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Simple Summary: The Amur tiger is an endangered species in the world, and effective statistics
on its individuals and population through re-identification will contribute to ecological diversity
investigation and assessment. Due to the fact that the fur texture features of the Amur tiger contain
genetic information, the main method of identifying Amur tigers is to distinguish their fur and
facial features. In summary, this paper proposes a serial multi-scale feature fusion and enhancement
network for Amur tiger re-identification, and designs a global inverted pyramid multi-scale feature
fusion module and a local dual-domain attention feature enhancement module. We aim to enhance
the learning of fine-grained features and differences in fur texture by better fusing and enhancing
global and local features. Our proposed network and module have achieved excellent results on the
public dataset of the ATRW.

Abstract: The Amur tiger is an important endangered species in the world, and its re-identification
(re-ID) plays an important role in regional biodiversity assessment and wildlife resource statistics.
This paper focuses on the task of Amur tiger re-ID based on visible light images from screenshots of
surveillance videos or camera traps, aiming to solve the problem of low accuracy caused by camera
perspective, noisy background noise, changes in motion posture, and deformation of Amur tiger
body patterns during the re-ID process. To overcome this challenge, we propose a serial multi-scale
feature fusion and enhancement re-ID network of Amur tiger for this task, in which global and local
branches are constructed. Specifically, we design a global inverted pyramid multi-scale feature fusion
method in the global branch to effectively fuse multi-scale global features and achieve high-level,
fine-grained, and deep semantic feature preservation. We also design a local dual-domain attention
feature enhancement method in the local branch, further enhancing local feature extraction and
fusion by dividing local feature blocks. Based on the above model structure, we evaluated the
effectiveness and feasibility of the model on the public dataset of the Amur Tiger Re-identification
in the Wild (ATRW), and achieved good results on mAP, Rank-1, and Rank-5, demonstrating a
certain competitiveness. In addition, since our proposed model does not require the introduction of
additional expensive annotation information and does not incorporate other pre-training modules, it
has important advantages such as strong transferability and simple training.

Keywords: Amur tiger; intelligent recognition; deep learning; double branch structure; feature
pyramid; attention mechanism

1. Introduction

Widespread distribution, low population density, unpredictable behavior patterns,
and sensitivity to interference of wildlife pose significant challenges to monitoring work for
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some animal species. Traditional wildlife investigation techniques mainly include manual
investigation, line sampling, collar tracking, and acoustic tracking using sound recording
instruments [1,2]. However, each of these methods has certain disadvantages, so scientists
strive to improve them. The Amur tiger, also known as the Siberian Tiger, is one of the
subspecies of tigers. The Amur tiger is mainly distributed in the northeastern region of
Asia and is listed as an endangered species in the Red List of Threatened Species by the
World Conservation Union. There are only just over 500 Amur tigers left in the world,
so it is crucial to strengthen the protection of the Amur tiger [3]. Moreover, the survival
and reproduction of species populations are closely related to regional biodiversity and
ecosystem functional integrity [4]. Therefore, re-evaluating the Amur tiger and its prey
resources in natural environments such as nature reserves and national parks can help to
statistically analyze the situation of Amur tiger resources and provide data reference for the
next step of protection work [5,6]. At present, the most commonly used method for the re-
ID of wild animals is manual discrimination. After receiving professional knowledge and
training, wildlife protection professionals need to screen and distinguish a large amount
of image data based on the fur pattern characteristics of the abdomen, head, neck, and
other parts of the Amur tiger [7,8]. To reduce errors, it is necessary for multiple people to
simultaneously identify and verify the recognition results, which requires a large workload,
high cost, and low efficiency.

With the continuous development and application of machine learning and deep
learning technologies, machine learning algorithms and emerging deep learning models,
such as Linear Clustering [9], Classification [10,11], Detection [12,13], and Generative
Adversarial Networks [14], are gradually being applied to the intelligent monitoring and
protection of wildlife. Research on the intelligent recognition of wildlife mainly focuses
on issues such as wildlife re-ID, species classification, population counting, and attribute
recognition [15]. In the process of wildlife re-ID, the application of computer vision-related
technologies can greatly improve recognition efficiency and accuracy. Research in this
area has gradually become popular. Currently, the main methods used are clustering
algorithms based on image hotspots [9] and convolutional neural network models based on
VGG [16], AlexNet [17], and ResNet [18]. These methods have been improved in optimizing
feature extraction, feature fusion, and incorporating prior knowledge of pose. Zheng et al.
proposed a Transformer network structure with cross-attention block (CAB) and local
awareness (CATLA Transformer) [19], which captures global information of an animal
body’s surface and local feature differences in fur, color, texture, or face, and fuse global
features and local features through CATLA Transformer. Zhang et al. proposed using
texture features as global and local features for re-ID, and proposed a pyramid feature
fusion model method to extract features from both local and global perspectives, effectively
matching entities [20]. Li et al. proposed an Amur tiger re-ID method, which introduces
precise pose parts with deep neural networks to handle the large pose variation of tigers [3].
Liu et al. proposed a Partial Pose Guided Network (PPGNet), which uses local image
features based on pose data to drive the network to extract features from the original image,
and applies it to an Amur tiger re-ID system based on automatic detection and Amur tiger
pose estimation [21]. He et al. proposed a Multi-pose Feature Fusion Network (MPFNet),
which constructs three pose modules: standing, sitting, and lying. In each module, two
parallel branches are used to extract global and local features for effective feature extraction.
Finally, the features are fused [22].

There are also some very advanced studies in the field of person re-identification
similar to the Amur tiger re-ID. Sun et al. proposed a Part-based Convolutional Baseline
(PCB) framework and an inter-block combination method with uniform partitioning to
effectively extract part-level features, and by Refined Part Pooling (RPP), closer parts are
allocated together to improve the within-part consistency of parts [23]. Sun et al. considered
the problem of partial re-ID and proposed a Visibility-aware Part Model (VPM). Through
self-supervised learning, the model perceives the features within the visible region, extracts
regional features, and compares two images within their shared regions to suppress noise
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in unshared regions. It better extracts fine-grained features of the image and reduces image
misalignment [24]. Liu et al. proposed a multi-scale Feature Enhancement (MFE) Re-ID
model and a Feature Preserving Generative Adversarial Network (FPGAN). In the MFE,
the semantic feature maps of the person’s body are segmented, and then multi-scale feature
extraction and enhancement are performed on the person’s body region. In the FPGAN, the
source domain is transferred to the target domain in an unsupervised manner, maximizing
the preservation of personal information integrity [25].

In current research, there are issues such as the need for prior knowledge and the
complexity of training large models. Although some models have been verified to have
excellent average accuracy and other indicators, and the effectiveness of model improve-
ment has been verified through ablation experiments, a large amount of reliance on prior
knowledge leads to poor model transferability, requiring staff with expertise in wildlife to
perform a large amount of dataset labeling and processing work in the early stages before
retraining the model, which has low feasibility in practical production applications. The
networks with four, six, or more branches, or which require data preprocessing through
instance segmentation models before being fed into the re-ID model, are too complex
and have problems such as large model size and a need for complex training. Therefore,
this paper proposes a serial multi-scale feature fusion and enhancement re-ID network of
Amur tigers with global inverted pyramid multi-scale feature fusion and local dual-domain
attention feature enhancement for the re-ID of Amur tiger images. Combining the re-ID
methods of the Amur tiger and fine-grained task properties, the Path Aggregation Network
(PANet) [26] feature fusion idea is introduced. A bottom-up unidirectional feature fusion
method is proposed, which uses an inverted pyramid structure for feature fusion. This
helps to better integrate high-level features with large receptive fields and rich semantic in-
formation while preserving multi-scale features. We propose a local dual-domain attention
feature enhancement method that is serially connected with the global branch to enhance
local feature extraction and fusion. Our goal is not to go beyond the SOTA model used for
re-ID, but to propose an end-to-end model that is more suitable for removing animal pose
prior knowledge and other additional attribute information, and has good transferability
and re-ID performance. Our core contributions are as follows:

• We integrate and propose a lightweight, efficient, end-to-end network for the re-ID
task of the Amur tiger, which does not require the introduction of prior knowledge
such as posture. It can be quickly and conveniently used for the re-ID task of other
large mammals. The specific network innovation and design are as follows.

• In order to better extract and integrate the global information of the high-level and
low-level layers of the Amur tiger, we propose a multi-scale feature fusion method
of the global inverted pyramid. We introduce the ideas of Feature Pyramid Network
(FPN) [27] and PANet into the global branch of the model for the task of wildlife re-ID.
Improving the top-down connection method of traditional feature pyramid models
will greatly compress the problem of key deep semantic information [28].

• In order to deepen the feature extraction of various parts of the Amur tiger and extract
fine-grained features such as body fur texture, we introduce a serial local branch
network and design an attention module and output feature fusion method in the
local branch.

2. Materials and Methods

This section mainly introduces the dataset we use, the basic process of Amur tiger
re-ID, and the structure and details of our proposed Amur tiger re-ID network.

2.1. Dataset

To validate the effectiveness of the proposed method and model, we conducted
training, testing, and evaluation using the public dataset of the ATRW [3]. The ATRW
dataset is a dataset jointly released by Shanghai Jiao Tong University and Intel Laboratories
with the assistance of the World Wildlife Fund International (WWF) in 2019 for the detection,
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joint estimation, and re-ID tasks of the Amur tiger. The authors of this dataset collected
over 8000 video clips of 92 tigers from approximately 10 zoos in China to create the ATRW
dataset. After data organization and classification, the training dataset for the re-ID task
contains 107 tiger entities, totaling 1887 images. The test dataset contains 47 tiger entities,
with a total of 701 images. To enhance the robustness of the model and increase the number
of training samples, we performed random rotation and random occlusion enhancement
on some images in the training dataset, and set the image size H × W to 256 × 512 for
better results [21]. We reduced the influence of external factors such as shooting angle and
shooting position, and randomly divided the data into the training set Train and validation
set Val in a 7:3 ratio (Table 1). The train set we use has an average of 18 training images per
entity after data augmentation, with at least 9 training images for each entity (Figure 1).

Table 1. Training and Testing dataset used in the experiment.

Train Dataset Amur Tiger Entities Amur Tigers Original Images

Train + Val 107 75 1552 + 35

Test Dataset Amur Tiger Entities Amur Tigers Original Images

Query 47 42 701
Gallery 47 42 701
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Figure 1. (a–d) are the original images of the public dataset of the ATRW, and (e,f) are examples of
data-enhanced images.

2.2. Methods
2.2.1. Serial Multi-Scale Feature Fusion and Enhancement re-ID Network of Amur Tiger

In this paper, we propose a network aimed at completing the task of Amur tiger re-ID,
which is a serial multi-scale feature fusion and enhancement re-ID network of the Amur
tiger (Figure 2). The network is mainly divided into two parts: a global branch and a
local branch, which are combined to achieve the final effect. ResNet50 is a convolutional
neural network with a depth of 50 layers, which has excellent classification performance on
ImageNet [18]. Its pre-trained model was trained on ImageNet with over 1 million images.
Therefore, our proposed re-ID network applies the backbone ResNet50 and removes the
last down-sampling layer of ResNet50 to retain a larger scale [29]. On the basis of the
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backbone, a dual-branch structure is constructed based on the feature tensor obtained from
ResNet50 layer 4 to achieve the localization of the position of the Amur tiger in the image
and fine-grained re-ID requirement. Our proposed dual branches are connected in a serial
manner, and the feature tensors obtained from the global branch output are sent to the
local branch for the next step of feature extraction and fusion (the details of the global
and local branches are in Sections 2.2.2 and 2.2.3). Finally, the feature tensors FGlobal ∈
R2048×1 and FLocal ∈ R2048×1 for global and local branch outputs are obtained, which are
concatenated and sent to the classifier layer. Through the linear layer, they are expanded to
the corresponding number of categories.
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2.2.2. Global Inverted Pyramid Multi-Scale Feature Fusion Method

Taking inspiration from the FPN model and the PANet model, we propose an Inverted
Feature Pyramid Module (IFPM) for global multi-scale feature fusion. We attempt to guide
the fusion of multi-scale features from coarse to fine and from low-level to high-level,
reducing the compression of deep semantic information and maximizing the retention of
high-level features, in order to construct a multi-scale feature pyramid dominated by deep
semantic information on the global feature branch.

As shown in the yellow part of Figure 3, we propose a reverse feature fusion path in
the global branch. From bottom to top, we use the features extracted from layer 1 to layer 4
in the backbone as input feature maps of the global inverted pyramid multi-scale feature
fusion module. Finally, we obtain the output feature map.
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Specifically, we define C ∈ RC×H×W to represent the features output by each layer
of ResNet50, where H × W corresponds to the spatial dimensions of the feature map,
and C denotes the number of channels. In the multi-scale feature fusion module of the
global inverted pyramid, we designed a multi-scale feature fusion connection strategy. We
utilize the features C1 ∈ R256×32×64, C2 ∈ R512×16×32, C3 ∈ R1024×8×16, and C4 ∈ R2048×8×16

extracted from layer 1 to layer 4 in ResNet50 as input features. Starting from C1, C1
passes through the down-sampling layer based on the H × W of C2 to obtain P1. After
adding P1 to C2, the next step of feature fusion and ReLU is performed to obtain P2.
Then, based on the H × W dimension of the upper layer of the inverted pyramid, C3
and C4 are sequentially subjected to down-sampling, convolutional feature extraction,
fusion, concatenation, and ReLU activation to complete the feature connection and fusion
at each stage. By continuously mapping from low-level features to high-level features, P1 ∈
R512×16×32, P2 ∈ R1024×8×16, and P3 ∈ R2048×8×16 are obtained. P3 and C4 are connected in
parallel and average pooling is performed to obtain the complete global multi-scale feature
FGlobal ∈ R2048×1×1, maximizing the preservation of deep semantic information and better
fitting the fine-grained and deep semantic features of the Amur tiger for re-ID.

2.2.3. Local Dual-Domain Attention Feature Enhancement Method

We propose a Local Attention Enhancement Module (LAEM) based on the Convolu-
tional Block Attention Module (CBAM) [30] to enhance the feature extraction performance
of multiple local blocks in local branches (Figure 4). CBAM is an attention mechanism mod-
ule used to enhance the performance of convolutional neural networks, which improves
the model’s perception ability by introducing the mixed attention of channel attention and
spatial attention (Figure 5). Channel attention helps to enhance the feature representation
of different channels, while spatial attention helps to extract key information at different
positions in space [30].
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Figure 5. Principle of Convolutional Block Attention Module.

The local branch of this network is different from the global branch in fusing features
at different scales. The local branch further strengthens and extracts features in different
ranges through horizontal blocking, which helps to extract and optimize local details such
as the texture and stripes of Amur tiger fur, and improves the accuracy of re-ID.
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We divide the global feature obtained from the inverted pyramid module of the global
branch into 4 blocks from left to right, each block being a local feature block ∈ R2048×8×2

(Figure 6). In the local branch, we perform adaptive max pooling and 1 × 1 convolution
operations on each local block feature to obtain a reduced local feature representation to 512.
Then, we feed each reduced feature block into the CBAM. Channel and spatial attention
feature enhancements are applied to the local block feature, dual-domain feature represen-
tation is enhanced, and important features such as local stripes after block segmentation
are enhanced to obtain {L1, L2, L3, L4} ∈ R512×1×1. Finally, the four feature blocks obtained
through attention enhancement were activated using the activation function ReLU, and
then concatenated to obtain the final feature output FLocal ∈ R2048×1×1 of the local branch.
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2.3. Training and Reasoning

During the training process, the training dataset of Amur tiger images is input into
our proposed serial multi-scale feature fusion and enhancement re-ID network of the Amur
tiger. Through global and local branches, feature extraction and classification tasks are
carried out through the global inverted pyramid multi-scale feature fusion module and
local dual-domain attention feature enhancement module. Finally, the classifier layer is
applied for re-ID.

2.3.1. Loss Function

In probability statistics, entropy is a measure of the invariance of random variables.
Cross entropy can measure the degree of similarity and difference between two distributions
and is often used in image multi-classification and other problems.

We employ the Cross-Entropy Loss, a commonly used logarithmic loss function for
multi-class classification problems, to regulate and optimize the training process of our
network. The formula is as follows:

Li = −∑K
C=1 yiclog(pic) (1)

2.3.2. Inference

During the inference process, when wildlife conservation workers obtain a set of
images from camera traps or surveillance videos, we can select any image as the Query
and other images as the Gallery. Then, we input the Query and Gallery into the trained
network. After feature extraction and re-ID, we can obtain the similarity ranking of all
images in the Gallery compared to the Query. After descending sorting, we obtain the most
similar entity image of the Amur tiger extracted by the Query in the Gallery. At this time,
we can determine the probability from high to low that it is the same as the Amur tiger
entity in the Query image (Figure 7).
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3. Results and Analysis

This section mainly introduces the experimental setup, evaluation methods, and
specific experimental results.

3.1. Experimental Setup

Our proposed model is implemented in Cuda using the PyTorch framework. The
computer and code environments in which we conducted the experiment were configured
with PyTorch, Python 3.8, and Cuda11.3, and the entire training and testing process was
conducted on a server configured with an NVIDIA GeForce RTX 3090 GPU. The training
and testing sets used in the experiment are shown in Table 1. During the model training
phase, we use SGD and set the momentum to 0.9, basic learning rate to 0.002, weight decay
to 0.0005, and batch size to 16. The learning rate of the classifier layer is set to 0.02, and the
learning rate is decreased by a factor of 10 at epoch 100. The dataset was randomly erased
and underwent a total of 150 epochs of training.

3.2. Evaluation

The testing process of this task involves extracting an image from the Query dataset of
the test set and calculating the Euclidean distance between this image and all images in the
Gallery except for this image. The Euclidean distance calculation formula is as follows:

Distance = sort((A − B)·(A − B)) (2)

Sort in descending order based on the calculation results to determine whether the
image extracted by Query and other images in the Gallery are entities with the same ID
label:

F
(

limage, lgallery

)
≜

{
1 i f limage = lgallery
0 i f limage ̸= lgallery

(3)

The task of Amur tiger re-ID is similar to the sub-task of person re-ID in image retrieval,
so the same testing methods and evaluation indicators, such as the CMC curve and mAP,
can be used. This paper uses three indicators for re-ID evaluation: Rank-1 Accuracy, Rank-5
Accuracy, and mean average precision (mAP). Rank-1 is the probability of the first image
being retrieved hitting, and Rank-5 is the probability of the first five images being retrieved
hitting. Rank-1 can be explained using the formula shown in (4), and the calculation
method for Rank-5 is similar to this:

Rank − 1 =
1

∥Q∥ ∑
q∈Q

F
(

lq
image, lgallery

)
(4)

mAP reflects the degree to which real images rank higher in sorting, and compared
to Rank-1, Rank-5, etc., it can more comprehensively measure the effectiveness of re-ID.
Therefore, this indicator is also used as the primary evaluation indicator in this paper.
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3.3. Compared with Other Advanced Methods
3.3.1. Comparison with Improved Methods Based on ResNet50

Our proposed method has achieved good results on the public dataset of ATRW
(Table 2). Compared with the comparative experimental results of the advanced person
re-ID model based on ResNet50, our proposed model has achieved better results and
significant improvements (Figures 8 and 9).

Table 2. Comparison with ResNet50 based method on ATRW test dataset.

Method mAP Rank-1 Rank-5

PCB [23] 74.5% 95.4% 98.7%
ResNet50 + Triplet Loss [29] 75.1% 92.4% 99.1%

ResNet50 + IBN [31] 75.4% 93.9% 98.4%
ResNet50 + Lifted Loss [32] 75.5% 94.2% 98.7%
ResNet50 + Circle Loss [33] 75.9% 94.2% 98.9%

Ours 78.7% 96.3% 98.9%
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3.3.2. Comparison with Different Improvement Methods

The model we propose is an end-to-end re-ID model that does not require additional
prior knowledge. It has good transferability and is a significant improvement compared to
Aligned-reID, which also combines global and local features. However, compared with
models PPbM-a, PPbM-b, and MPFNet, which incorporate or pre-train pose estimation
modules, it can still achieve good re-ID performance, with some indicators improved
(Table 3). We randomly selected two Query images for Amur tiger re-ID as examples
(Figure 10).
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Table 3. Comparison with different methods on the ATRW test dataset.

Method mAP Rank-1 Rank-5

Aligned-reID [3] 64.8% 81.2% 92.4%
PPbM-a [3] 74.1% 88.2% 96.4%
PPbM-b [3] 72.8% 89.4% 95.6%

MPFNet [22] 79.8% 95.4% 98.6%
Ours 78.7% 96.3% 98.9%
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3.4. Ablation Experiment

To verify the effectiveness of our proposed method and module, we conducted ab-
lation experiments on each part. This model chooses the classic feature extraction and
classification model ResNet50 as the backbone. Firstly, we experimentally verify the testing
performance of only the backbone. Then, we separately verify the effectiveness of adding
the proposed global inverted pyramid multi-scale feature fusion module and local feature
enhancement module. The following is a detailed description and explanation.

3.4.1. Effectiveness of the Global Inverted Pyramid Multi-Scale Feature Fusion Module and
the Local Dual-Domain Attention Feature Enhancement Module

Due to the fact that our proposed global inverted pyramid multi-scale feature fusion
module is constructed based on the ideas of FPN and PANet, we compared the experimental
results of models that only used ResNet50 and introduced FPN and PANet based on
ResNet50 (Table 4). The introduction of FPN in the backbone resulted in a 7.7% decrease in
mAP compared to only using the backbone, while our proposed IFPM method resulted
in 76.1% mAP, 96.3% Rank-1, and 98.9% Rank-5. Compared to the model introducing
FPN, mAP improved by 9.4%, while Rank-1 and Rank-5 improved by 4.6% and 1.3%,
demonstrating significant advantages in these three indicators. This result proves that, as
expected by our analysis, adopting deep semantic features to fuse global features in an
inverted pyramid shape is more suitable for the re-ID task of the Amur tiger.

Table 4. Performing ablation experiments on the ATRW test dataset to demonstrate the effectiveness
of the IFPM.

Method mAP Rank-1 Rank-5

ResNet50 74.4% 93.4% 98.4%
ResNet50 + FPN 66.7% 91.7% 97.6%

ResNet50 + IFPM (Ours) 76.1% 96.3% 98.9%
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The experimental results of fusing IFPM and LAEM dual modules showed a 2.6%
improvement in mAP compared to the model containing only IFPM modules, while the
results of Rank-1 and Rank-5 remained unchanged, demonstrating the effectiveness of the
LAEM module and the serial combination of IFPM and LAEM (Table 5).

Table 5. Performing ablation experiments on the ATRW test dataset to demonstrate the effectiveness
of the LAME.

Method mAP Rank-1 Rank-5

ResNet50 74.4% 93.4% 98.4%
ResNet50 + IFPM (Ours) 76.1% 96.3% 98.9%

ResNet50 + IFPM + LAEM (Ours) 78.7% 96.3% 98.9%

3.4.2. Effectiveness of CBAM in Local Dual-Domain Attention Feature Enhancement
Module

Due to the application of CBAM in our proposed local dual-domain attention feature
enhancement module, we compared the experimental results of models using other robust
and effective attention modules to demonstrate the optimal performance of CBAM in this
module.

The experimental results of introducing Squeeze-and-Excitation Network (SENet)
and Efficient Channel Attention (ECA) into our improved model, which incorporates
IFPM, showed a 1.7% improvement in mAP compared to the backbone, while Rank-1
and Rank-5 increased by 1.3% and 2%, respectively (Table 6). Our proposed module
incorporating CBAM improved mAP by 2.6% compared to the model incorporating SENet,
while Rank-1 and Rank-5 improved by 1.6% and 0.5%, respectively. Compared to the model
incorporating ECA, mAP improved by 2.6%, while Rank-1 and Rank-5 improved by 0.9%
and 0.5%, respectively.

Table 6. Ablation experiments on ATRW test data set prove the progressiveness of CBAM module in
the local branch.

Method mAP Rank-1 Rank-5

ResNet50 74.4% 93.4% 98.4%
ResNet50 + IFPM + SENet 76.1% 94.7% 98.4%
ResNet50 + IFPM + ECA 76.1% 95.4% 98.4%

ResNet50 + IFPM + LAEM (Ours) 78.7% 96.3% 98.9%

4. Discussion

The Amur tiger may have the problem of occupying a relatively large position and
having a relatively complex image background in the photos captured by camera traps [34].
This is because photo shooting is triggered only when the wild animals are relatively close
to the infrared camera and the infrared sensor senses their temperature [34,35]. Moreover,
due to the complex forest environment, the Amur tiger has a narrow path and a larger
target. Therefore, we propose a new serial multi-scale feature fusion and enhancement re-ID
network of Amur tiger, which extracts and learns to input Amur tiger features in a global
and local branch serial manner. We also propose a global inverted pyramid multi-scale
feature fusion method and a local dual-domain attention feature enhancement method to
learn Amur tiger images at multiple scales, more adaptable to this re-ID task. In the model
validation stage, we applied the Amur tiger re-ID dataset of the ATRW for experimental
verification. The experimental results showed that our proposed model still has good
performance without introducing other prior knowledge and complex labeling, and the
mAP and hit rate have been improved. In addition to the Amur tiger, our proposed network
is applicable to other large quadruped animals through retraining. It can be structurally
adjusted according to specific animal species and task details, without the need to introduce
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other prior knowledge, reducing the cost of early labeling and other inputs, and has a
certain degree of universality and transferability.

In summary, since our constructed model requires vertical partitioning of extracted
features in the horizontal direction, it is effective in identifying large quadruped mammals
that are mostly identified by body surfaces, such as snow leopard re-ID and leopard
species classification. However, we have not yet conducted further validation and model
fine-tuning on many other large quadruped animal datasets, and if we apply datasets of
upright animals such as monkeys, there may be issues with poor performance. Because
our proposed method requires local partitioning in the horizontal direction, and for such
animals, the key complete features may be segmented, resulting in the inability to learn
important information. Currently, however, a suitable dataset for comparative experiments
remains unavailable. This is the limitation and problem that this paper aims to address,
and further in-depth research is still needed. In the future, we will strive to create datasets
and complete research and comparative experiments on model transfer. In addition, this
paper is conducted on a public dataset where each entity has an average of 14.5 and at least
8 training images prior to data augmentation. However, in real life, there may be small and
uneven sample sizes in the dataset we obtain in the wild or in surveillance videos, which
are also issues that we need to address in the future.

5. Conclusions

The re-ID and counting of Amur tigers play an important role in studying and analyz-
ing the entity quantity and distribution of various populations, biodiversity, and individual
tracking of wild animals. Therefore, improving the mAP, Rank-1, and Rank-5 of Amur tiger
re-ID has enormous ecological significance and value. In order to improve the accuracy
and efficiency of the Amur tiger re-ID, we propose a serial multi-scale feature fusion and
enhancement re-ID network of the Amur tiger. A global inverted pyramid multi-scale
feature fusion method and a local dual-domain attention feature enhancement method
were designed for this network. Our proposed network and method have the advantages of
no prior knowledge, high efficiency, and end-to-end functionality. Through experiments on
the public dataset ATRW of Amur tiger and comparative experiments with other methods,
it has been proven that this method has good performance and will help improve the re-ID
performance of Amur tiger.
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