins have been classified as the highest-
priority critically important antimicrobials by the World Health Organization (WHO), so
their use in veterinary practice should be limited [54]. Our results suggest that clindamycin
is not the best option to treat open fractures or wounds infected by Staphylococcus spp.
However, in our study, no cephalosporins were included, so it is not possible to assess the
resistance of our strains to this class of antimicrobials. According to the published CLSI
guidelines, resistance to some cephalosporins and other beta-lactam antimicrobials can
be extrapolated from the result obtained from AST against oxacillin. Therefore, despite
being an antimicrobial rarely used in veterinary medicine, the inclusion of oxacillin in
the AST would have been very informative [32]. On the other hand, the absence of CHL-
resistant isolates found in the present study contrasts with results obtained by Sousa et al.
in a study of the characterization of staphylococci isolated from the nasal cavity in wild
birds (71.3%) [47]. Resistance to ERY, CIP, TET, and SXT has also been observed in lower
proportions in similar studies with wild birds [14,37,40,48,51].

From the 19 strains of resistant Staphylococcus spp., 6 were considered MDR (31.6%).
This percentage is close to that reported in previous studies on wild birds, which showed
percentages near to 50% of MDR [14,40]. In contrast, Fernandez-Fernandez et al. [37]
confirmed the absence of MDR strains in 259 staphylococci isolates from the white stork
respiratory system. MDR has been widely assessed in wildlife under a public-concern
approach. However, it is important to highlight that the emergence of bacteria resistant to
multiple antimicrobial classes could precipitate treatment failures in these animals, many
of which play pivotal ecological roles.

Finally, to obtain more precise and statistically significant results, a larger number
of cases is necessary. However, this study includes a small number of cases due to the
complexity of obtaining complete clinical cases and collecting samples before any veterinary
treatment, always prioritizing animal welfare when working with wildlife. Therefore, the
results presented in this study are simply observational, and no statistical conclusions
can be drawn from them. Further research is needed to evaluate and characterize the
bacterial species that may be involved in infected wounds and open fractures in wild birds,
including their resistance patterns.

5. Conclusions

In conclusion, the most frequent bacteria isolated from wounds and open fractures
of wild birds in our study were S. lentus, followed by S. aureus and E. coli. Among staphy-
lococci isolates, the antimicrobial resistance proportion was concerning (82.6%); mainly
clindamycin, ampicillin, and erythromycin, and 31.6% of the resistant isolates were con-
sidered MDR. Although clindamycin benefits osteoblast proliferation, its administration
should be avoided in infected open fracture treatment. Our study’s outcomes emphasize
the alarming expansion of antimicrobial resistance in wildlife. This heightened resistance
threatens therapeutic success in species of paramount environmental importance, intensi-
fies the spread of ARB throughout ecosystems, and focuses attention on the urgent need to
incorporate wildlife into surveillance protocols for antimicrobial resistance. Despite budget
limitations linked to wildlife research, incorporating new molecular techniques such as
sequencing in epidemiological studies would help us to understand whether the observed
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resistance mechanisms are acquired and share genomic structures with those identified in
bacteria from other environments.
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