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Simple Summary: Pig farming plays a critical role in global animal husbandry, with pig weight and 

body dimensions serving as key indicators of growth and development. Manual measurement 

methods currently used face challenges like herding difficulties and stress in pigs. To address this, 

this study introduces a non-contact weight estimation and body measurement model using point 

cloud data from pig backs. By utilizing a depth camera and advanced algorithms, accurate weight 

predictions and body size measurements were achieved. The model showed promising results, with 

reduced errors compared to manual methods, demonstrating its potential for improving efficiency 

and animal welfare in pig farming practices. 

Abstract: Pig farming is a crucial sector in global animal husbandry. The weight and body 

dimension data of pigs reflect their growth and development status, serving as vital metrics for 

assessing their progress. Presently, pig weight and body dimensions are predominantly measured 

manually, which poses challenges such as difficulties in herding, stress responses in pigs, and the 

control of zoonotic diseases. To address these issues, this study proposes a non-contact weight 

estimation and body measurement model based on point cloud data from pig backs. A depth camera 

was installed above a weighbridge to acquire 3D point cloud data from 258 Yorkshire–Landrace 

crossbred sows. We selected 200 Yorkshire–Landrace sows as the research subjects and applied 

point cloud filtering and denoising techniques to their three-dimensional point cloud data. 

Subsequently, a K-means clustering segmentation algorithm was employed to extract the point 

cloud corresponding to the pigs’ backs. A convolutional neural network with a multi-head attention 

was established for pig weight prediction and added RGB information as an additional feature. 

During the data processing process, we also measured the back body size information of the pigs. 

During the model evaluation, 58 Yorkshire–Landrace sows were specifically selected for 

experimental assessment. Compared to manual measurements, the weight estimation exhibited an 

average absolute error of 11.552 kg, average relative error of 4.812%, and root mean square error of 

11.181 kg. Specifically, for the MACNN, incorporating RGB information as an additional feature 

resulted in a decrease of 2.469 kg in the RMSE, a decrease of 0.8% in the MAPE, and a decrease of 

1.032 kg in the MAE. Measurements of shoulder width, abdominal width, and hip width yielded 

corresponding average relative errors of 3.144%, 3.798%, and 3.820%. In conclusion, a convolutional 

neural network with a multi-head attention was established for pig weight prediction, and 

incorporating RGB information as an additional feature method demonstrated accuracy and 

reliability for weight estimation and body dimension measurement. 
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1. Introduction 

Pork stands as a primary meat source for humans, and the traditional methods of pig 

farming can no longer keep pace with the rapidly escalating demand for pork. With the 

advancement of science and technology, modern techniques are gradually infiltrating 

various aspects of livestock production [1,2]. Precision livestock farming relies on 

accurately estimating vital body parameters of livestock, encompassing body size, weight, 

and physical condition [3]. Currently, manual weighing remains the prevailing method 

for determining pig weight. However, this approach proves to be time-consuming, labor-

intensive, and often induces stress reactions in pigs [4]. The stress experienced by pigs can 

have detrimental effects on their overall health, leading to issues such as metabolic 

acidosis, dysfunction of the digestive and respiratory systems, and a compromised 

immune system. Additionally, if zoonotic diseases emerge, they can swiftly spread among 

the pig population [5]. These concerns significantly impact pig health, influencing pig 

selection and breeding, which indirectly affects the quality of pork and subsequently 

impacts human health. 

With the rise of artificial intelligence technology, the livestock and poultry farming 

industry has entered the era of intelligent farming. Scholar C.P. Schofield [6] utilized 

image processing techniques to extract and calculate the contour areas of pig images based 

on grayscale thresholds, discovering a significant correlation between contour area and 

weight. Similarly, American scholar Grahn [7] integrated the VIA system with the fire 

system to monitor pig growth rates and provide weight information, but this method 

requires consistent accuracy during data collection. Estimating the weight of poultry and 

livestock using 2D images has encountered challenges such as low accuracy and high 

posture requirements. 

In recent years, the use of 3D data for weight estimation in livestock has gained 

traction. Kongsro [8] employed Kinect depth cameras to capture depth images of pigs, 

processing these images to establish a linear regression equation for weight prediction. As 

image processing technology continues to advance, Song et al. [9] achieved success in 

utilizing machine vision to assess the body condition of cows, capturing images from 

multiple perspectives and applying techniques like image enhancement and 

neighborhood averaging, with grading errors remaining within a three-point range and a 

remarkably low relative error of 0.8%. 

In 2013, Liu et al. [10] from China Agricultural University used various techniques to 

extract 3D coordinate data of pigs, including laser scanners and triangulation. They 

utilized multiple cameras from various angles to ensure rich 3D data and enhanced 

estimation accuracy. After processing the initial point cloud data with filtering and 

denoising, they constructed weight estimation models using different methods, with the 

RBF neural network model showing the best predictive performance, with an average 

error of only 1.3%. 

Zhang et al. [11] analyzed 3D point cloud data of cows, employing filtering and 

clustering algorithms to eliminate outliers and segment the cow’s body. Their model 

exhibited an absolute error within the range of 20–27 kg and a root mean square error of 

17 kg. On the other hand, Kwon et al. [12] converted 3D point cloud data and mesh models 

into 3D voxel grids. While this approach is effective, its limitations hinder widespread 

practical implementation in farming [13]. 

In the realm of animal measurement and monitoring, a number of innovative 

methods have been introduced. Hao H. et al. [14] and Zhang J. et al. [15] put forward 

enhanced models for pig body size measurement and weight estimation, incorporating 

advanced techniques such as PointNet++, regression CNN, and deep learning. 

Furthermore, Meckbach C. et al. [16] and Cang Y. et al. [17] demonstrated promising 

approaches for precise animal weight monitoring, leveraging convolutional neural 

networks and intelligent estimation methodologies. Additionally, He H. et al. [18] 

introduced a novel automatic weight measurement method for pigs based on 3D imaging 
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and a regression network, providing accurate and non-contact weight estimation for pig 

farming. 

This study focuses on processing 3D point cloud data with precision and efficiency, 

guided by principles of practical production. Voxel filtering and K-means clustering 

segmentation algorithms were utilized to preprocess the original point cloud, effectively 

removing noise and segmenting the pig targets. Body dimension features were then 

extracted, considering their practical utility. 

The pig point cloud data were used as input for a deep learning convolutional neural 

network (CNN) with multi-head attention, creating a weight estimation model. This end-

to-end model allows contactless weight prediction based solely on the pig’s back point 

cloud data. The proposed model offers a streamlined and efficient processing flow, 

making it directly applicable in the actual production environment of a farm and meeting 

the demands of practical farming scenarios. 

2. Materials and Methods 

2.1. Collection and Processing of Sow Back Video Data 

2.1.1. Experimental Environment and Data Collection 

The data in this study were collected at Luo Chen Pig Farm in New Xing County, 

Yunfu City, Guangdong Province, China. Coordinates: 112.136° E, 22.373° N. The 

experimental subjects were Yorkshire–Landrace sows (Figure 1). The weight range and 

proportion of the sows are shown in Figure 2. The location was a pig driving channel with 

a width of approximately 1.7 m and a height of about 2.5 m. A weighing scale was placed 

on the side of the wall, and real weight data of the pigs were measured using the scale to 

provide support for the optimization of the pig weight estimation model. The Inter 

RealSense D435i depth camera was installed directly above the weighing scale. To ensure 

the stability of the camera, it was fixed on both sides of the wall using a gantry and a metal 

hook. The depth camera was connected to a computer, which further connected to a 

portable hard drive for storing video data, and those are shown in Figure 3. A total of 258 

sow videos were collected. To ensure data accuracy, the weighing scale display needed to 

be zeroed before measurements. The depth camera angle and weighing scale position 

were calibrated. The camera height was set to 2.5 m to capture the point cloud data from 

an optimal perspective to ensure comprehensive coverage of the pig’s body. 

The Intel RealSense Viewer was used to control the depth camera for recording. Pigs 

were numbered, and their weights were recorded. After recording a one-minute video, 

the pigs were herded, and the process was repeated. The fluctuation range of sample pig 

weights was controlled to enhance the model’s generalization. The data were stored in 

bag format files on a mobile hard drive. 
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Figure 1. Experimental environment. 

 

Figure 2. Weight distribution. 

 

Figure 3. Schematic diagram of the video capture system. 

2.1.2. Data Preprocessing 

For point cloud video analysis, an average of 30 frames of 3D point cloud files were 

parsed per second to optimize the data and improve the accuracy of the weight estimation 

model. This involved selecting from an extremely large dataset. The initial result was an 

extensive collection of point cloud files in ply format. These files were then examined 



Animals 2024, 14, 1046 5 of 21 
 

using CloudCompare_v2.13.0, and files with issues such as missing point clouds or 

incomplete pig images were removed. Point cloud files containing complete pig images 

were retained. To ensure the adequacy of the data and meet the needs of the pig weight 

estimation model, 50 points cloud files were selected for each of the 200 pigs, which were 

divided into training and validation sets using the method of random sampling. The 

validation set accounted for 20% of the total, resulting in a total of 10,000 sets of pig 3D 

point cloud files. For the remaining 58 pigs, 10 points cloud files were selected for each as 

the test set, resulting in a total of 580 sets of pig 3D point cloud files. 

2.2. Processing and Morphometric Measurement of the Point Cloud Data 

This study utilized a depth camera to analyze the 3D image of pigs and applied voxel 

filtering to filter the back point cloud of the pigs, adjusting the number of points in the 

back point cloud [19,20]. It utilized the K-means clustering algorithm to segment the point 

cloud and employed a method based on the local density of 3D point clouds to remove 

the head and tail of the pig. This study also enveloped the back point cloud of the pig with 

a minimum bounding box, adjusted the angle to make it parallel to the horizontal line, 

and extracted the size information of the pig’s back [21]. Finally, it used the position 

information and RGB information of the back point cloud as input and predicted the 

weight of the pig through a CNN model with a multi-head attention mechanism. The 

specific process is shown in Figure 4. 

 

Figure 4. Research flow chart. 
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2.2.1. Experimental Setup 

The point cloud data processing environment was Python 3.6, PyCharm 2019, and 

Anaconda under the WIN10 system. Reading the point cloud data and displaying the 

point cloud file, it is shown in Figure 5. 

 

Figure 5. Point cloud display diagram. 

2.2.2. Voxel Filtering for the Pig Point Cloud Data 

Since the point cloud data is obtained from the surface of pig’s back, the point cloud 

distribution is relatively stable, and the noise mainly comes from measurement errors 

during the collection process. The three-dimensional point cloud data are extremely large 

in volume and irregular in quantity, which has a significant impact on the input of the 

model [14]. Therefore, in this study, voxel filtering is applied to the point cloud data. Voxel 

filtering divides the space into equally sized voxel boxes. For each voxel, the surrounding 

neighboring voxels are averaged with weighted values, and the weights are determined 

based on the position and distance of the neighboring voxels, reducing the data volume 

and achieving filtering and down-sampling effects, as shown in Figure 6. Specifically, the 

3D space where the point cloud is located is divided into cubic voxel grids with a size of 

edgelength. Each voxel is traversed, and the number of points contained in it is counted. 

The average value of points in each voxel is calculated as shown in Equation (1). 

{
 
 

 
 xavg =

(x1 + x2⋯xn)

n

yavg =
(y1 + y2⋯yn)

n

zavg =
(z1 + z2⋯zn)

n

 (1) 

The coordinates (xn, yn, zn) represent the coordinate information of each point in the 

voxel grid. 

Replace all the points within the voxel with the calculated average point 

(xavg,  yavg, zavg). The output of the processed voxel, with the replaced points, can be 

considered as the filtered point cloud. 

The advantage of voxel filtering is its simplicity and ease of use, which can effectively 

remove outliers and noise from point cloud data. However, it may also result in the loss 

of details in the point cloud data [22]. Therefore, in this study, experiments were 

conducted with edgelength of 0.03, 0.04, and 0.05 to evaluate the performance. 
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Figure 6. Principle of the voxel filtering operations. 

2.2.3. Segmentation of Sow 3D Point Cloud Data 

The point cloud file underwent point cloud filtering operations, which effectively 

removed outliers and achieved point cloud denoising. However, after the point cloud 

filtering, the 3D point cloud image still contained complex environmental backgrounds 

such as fences and walls. In order to proceed with further research, it was necessary to 

segment and extract the pig point cloud data from the complex point cloud environment. 

Therefore, this study will use point cloud segmentation algorithms and analyze the 

segmentation results to achieve the separation of pigs from complex environments [23]. 

K-means is an unsupervised learning algorithm that is suitable for point cloud data 

without label information. It can quickly cluster a large amount of point cloud data [24]. 

In the pig’s back point cloud data, the background is generally fixed structures such as 

fences, which have regular shapes. K-means can effectively identify such regular 

backgrounds and cluster them into one category. The label information from the 

clustering results can be further utilized to extract the target pig’s point cloud part and 

achieve segmentation. This provides convenience for subsequent computer vision tasks. 

The K-means clustering algorithm randomly selects K points as the centroids, as 

shown in Equation (2). 

centroids = {c1, c2, c3⋯ ck} (2) 

where cn  represents the initial centroids. Then, the algorithm calculates the distance 

between each data point and each centroid and assigns the point to the cluster of the 

centroid with the minimum distance, as shown in Equation (3). 

distance(point i, centroid j) = √(point i coordinate − centroid j coordinate)2 (3) 

where the point i coordinate and centroid j coordinate represent the coordinates of the 

point and centroid in the point cloud. The algorithm updates the centroids of each cluster 

by taking the average of all the points in the cluster, as shown in Equation (4). 

new centroid j =
∑point in cluster j

number of points in cluster j
 (4) 

where point in cluster j  represents the coordinates of the points in the cluster, and 

new centroid j  represents the updated centroid of the cluster. The algorithm repeats 

Equations (4) and (5) until the positions of the centroids no longer change. 
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However, the choice of the number of clusters, K, is difficult. This study will use the 

elbow method to determine the specific formula, as shown in Equation (5). 

SSE =∑ ∑ |p −mi|
2

p∈Ci

k

i=1
 (5) 

2.2.4. Removing Head and Tail Based on the Local Density of the 3D Point Cloud 

During the data collection process, it was found that the head and tail of the pig 

exhibit higher levels of activity and have greater uncertainty. Based on previous research, 

some researchers used convex hull analysis to detect the convexity and concavity of the 

pig’s contour as a key condition and applied the corner ratio formula proposed by Liu et 

al. with a threshold of 0.5 to remove the head and tail. However, this method had inherent 

limitations, as it required manually setting threshold values for the key point extraction, 

making it difficult to adapt to different datasets. Additionally, convex hull analysis was 

heavily influenced by obstructed areas and needed to be converted to a 2D contour. 

Based on these issues, this study proposes an improved method for directly 

removing the head and tail using 3D point clouds, as shown in Figure 7. Specifically: 

(1) The original point cloud is divided into equally spaced local blocks using 

triangulation with a side length of 0.02 m. 

(2) The average distance of points within each block is calculated while subtracting the 

influence of the point with the maximum distance within that block to obtain the 

weighted local density. 

(3) The DBSCAN clustering algorithm is applied to identify the positions of local density 

maxima. In this case, a fixed neighborhood sample size of 10 and a clustering radius 

of 0.5 m are used. 

(4) The points corresponding to the first and last local density maxima blocks are taken 

as the initial head and tail endpoints. 

(5) Head and tail point clouds are extracted within a range of 0.4 m along the z-axis from 

the endpoints. 

 

Figure 7. Principle of removing the head and tail. 

This method aimed to differentiate the head and tail regions from the body region 

based on the spatial density distribution differences, providing an improved approach for 

removing the head and tail in 3D point cloud data. 
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2.2.5. Extraction of Body Measurements of a Sow’s Back under a Non-Standard Posture 

The size of the pig was also a key piece of information for assessing its growth status. 

In this study, we aimed to utilize the point cloud features of the pig’s back to extract body 

measurements. However, it was important to note that the posture of the pig’s back 

during the collection of point cloud data was often inclined, and the posture played a 

crucial role in extracting body measurements. Ling et al. 2022 [25] divided the posture into 

standard and non-standard categories and used linear or nonlinear regression methods to 

build a pig body measurement estimation model for each category. By correcting the body 

measurement predictions of pigs under non-standard postures, the accuracy of automatic 

measurements could be significantly improved. However, this study proposed a simpler 

method to adjust the pig’s horizontal tilt angle using the minimum bounding rectangle so 

that the back image appeared in a horizontal position, which could also address the 

posture issue. In this study, we established a minimum bounding box and obtained the 

pig’s back point cloud OBB (oriented bounding box), as demonstrated in Figure 8, which 

illustrated the bounding effect. 

 

Figure 8. Posture correction effect. 

The OBB encloses the pig’s back point cloud data in the form of a minimum cube. 

However, the length of the bounding box may have an angular difference with the 

horizontal direction, which makes it difficult to extract the body measurements of the 

pig’s back [26]. Therefore, if the angle between the minimum bounding box and the 

horizontal direction is greater than 1°, the bounding box and the internal point cloud will 

be rotated accordingly to adjust it to the horizontal direction. 

After adjusting the posture, we will slice the point cloud in the x-axis direction, 

dividing the pig’s back into three equal parts. Number 3 represents the shoulder, number 

2 represents the abdomen, and number 1 represents the hip, as shown in Figure 9. 

 

Figure 9. Slicing operation. 

By dividing the back into three sections in the x-axis direction, we can calculate the 

width of the back at different positions by measuring the length of each section. The 

formula for calculating the width for any section is shown in Equation (6). 

Lij = yi_max − yi_min (6) 
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where yi_max and yi_min represent the maximum and minimum values on the y-axis at 

the same x-coordinate. 

Lj = max(Lij) (7) 

where L1  represents the shoulder width, L2  represents the abdomen width, and L3 

represents the hip width. 

2.3. Design of the CNN Model Based on Multi-Head Attention 

2.3.1. Model Architecture 

In the original CNN model, it consists of 5 convolutional layers, each with an 

activation function and batch normalization layer [27]. The activation function introduces 

non-linearity, while batch normalization accelerates training and prevents overfitting. The 

main function of the convolutional layers is to extract features from the data, with each 

layer containing a sliding filter for local operations. The number of convolutional layers 

determines the output channels, the number of feature maps [28]. To extract higher-level 

features, the number of filters in each convolutional layer is greater than the previous 

layer. After the last convolutional layer, a max pooling layer is used for down-sampling 

the feature maps, reducing the parameters and computations while preserving core 

information. Next is the dropout layer, which randomly drops a portion of neurons to 

prevent overfitting and improve generalization. Then, a flattening layer is used to convert 

the multi-dimensional feature maps into a one-dimensional vector for input to the fully 

connected layers. The fully connected layers are ordinary neural network layers that 

connect all inputs to outputs, used for regression tasks. This model only contains one fully 

connected layer, with one output node and a linear activation function, indicating the 

network is used for regression tasks to predict continuous values. Finally, the stochastic 

gradient descent (SGD) is used as the optimizer, with the mean squared error as the loss 

function [29]. The choices of optimizer and loss function affect the updating of network 

parameters to achieve optimal performance. 

Compared to the original CNN model, we propose a key improvement step where 

we incorporate a multi-head attention-based point cloud attention mechanism (MACNN) 

after the CNN convolutional feature extraction. This module includes k parallel attention 

heads, each consisting of three linear mapping layers, for learning the relationships 

between points and their neighbors in the point cloud data and enhancing the local feature 

representation capacity [30]. The attention structure is shown in Figure 10. 

This module consists of k parallel attention heads, each of which includes three linear 

mappings to transform the features. The weight calculation is shown in Equation (8). 

Attention(Q, K, V) = softmax (
QKT

√d
)V (8) 

In the equation, Q, K, and V represent the query vector, key vector, and value vector, 

respectively. The softmax function is a normalization function, and d represents the vector 

dimension. 
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Figure 10. Multi-head attention. 

2.3.2. Model Parameters 

The following parameters were used for model training: 

The stochastic gradient descent (SGD) algorithm was used for model parameter up-

dates. The learning rate was set to 0.001, Considering the large amount of point cloud 

data, a smaller learning rate was beneficial for convergence. Given the large amount of 

data in each point cloud sample, the batch size was set to 128. The parameters of the 

convolutional layers and fully connected layers were initialized using the Xavier uniform 

distribution. The mean squared error (MSE) was used as the loss function during training 

and validation. L2 regularization was added to constrain the model complexity, with a 

regularization strength of λ = 0.001. 

These parameter settings ensured a balance between model capacity, training 

efficiency, and prevention of overfitting. 

3. Results 

3.1. Voxel Filtering Results and Analysis 

The different sizes of cubes correspond to different down-sampling effects, as shown 

in Figure 11 and in combination with the point cloud quantities in Table 1. 

When setting the edgelength to 0.03, for the filtering result, as shown in Figure 11b, 

most of the point cloud features will not disappear, and the quantity of points will be 

relatively small. Although, when setting the edgelength to 0.04, for the filtering result, as 

shown in Figure 11c, a smaller point cloud quantity results in a blur of point cloud 

features, it is not conducive to extracting point cloud information. When setting the 

edgelength to 0.05, for the filtering result, as shown in Figure 11d, the point cloud quantity 

is the minimum, and most of the point cloud features will be missing and the point cloud 

information will be the least complete. Therefore, in this study, a voxel cube with a side 

length of 0.03 is chosen for voxel filtering. 
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Figure 11. Voxel filtering effect comparison. 

Table 1. Comparison table of voxel down-sampling. 

Voxel Cube 𝐞𝐝𝐠𝐞𝐥𝐞𝐧𝐠𝐭𝐡 Original Point Cloud Down-Sampled Point Cloud Count 

0.03 236,391 18,715 

0.04 236,391 11,391 

0.05 236,391 7579 

3.2. Analysis of the K-Means Clustering Results 

The value of K is selected based on the sum of squared errors (SSE). However, we do 

not choose the value of K corresponding to the lowest SSE but rather the value of K where 

SSE suddenly changes. As shown in Figure 12, K should be selected as 3. 

 

Figure 12. SSE decrease curve. 

Based on the knowledge of the K-means algorithm and the analysis of the clustering 

results, we selected K values of 2, 3, and 4 to verify the clustering segmentation effect. The 

comparison of the effects is shown in Figure 13. In Figure 13a, which shows the original 

image, when we set K as 2, the clustering result in Figure 13b did not separate the main 

part of the pig, and the number of clusters was relatively small. The edges of the pig’s 

contour were blurry and not smooth, and some parts of the pig’s point cloud were 

missing. When we set K as 3, the clustering result in Figure 13c successfully separated the 

pig completely, with a clear and smooth contour. The head and tail of the pig were 

separated and included in the pig’s body. When we set the K value as 4, the clustering 

result in Figure 13d only partially showed the contour of the pig, and the tail of the pig 

was not separated into a separate cluster, indicating a failed segmentation. Therefore, 
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based on the analysis, when K is set as 3, the segmentation effect is good, successfully 

extracting the back of the pig. 

 

Figure 13. Comparison of the K-means clustering segmentation effects. 

3.3. Analysis of the Removal of the Head and Tail 

The removal results are shown in Figure 14. Figure 14a is the original image, and 

Figure 14b is the result of using the point cloud local density analysis method for removal. 

It can be seen that this method effectively filters out noise and adapts to removing the 

head and tail of different data. 

 

Figure 14. Remove the head and tail results. 

3.4. Analysis of the Measurement Results of the Back Point Cloud of Pigs 

The comparison between the actual data obtained using a measuring tape and the 

partial body measurements data obtained from the point cloud data is shown in Table 2. 

The results indicate that the measurements of shoulder width, abdominal width, and hip 

width obtained from the point cloud data have a higher accuracy. However, further 

research is needed for these parameters, mainly due to variations in the posture of the 

pigs. It is also important to consider that there may be errors in the measurements taken 

with a measuring tape, which would require two people to work together and may 

introduce subjective errors during positioning and data reading. Although this study 

corrects the pig’s posture using the minimum bounding rectangle method, it can only 

reduce some of the errors but cannot completely eliminate them [22] (Table 3). 

Table 2. Body measurement comparison. 

Number 
True 

Shoulder 

Extraction 

Shoulder 

True 

Abdominal 

Extraction 

Abdominal 

True 

Hip 

Extraction 

Hip 

1 0.395 0.386 0.481 0.492 0.404 0.414 

2 0.433 0.451 0.368 0.357 0.378 0.365 

3 0.291 0.285 0.324 0.304 0.321 0.306 
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4 0.411 0.396 0.316 0.325 0.422 0.434 

5 0.491 0.474 0.395 0.417 0.335 0.323 

6 0.415 0.425 0.361 0.373 0.381 0.362 

7 0.401 0.385 0.362 0.350 0.401 0.420 

Table 3. Measurement error. 

Shoulder Error Abdominal Error Hip Error 

3.144% 3.798% 3.820% 

3.5. Analysis of the Results of the Model 

3.5.1. Feature Extraction 

The point cloud data contain three-dimensional coordinate information and point 

cloud RGB information. The former can reflect the characteristics of objects such as size 

and structural shape, while the latter can reflect surface texture and material features. 

These features are closely related to the weight of pigs. By using neural networks for 

learning and extraction, it is possible to discover advanced features hidden in the point 

cloud data, such as local shapes, and enhance the representation capability of these 

features. However, theoretically, the point cloud RGB information itself cannot directly 

support weight prediction. But within the framework of neural network learning, it can 

be used as an additional feature, which may contribute to improving overall prediction 

performance. 

Therefore, this study will create two types of datasets: one with three-dimensional 

coordinate information and the other with both three-dimensional coordinate and point 

cloud RGB information. The coordinate origin will be set at the center of the pig point 

cloud dataset, establishing a three-dimensional coordinate system, as shown in Figure 15. 

The partial point cloud datasets for each pig are shown in Tables 4 and 5. 

 

Figure 15. Three-dimensional coordinate system. 

Table 4. Not including RGB information. 

x y z 

−0.26387 0.02476 −1.68700 

−0.25939 0.02476 −1.68700 

−0.25431 0.02470 −1.68300 

−0.24984 0.02470 −1.68300 

−0.24537 0.02470 −1.68300 

−0.24148 0.02476 −1.68700 

−0.23770 0.02483 −1.69200 

−0.23321 0.02483 −1.69200 
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Table 5. Including RGB information. 

x y z Red Green Blue 

−0.26387 0.02476 −1.68700 137 128 119 

−0.25939 0.02476 −1.68700 137 130 120 

−0.25431 0.02470 −1.68300 136 127 122 

−0.24984 0.02470 −1.68300 134 119 118 

−0.24537 0.02470 −1.68300 125 110 109 

−0.24148 0.02476 −1.68700 123 108 107 

−0.23770 0.02483 −1.69200 125 111 105 

−0.23321 0.02483 −1.69200 128 109 103 

Finally, the feature vectors are added to the list as model inputs. The data are divided 

into training and validation sets, with the validation set accounting for 20%. 

3.5.2. Analysis of the Results of the Pig Weight Estimation Model 

From the loss curve during training (Figure 16), it can be seen that the loss function of the 

training set continues to decrease. The convolutional neural network (CNN) based on the 

multi-head attention mechanism effectively trains the data. The selected parameters are 

appropriate, and the model converges quickly during subsequent iterations. The loss function 

in the test set also continues to decrease and reaches the same value as the training set. This 

indicates that the test results are consistent with the training results and the model has good 

generalization ability. 

 

 

Figure 16. Loss diagram. 
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Selecting 58 pigs as a test set, the performance of four models was evaluated. The line 

graph in Figure 17 shows the comparison between the true and estimated values of pig 

weights. It can be observed that the results obtained from the CNN incorporating RGB 

information and the multi-head attention mechanism are closer to the actual values. 

 

Figure 17. Weight estimation. 

To validate the accuracy of the pig weight estimation model, the true values of pig 

weights were compared with the estimated values, and three evaluation metrics were 

calculated: mean absolute error (MAE), mean absolute percentage error (MAPE), and root 

mean square error (RMSE). The error values between the true and estimated values for 

each pig are presented in the comparison table. 

Table 6 compares the weight prediction performance of CNN models without RGB 

information and CNN models with RGB information on the validation set. The CNN 

model incorporating RGB information as an additional feature demonstrates better 

performance in all three evaluation metrics: the RMSE decreased by 1.792 kg, the MAPE 

decreased by 0.47%, and the MAE decreased by 1.505 kg. This indicates that incorporating 

RGB information as an additional feature can improve the prediction accuracy of the CNN 

model. 

Similarly, Table 7 presents the comparison of MACNN models without RGB 

information and MACNN models with RGB information on the validation set. Like the 

CNN models, the MACNN model incorporating RGB information as an additional feature 

outperforms the MACNN model without RGB information in all metrics: the RMSE 

decreased by 2.469 kg, the MAPE decreased by 0.8%, and the MAE decreased by 1.032 kg. 

This further suggests that incorporating RGB information as an additional feature 

representation can enhance the pig weight prediction capability of the multi-head 

attention neural network model. 

Overall, both CNN and MACNN models show improved weight prediction 

performance on the validation set when RGB information is included in the feature 
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representation. This indicates that utilizing the full information from the point cloud can 

enhance the models’ ability to learn implicit relationships and improve their application 

effectiveness. 

Table 6. The error of the CNN with or without RGB information. 

The CNN without RGB Information The CNN with RGB Information 

RMSE MAPE MAE RMSE MAPE MAE 

14.683 kg 5.80% 14.188 kg 12.891 kg 5.33% 12.683 kg 

Table 7. The error of the MACNN with or without RGB information. 

The MACNN without RGB Information The MACNN with RGB Information 

RMSE MAPE MAE RMSE MAPE MAE 

14.021 kg 5.61% 12.213 kg 11.552 kg 4.81% 11.181 kg 

3.6. Analysis of the Process Automation Results 

3.6.1. Building a GUI 

Since this research has practical application scenarios that require pen-separated 

feeding for pigs of different weight ranges, this study designed a GUI application program 

using Python to achieve end-to-end automation. This program only needs to import the 

point cloud file, and it can automatically measure the weight and body dimensions, 

display the prediction time, etc., as shown in Figure 18. 

 

Figure 18. GUI. 

3.6.2. Analysis of the Model Prediction Time 

This research is mainly applied to the task of pen-separated feeding for pigs and 

needs to be installed on the pig driving aisle. If the time is too long, it will cause stress 

reactions in the pigs, so there is a high requirement for timeliness. Tests were conducted 

on the built interface, and 1, 10, and 20 pigs were randomly sampled for testing. The 

prediction times obtained are shown in Table 8, with an average prediction time of 0.151 

s, indicating high timeliness. 

Table 8. Selecting samples of different sizes and conducting statistical analysis for predicting the 

time. 

Number 1 10 20 

Prediction time/s 0.153 1.482 1.511 

4. Discussion 

This study aims to develop a pig weight estimation model using 3D point cloud data 

captured from pigs. The objective is to achieve accurate and efficient weight estimation 

without the need for physical contact, thereby minimizing the stress response experienced 

during manual weight measurement and reducing the risk of zoonotic diseases associated 

with human–pig contact. The model presented in this study offers several characteristics: 
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1. Contactless measurement: Unlike traditional contact-based methods, this study 

employs a non-contact approach for measurement [31]. By eliminating physical contact, 

this method reduces stress in pigs and minimizes the frequency of human–pig interaction, 

thereby lowering the risk of zoonotic diseases. 

2. Weight estimation and body dimension measurement based on 3D point cloud 

data: Utilizing depth cameras, this study captures 3D point cloud data of the pig’s back. 

Through analysis and interpretation of this data, the estimation of pig weight is 

accomplished. In contrast to the 2D poultry weight estimation method proposed by 

Dohmen et al. [32], the developed model in this study provides additional information 

such as hip width, shoulder width, and abdominal width. 

3. Before the model training, we adopted a manual data processing approach to 

ensure the accuracy of the model. Subsequently, we have created an automated data 

processing workflow using a Python GUI, including data cleaning and preprocessing 

steps. These tools can automatically execute data processing tasks based on predefined 

rules and conditions, enhancing efficiency and reducing manual intervention. 

4. The pig weight prediction method proposed in this study based on point cloud 

information differs from existing research in several aspects. Compared to the method of 

Zhang J. et al. [15]. that used CNN regression to analyze body size parameters, this study 

directly input pig back point cloud information (such as coordinates) into a CNN for 

weight prediction while incorporating a multi-head attention mechanism to improve 

model accuracy. Unlike the research by Meckbach C. et al. [16] that used two-dimensional 

and depth images as input, this study conducted preprocessing such as background 

segmentation and denoising in the depth image processing, significantly improving the 

model’s running speed. In contrast to the direct use of depth images as input by Cang Y. 

et al. [17], this study extracted feature information such as coordinates from depth images 

as input to the network, achieving not only weight prediction but also pig body size 

measurement. Compared to the network structure with dual-branch convolution and a 

multi-head self-attention mechanism used by He H. et al. [18], this study also introduced 

a multi-head attention mechanism, significantly improving the effectiveness of the CNN 

in processing input point cloud information and demonstrating an advantage in the 

model running speed. Overall, this study has made innovative improvements in data 

preprocessing, network structure design, and model performance, providing new ideas 

for machine vision-based automatic pig weight estimation. 

5. By incorporating the RGB information as additional feature representation into the 

MACNN, the model’s performance on the validation set has improved. Specifically, 

integrating the RGB information as an extra feature resulted in a decrease of 2.469 kg in 

the RMSE, a 0.8% reduction in the MAPE, and a 1.032 kg decrease in the MAE for the 

MACNN model. This indicates that the RGB information contributes to better weight 

prediction in pigs by the MACNN model. The RGB information provides additional 

features that enhance the model’s predictive ability, thereby improving the model’s 

performance. 

6. The model has limitations, such as its relatively low level of automation, as it still 

requires some degree of manual intervention. Additionally, it may not be well suited for 

cup-shaped or angular objects, which could introduce significant errors. Moreover, 

significant errors may also occur when dealing with objects with high curvature or 

excessively large original feature elements. Reconstructing point clouds from the pig’s 

legs and head poses more challenges, and although these body parts contribute less to the 

overall weight, they still impact the model’s accuracy. 

5. Conclusions 

In this study, we propose a method for estimating the weight and body size of sows 

based on 3D point cloud data. We capture point cloud data of the pig’s back using a depth 

camera and preprocess the point cloud using voxel filtering and the K-means clustering 

segmentation algorithm to effectively extract the pig’s back. By adjusting the posture 
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using the minimum bounding rectangle, we extract the body size information of the pig, 

such as shoulder width, abdominal width, and hip width. We establish a weight 

prediction model based on point cloud data using a CNN with a multi-head attention, 

incorporating RGB information as an additional feature. 

We conducted experiments on RGB information and created two datasets: one with 

three-dimensional coordinate information and the other with both three-dimensional 

coordinates and point cloud RGB information. The experimental results showed that 

incorporating RGB information as an additional feature improved the weight prediction 

performance of the CNN and MACNN on the validation set compared to using only three-

dimensional coordinate information. 

Specifically, for the CNN, incorporating RGB information as an additional feature 

resulted in a decrease of 1.792 kg in the RMSE, a decrease of 0.47% in the MAPE, and a 

decrease of 1.505 kg in the MAE. The model’s performance improved with the addition of 

the RGB information. For the MACNN, incorporating RGB information as an additional 

feature resulted in a decrease of 2.469 kg in the RMSE, a decrease of 0.8% in the MAPE, 

and a decrease of 1.032 kg in the MAE. This also indicates that incorporating RGB 

information as an additional feature representation enhances the ability of the multi-head 

attention neural network model to predict pig weights. 

The model was tested on 58 sows. The results showed that the average absolute error 

of weight estimation was 11.552 kg, the average relative error was 4.812%, and the root 

mean square error was 11.181 kg. In addition, we measured the shoulder width, 

abdominal width, and hip width and compared them with manual measurements. The 

results showed average relative errors of 3.144%, 3.798%, and 3.820%, respectively. 

Compared with traditional manual measurement methods, this model achieves 

contactless and efficient weight monitoring, providing reliable technical support for pig 

farming. Overall, this method performs well in terms of simplicity, prediction accuracy, 

and practicality. However, we acknowledge that this method may not be suitable for cup-

shaped or angular objects. In addition, a larger curvature of the target object or excessively 

large original feature elements may introduce larger errors. Further exploration is needed 

in future research to address these issues. 

We plan to continue acquiring more point cloud data of sows in the existing 

environment to further improve the accuracy of weight and body size prediction. It is 

worth noting that reconstructing the point cloud of the sow’s legs and head is more 

challenging. Although these body parts contribute less to the overall weight, they still 

affect the accuracy of the model. Therefore, in future point cloud processing, the focus will 

focus on how to effectively utilize these parts to improve the accuracy of the model. 
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