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Simple Summary: The ingestion of excessive nitrate can affect the thyroid gland and cause thyroid
dysfunction in humans. In the present study, amphibian embryos were exposed to nitrate, thyroxine
and methimazole (a thyroid peroxidase inhibitor) during embryonic development to further explore
the effects of nitrate on the thyroid. The results showed that nitrate, thyroxine and methimazole
inhibited embryo growth and development. Additionally, methimazole and high concentrations
of nitrate downregulated the genes related to thyroid morphogenesis and cholesterol metabolism,
while upregulating the genes related to inflammation and apoptosis. These suggested that nitrate
not only damaged the thyroid gland, but also affected the formation of the thyroid, thus affecting
embryonic development.

Abstract: In recent years, nitrate (NO3-N) pollution in water bodies has been increasing due to the
excessive use of nitrogen-based fertilizers. Exposure to NO3-N during the development of amphibian
embryos may have lasting effects on the growth and development of individuals and even threaten
their survival, but the toxicity mechanism of NO3-N in amphibian embryos prior to thyroid morpho-
genesis remains unclear. In the present study, Bufo gargarizans was selected as the model organism to
investigate the toxic effects of 10 mg/L and 100 mg/L NO3-N exposure (N10 and N100) on amphibian
embryos using methimazole (MMI) and exogenous thyroxine (T4) as the reference groups. We found
that T4, MMI, N10 and N100 inhibited B. gargarizans embryo growth and development, with MMI
and N100 showing the earliest and strongest effects. Transcriptome analysis revealed that MMI and
NO3-N (especially N100) significantly downregulated genes related to thyroid morphogenesis and
cholesterol metabolism, while upregulating genes related to inflammation and apoptosis. Together,
these results contribute to a deeper understanding of the complex mechanisms by which NO3-N
disrupts B. gargarizans embryonic development, reveal the potential risks of NO3-N pollution to other
aquatic organisms, and provide insights into the conservation of a broader ecosystem.

Keywords: nitrate; anuran; embryo; morphological parameters; transcriptomics

1. Introduction

Nitrate pollution in water is a widespread global problem and has received increasing
attention in recent decades due to its adverse effects on aquatic organisms, human health,
and ecosystems [1,2]. The primary cause of nitrate pollution is human agricultural activities,
excessive application of nitrogen-based fertilizers and manure, which can transport nitrates
to rivers, lakes and groundwater through runoff, resulting in elevated nitrate levels in water
bodies [3]. In addition, an inadequate treatment of sewage and wastewater from various
industries, such as tanning, paper making and mining, can also significantly contribute
to nitrate pollution [4]. The permissible limit of nitrate–nitrogen (NO3-N) in drinking
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water is 10 mg/L according to the U.S. Environmental Protection Agency (USEPA), and
11.3 mg/L according to the World Health Organization (WHO) guidelines. However, the
concentration of NO3-N in many waters already far exceeds this standard. For example, the
NO3-N concentrations range from 55 to 231mg/L in groundwater in the Grombalia Basin
(Tunisia) and can reach 153.29 mg/L in the Naoli River in the Sanjiang Plain in China [5,6].

The detrimental impacts of excessive NO3-N in water systems on aquatic organisms
have been reported in previous research [7]. For instance, exposure to high NO3-N levels
has been linked to stunted growth, compromised health status and disorders in immune
and lipid metabolism in juvenile turbot (Scophthalmus maximus) [2,8]. In addition, decreased
sperm counts and increased testicular weight in mosquito fish (Gambusia holbrooki) were
associated with increased NO3-N concentrations [9]. Chronic exposure to NO3-N disrupts
the synthesis and metabolism of steroid hormones in fathead minnows (Pimephales promelas),
ultimately affecting their reproduction and survival [10]. Moreover, increased NO3-N
concentrations significantly diminish the feed intake and growth rates of African catfish
(Clarias gariepinus) [11].

Amphibian breeding habitats often overlap with agricultural lands, making them
particularly susceptible to exposure to NO3-N, a key constituent of fertilizers used in
farming [12,13]. Unlike adult amphibians, which can move between habitats, the mo-
bility of embryonic amphibians is restricted, hindering their ability to evade or escape
NO3-N-contaminated environments [14]. The embryonic period is a pivotal phase in the
development of amphibian organs and systems, and exposures during embryonic devel-
opment potentially exert enduring impacts on an individual’s growth, development and
overall health [15,16]. Prior research into NO3-N exposure in amphibians has predomi-
nantly centered on its disruption of the thyroid axis and resultant thyroid dysfunction,
including the depletion of thyroid follicular colloids and reduced thyroid hormone (TH)
levels [17–19]. It is important to note, however, that the morphogenesis of the amphibian
thyroid gland do not occur until around Nieuwkoop and Faber (NF) stage 43 (approxi-
mated by Gosner (Gs) stage 23) [20–22], and only maternal thyroid hormones function
before then [23]. Consequently, we raise two scientific questions here: (1) Does NO3-N
influence the expression levels of thyroid-related genes during the embryonic stage when
the thyroid gland has not undergone morphogenesis? (2) If NO3-N does not impact the ex-
pression of thyroid-related genes, what mechanisms underlie the adverse effects of NO3-N
on the embryo?

Bufo gargarizans, a species of amphibian belonging to the family Bufonidae, is native
to East Asia, including China, Korea and Japan [24]. They inhabit areas prone to NO3-N
accumulation, including woodlands, wetlands, ponds and agricultural fields, and gener-
ally undergo “explosive breeding” during the spring [25,26]. Due to their high fertility
and highly permeable skin and gills, B. gargarizans is considered a good model for un-
derstanding the toxicity of aquatic environmental pollutants [27]. Methimazole (MMI)
is a well-characterized inhibitor of thyroid peroxidase, inhibiting thyroid hormone (TH)
synthesis [28]. This study used the MMI and TH enhancer exogenous thyroxine (T4) as the
reference groups [29], and established low-concentration (10 mg/L) and high-concentration
(100 mg/L) NO3-N exposure groups for experiments. Through morphological measure-
ments and RNA-Seq combined with bioinformatics analysis, we investigated the potential
mechanism of NO3-N toxicity to embryos, aiming to contribute to assessing their environ-
mental and ecological risks.

2. Materials and Methods
2.1. Experimental Solution

Methimazole (MMI, CAS: 60-56-0, purity 98%), exogenous L-thyroxine (T4, CAS: 51-
48-9, purity 98%) and sodium hydroxide (NaOH, CAS No. 1310-73-2, purity 95%) were
purchased from Aladdin (Shanghai, China). Sodium nitrate (NaNO3, purity 99%, CAS:
7631-99-4) was purchased from Sigma-Aldrich Corporation (Sigma, St. Louis, MO, USA). A
stock solution of 80 mg/L MMI was prepared by dissolving 0.08 g MMI in 1 L distilled water,
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while a stock solution of 10 µg/L T4 was prepared in 0.1 N sodium hydroxide solutions
buffered with 0.1 N muriatic acid solutions as solvents. The final concentrations of T4
(2 µg/L) and MMI (8 mg/L) were obtained via diluting stock solutions with dechlorinated
water. A stock solution of 1000 mg/L NO3-N was prepared by dissolving 6.07 g NaNO3
in 1 L of distilled water, and working solutions of 10 mg/L and 100 mg/L NO3-N were
obtained via diluting stock solutions with dechlorinated water. Selected concentrations of
NO3-N for the experiment were within environmental ranges.

2.2. Animal Husbandry and Exposure Experiment

A pair of mating B. gargarizans were captured from Qinling Mountains of Shaanxi
Province in China and raised in glass tanks with dechlorinated water (pH = 6.8 ± 0.3)
until they spawned. Fertilized eggs were kept in fresh dechlorinated water until the Gs3
stage, after which they were randomly assigned to a glass tank (50 cm × 20 cm × 20 cm)
with 1.5 L treatment solutions with T4, MMI, 0, 10 and 100 mg/L NO3-N. Three replicates
were set up for each treatment group with 100 embryos per replicate. The experiment
was conducted in tanks with a 12 h light/12 h dark photoperiod and a temperature of
21 ± 2 ◦C, and embryos were not fed. The test solution was replaced completely every
2 days to maintain exposure concentrations and the exposure was sustained for 11 days.
Animal husbandry and experiments were approved by the Animal Ethical and Welfare
Committee of Wenzhou University and were consistent with the guidelines of China
Wildlife Conservation Association.

2.3. Embryonic Developmental Stage Determination and Morphologic Measurements

Embryo samples were collected for morphologic measurements and developmental
staging on the 7th and 9th days after exposure (n = 5/replicate, n = 15/treatment, respec-
tively). The embryos were fixed with 4% paraformaldehyde for 24 h and preserved in
70% ethanol. Body weight and body length of embryos were measured using an ana-
lytical balance with 0.1 mg readability and Tesa-Cal Dura-Cal Digital electronic calipers
with 0.01 mm precision. Embryos were observed and photographed using a Zeiss Dis-
covery V12 stereoscope equipped with a cannon 7D digital camera, and the embryonic
development stage was determined according to the staging criteria proposed by Gosner
(1960) [21].

2.4. Transcriptomic Analysis

On the eleventh day after exposure, the B. gargarizans embryos from five treatment
groups (n = 30/replicate, n = 90/treatment) were frozen in liquid nitrogen and stored at
−80 ◦C to generate the transcriptome. Total RNA was extracted from tissue using TRIzol
Reagent (Invitrogen, Carlsbad, MA, USA) and treated with DNase I (TaKara, Shiga, Japan).
The RNA quality and quantity were assessed using a 2100 Bioanalyzer (Agilent, Santa
Clara, CA, USA) and ND-2000 (NanoDrop Technologies, Wilmington, DE, USA). Illumina
HiSeq Sequencing libraries were prepared from 1 µg of total RNA using the TruSeqTM
RNA sample preparation Kit (Illumina, San Diego, CA, USA). Libraries were quantified
with a TBS380 and sequenced on an Illumina NovaSeq 6000 sequencer (150 bp×2, Shanghai
BIOZERON Co., Ltd., Shanghai, China). Quality control was performed using Trimmomatic
(version 0.36).

Clean data from all samples were subjected to RNA de novo assembly with Trinity.
Assembled transcripts were BLASTX-searched against the NR, String, and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) databases (E-value < 1.0 × 10−5). Gene Ontology
(GO) annotations were obtained via BLAST2GO, and metabolic pathways were analyzed
using KEGG. Transcript expression levels were quantified using RSEM, and differential
expression genes (DEGs) were identified with EdgeR. Functional enrichment analyses (GO
and KEGG) identified significantly enriched DEGs (Bonferroni-corrected p-value ≤ 0.05)
and were conducted using Goatools and KOBAS.
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2.5. Statistical Analysis

By using SPSS 26 software, significant differences between treatments were calculated
based on a one-way analysis of variance (ANOVA) and least significant difference (LSD)
post hoc test. The homogeneity of variance was tested using Levene’s test. Differences
were considered significant when p < 0.05, and all data are presented as the mean ± SD.
Graphs were drawn by Origin 2021 software.

3. Results
3.1. Embryonic Growth and Development

We assessed the effects of nitrate, methimazole (MMI) and exogenous L-thyroxine
(T4) on embryonic growth and development by measuring the developmental stage, body
length and body weight of embryos. On the 7th day of exposure, the embryos were
distributed between Gs17 and Gs19 (Figure 1A). Compared to the control group, the T4
and N10 had no significant effect on developmental stages (ANOVA, p > 0.05), but MMI
and N100 significantly inhibited the developmental stages (ANOVA, p < 0.01) (Figure 1B).
Of the embryos in the control group, 46.67% reached the Gs19 stage on day 7, compared to
6.67% in the MMI group and 20% in the N100 group. In addition, the body length and body
weight of embryos were significantly reduced in the T4, MMI and N100 groups compared
to the control group (ANOVA, p < 0.05) (Figure 1C,D).
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Figure 1. Effects of different exposure treatments (T4, MMI, N10, N100) on the growth and develop-
ment of the B. gargarizans embryos on day 7 after exposure (n = 15). (A) Lateral and ventral views of
embryos at Gs17-19. (B) Stages of development on day 7 and values are expressed as a percentage (%).
(C) Body length. (D) Body weight. Bars represent the mean ± SD. Significant differences between the
treatment and control groups are indicated by an asterisk, * p < 0.01, ** p < 0.01, *** p < 0.001.

On the 9th day of exposure, the embryos spanned four developmental stages: Gs19,
Gs20, Gs21 and Gs22 (Figure 2A). Compared to the control group, all treatment groups
showed a significant inhibition of the developmental stages (ANOVA, p < 0.01) (Figure 2B).
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Most embryos in the control group (86.67%) reached Gs22 on day 9, compared to 6.67% and
33.33% in T4 and N10 groups, respectively, and no embryos in the MMI and N100 groups
reached Gs22 on day 9. Moreover, both the body length and body weight of embryos were
significantly reduced in the T4, MMI and N100 groups in comparison to the control group
(ANOVA, p < 0.001) (Figure 2C,D).
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Figure 2. Effects of different exposure treatments (T4, MMI, N10, N100) on growth and development
in the B. gargarizans embryos on day 9 after exposure (n = 15). (A) Lateral and ventral views of
embryos at Gs20-22. (B) Stages of development on day 9 and values are expressed as a percentage (%).
(C) Body length. (D) Body weight. Bars represent the mean ± SD. Significant differences between the
treatment and control groups are indicated by an asterisk, ** p < 0.01, *** p < 0.001.

3.2. Identification of Differentially Expressed Genes (DEGs)

To test the gene expression response of B. gargarizans embryos exposed to T4, MMI,
N10 and N100, we filtered DEGs among control and treatment groups (Figure 3). Of
the DEGS, 1574 were found between the T4 and Con groups, including 734 upregulated
genes and 840 downregulated genes; 2244 DEGs were identified between the MMI and Con
groups, including 1065 upregulated genes and 1179 downregulated genes; the N10 and Con
groups showed 1444 DEGs, including 744 upregulated genes and 700 downregulated genes;
and between the N100 and Con groups, a total of 1806 DEGs were found, of which, 888
were upregulated and 918 were downregulated (Figure 3A,B). Through the Venn diagrams
to investigate the shared DEGs among the control and four treatment groups, we found
that 615 DEGs were only in the T4 vs. Con group, 1120 DEGs were only in the MMI vs. Con
group, 501 DEGs were only in the N10 vs. Con group, 730 DEGs were only in the N100
vs. Con group and 191 DEGs were shared by all the four treatment groups (Figure 3A).
Notably, MMI vs. Con group and the N100 vs. Con group shared a total of 678 DEGs,
which was the largest among the four groups.
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Figure 3. Differential expression of genes (DEGs) in embryos of B. gargarizans exposed to T4, MMI,
N10, and N100. (A) Venn diagrams of DEGs for four comparisons: T4 vs. Con, MMI vs. Con, N10 vs.
Con, N100 vs. Con. (B) The bar chart shows the number of upregulated and downregulated DEGs in
the T4 vs. Con, MMI vs. Con, N10 vs. Con, N100 vs. Con groups.

3.3. GO and KEGG Enrichment

To further investigate the biological functions of these DEGs, GO category enrichment
analysis was performed. The GO pathways are divided into three functional categories:
BP (biological process), CC (cellular component) and MF (molecular functions). The
top 30 GO pathways with the most significant enrichment in four pair-wise comparison
groups were shown in Figure 4. In the T4 vs. Con group, DEGs were annotated into
11 pathways in the BP domain, such as serine family amino acid metabolic process and
regulation of intrinsic apoptotic signaling pathway etc.; 11 pathways in the CC domain,
including mitochondrial envelope and mitochondrial membrane, etc.; and 8 pathways in
the MF domain, including small GTPase binding and protein tyrosine kinase binding, etc.
(Figure 4A). In the MMI vs. Con group, DEGs were enriched in 18 pathways in the BP
domain, such as cholesterol metabolic process, secondary alcohol metabolic process and
organic acid metabolic process; 5 pathways in the CC domain, including extracellular region
and extracellular space, etc.; 7 pathways in the MF domain, including mRNA binding
and lipase activity, etc. (Figure 4B). In the N10 vs. Con group, DEGs were involved in
17 pathways in the BP domain, such as the regulation of microtubule depolymerization
and protein autophosphorylation; 6 pathways in CC domain, including Golgi stack and
recycling endosome membrane, etc.; 7 pathways in the MF domain, including protein
methyltransferase activity and Ras GTPase binding, etc. (Figure 4C). In the N100 vs.
Con group, DEGs were mainly enriched in BP domain (25 pathways), including elastin
metabolic process, sterol metabolic process and small GTPase mediated signal transduction
etc. DEGs were also enriched in extracellular space, extracellular region and recycling
endosome in the CC domain, and platelet-derived growth factor receptor binding and
inorganic anion exchanger activity in the MF domain (Figure 4D).

To gain a better understanding of the biochemical metabolic pathways of these DEGs,
KEGG analysis was conducted (Figure 5). The top 30 significant enrichment KEGG path-
ways were divided into five categories: metabolism (M), genetic information processing
(GIP), environmental information processing (EIP), cellular processes (CP), and organiza-
tional systems (OS). In the T4 vs. Con group, KEGG enrichment results showed that 4, 3, 1,
14 and 8 terms were involved in CP, EIP, GIP, M, and OS, respectively (Figure 5A), including
autophagy (CP), VEGF signaling pathway (EIP), nucleotide excision repair (GIP), carbon
metabolism (M), and carbohydrate digestion and absorption (OS) etc. The DEGs in the
MMI vs. Con group were enriched into focal adhesion (CP), PI3K-Akt signaling pathway
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(EIP), mRNA surveillance pathway (GIP), steroid biosynthesis (M) and the IL-17 signaling
pathway (OS), etc. (Figure 5B). The DEGs in the N10 vs. Con group were enriched in many
pathways, such as regulation of actin cytoskeleton (CP), MAPK signaling pathway (EIP),
aminoacyl- tRNA biosynthesis (GIP), fatty acid metabolism (M) and T-cell receptor signal-
ing pathway (OS) (Figure 5C). The N100 vs. Con group showed significant enrichment
in pathways related to lysosome (CP), PI3K-Akt signaling pathway (EIP), protein export
(GIP), nitrogen metabolism (M), fat digestion and absorption (OS), etc. (Figure 5D).
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Figure 4. Bubble charts showing the the top 30 significant enrichment pathways of Gene Ontology
(GO) classification for DEGs in (A) T4 vs. Con, (B) MMI vs. Con, and (C) N10 vs. Con, (D) N100
vs. Con groups of B. gargarizans embryos. The vertical axis of the bubble chats is the functional
classification, and the horizontal axis is the rich factor, which is the ratio of DEG numbers annotated
in a pathway to all those annotated in that pathway. The color of the bubble represents the enriched
p-value and the size of the bubble represents the number of DEGs in the functional classification. BP,
biological process; CC, cellular component; MF, molecular functions.

The Venn diagram further showed the intersection of the top 30 enriched GO and
KEGG functional pathways in four pair-wise comparison groups (Figure 6). In the GO
analysis (Figure 6A), the MMI vs. Con group and N100 vs. Con group simultaneously
significantly enriched 10 pathways. It is worth noting that there were three pathways
involved in sterol metabolism, including steroid metabolic process, cholesterol metabolic
process and sterol metabolic process. The T4 vs. Con group and N10 vs. Con group
shared three enrichment pathways related to GTPase, including Ras GTPase binding, small
GTPase binding and activating transcription factor binding. The N10 vs. Con group and



Animals 2024, 14, 961 8 of 16

N100 vs. Con group shared two enrichment pathways related to protein, including the
regulation of protein depolymerization and protein-containing complex disassembly. In
the KEGG analysis (Figure 6B), the highest number of overlapping pathways (13 pathways)
was found between the MMI vs. Con and N100 vs. Con groups among the four pair-wise
comparison groups. There were eight pathways associated with metabolism, such as the
synthesis and degradation of ketone bodies, butanoate metabolism, methane metabolism;
two pathways were immune system related, including IL-17 signaling pathway and platelet
activation; one pathway related to signal transduction was the PI3K-Akt signaling pathway;
two pathways were involved in cellular processes, which were the regulation of actin
cytoskeleton and focal adhesion.
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classification. M, metabolism; GIP, genetic information processing; EIP, environmental information
processing; CP, cellular processes; OS, organizational systems.
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3.4. Transcriptional Expression Profiles of the Genes Related to Enrichment Pathways

To further investigate the effect of T4, MMI and nitrate on embryos of B. gargarizans,
based on functional annotation, genes involved in the thyroid hormone metabolism, choles-
terol metabolism, inflammation and immune response, and apoptosis were screened for
analysis (Figure 7). Relative to the control, the expression of genes involved in thy-
roid hormone metabolism and cholesterol metabolism showed an overall decreasing
trend after all treatments. Among genes related to thyroid hormone metabolism, fork-
head box protein E1 (foxe1) was significantly downregulated in the MMI group and N10
group (ANOVA, p < 0.05), paired box protein Pax-8 (pax8) in the N10 group (ANOVA,
p < 0.001), and homeobox protein Nkx2-1 (nkx2-1) in the N100 group (ANOVA, p < 0.001)
(Figure 7A). For genes related to cholesterol metabolism, the gene expression levels
in the MMI and N100 groups were most significantly downregulated, including
hydroxymethylglutaryl-CoA synthase (hmgcs), farnesyl pyrophosphate synthase (fpps), squalene
monooxygenase (sm), lanosterol 14-alpha demethylase (cyp51a), methylsterol monooxygenase 1
(msmo1), 1,25-dihydroxyvitamin D(3) 24-hydroxylase (cyp24a1), 3 beta-hydroxysteroid dehydroge-
nase type 7 (3β-hsd7), low-density lipoprotein receptor (ldlr), proprotein convertase subtilisin/kexin
type 9 (pcsk9) and Niemann-Pick C1-like protein 1 (ncp1l1) (ANOVA, p < 0.01) (Figure 7B).
Additionally, the levels of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (hmgr) were
significantly decreased in the N100 group (ANOVA, p < 0.001) (Figure 7B).

In contrast, after all treatments, there was an overall trend of increased expression of
the genes related to inflammation and apoptosis compared to the control group. Among the
genes related to inflammation and immune response (Figure 7C), the transcription factor
Activator protein-1 (ap-1) and type I interferon receptor 1 (ifnr1) were significantly increased in
all the treatment groups (ANOVA, p < 0.05). And there was a significant increase in the
expression levels of mucin-5AC (muc5ac), tumor necrosis factor alpha-induced protein 3 (tnfaip3)
and lipopolysaccharide-induced TNF factor (litaf ) in the MMI, N10 and N100 groups (ANOVA,
p < 0.05); interleukin-22 receptor (il-22r) in the MMI and N100 groups (ANOVA, p < 0.01); and
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interleukin-6 receptor (il-6r) in the N100 group (ANOVA, p < 0.001). For the genes related to
apoptosis (Figure 7D), N-myc proto-oncogene protein (n-myc) and bcl-2-associated transcription
factor 1 (bclaf-1) were significantly increased in all the treatment groups (ANOVA, p < 0.05).
And there was a significant increase in the expression levels of p53-induced death domain-
containing protein (pidd) in the T4, N10 and N100 groups (ANOVA, p < 0.05); BCL2/adenovirus
E1B 19 kDa protein-interacting protein 3 (bnip3) in the MMI and N100 groups (ANOVA,
p < 0.01); and hypoxia-inducible factor 1-alpha (hif-1α) in the N100 group (ANOVA, p < 0.001).
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4. Discussion

Growth parameters, including body length and weight, are among the most sensitive
indicators for evaluating developmental toxicity [30,31]. In our study, a significant reduc-
tion in total body length and weight was observed after exposure to T4, MMI and N100
on days 7 and 9. Similarly, previous studies showed that T4 and MMI exposure reduced
the morphometric parameters of zebrafish embryos [32,33]. Moreover, nitrate has also
been reported to inhibit the growth parameters in a variety of aquatic organisms, such as
Gobiocypris rarus and Rana sphenocephalus [18,34]. The inhibition of growth in amphibian
embryos often indicates reduced metabolic rates, increased vulnerability to environmental
stressors and diminished capacity to evade predators [35–37]. Thus, the inhibition of em-
bryonic growth caused by T4, MMI and N100 can negatively impact the viability of the
B. gargarizans embryos.

In addition, in our study, a significant retardation of embryo development was ob-
served on day 7 of exposure to MMI and N100, whereas the low-concentration N10 group
had no significant effect. In contrast, on day 9 of exposure, T4, MMI, N10 and N100 all
significantly inhibited embryo development. These findings indicated that the delayed
effect of nitrate on embryonic development in B. gargarizans is dependent on the dosage
and exposure duration. The inhibited growth and delayed development of embryos may
be attributed to the disruption of hormone signaling systems and energy metabolism
pathways, leading to an insufficient energy supply and compromised growth [38,39]. Nev-
ertheless, further research is necessary to elucidate the underlying metabolic and molecular
mechanisms involved.

RNA-seq analysis was conducted to investigate the molecular mechanisms underlying
the effects of T4, MMI and nitrate exposures on B. gargarizans embryos. As the three
exposures have all been reported to interfere with thyroid axis in amphibians [19,29], we
initially screened genes related to thyroid hormone metabolism for analysis. In our study,
the expression of foxe1 was significantly decreased in the MMI and N10 groups, pax8 in
the N10 group, and nkx2-1 in the N100 group. The expression of these three genes plays a
considerable role in the proper morphogenesis of the thyroid gland and maintenance of its
functionally differentiated state [40]. Specifically, FOXE1 is involved in thyroid precursor
cells migration [41], while NKX2-1 and PAX8 are essential for maintaining the survival and
structural integrity of thyroid cell precursors [42]. Therefore, we formulated the hypothesis
that decreased expression levels of these three genes, respectively, caused by MMI and
nitrate, might disrupt morphogenesis of the thyroid gland in the B. gargarizans embryos.

In the GO analysis, we found that the top 30 enriched pathways that shared in MMI
vs. Con group and N100 vs. Con group were the most compared with other groups, among
which we focused on cholesterol metabolic pathways related to energy metabolism. Choles-
terol synthesis begins with the conversion of acetyl-CoA to HMG-CoA by the enzyme
HMGCS. Mevalonate is then formed through the action of HMGR, which is a rate-limiting
step in the pathway. Following a series of enzymatic reactions involving enzymes such
as MK, HMGCS, and SQS, squalene is formed. Squalene is ultimately converted into
cholesterol through a process of cyclization and subsequent modification, involving en-
zymes such as CYP51A1 and MSMO1 [43,44]. In our results, almost all these key genes
in the cholesterol biosynthesis pathway were significantly downregulated after MMI and
N100 exposure, which implies a reduction in cholesterol synthesis. Previous reports have
revealed that cholesterol is vital for the integrity, stability and fluidity of cell membranes,
it regulates membrane permeability, and facilitating the organization of specialized mem-
brane domains [45,46]. Reduced cholesterol levels in cell membranes can lead to decreased
membrane fluidity, increased membrane permeability, hindered formation of lipid rafts and
altered membrane protein function [47–49]. This can impact various membrane-dependent
processes, including impairment of receptor functionality, the alteration of ion channel
activity, and the disturbance of membrane trafficking, which can have adverse effects on
cellular signaling, nutrient uptake, and overall cellular function [50–52]. Therefore, we
suggested that the decreased expression levels of genes related to cholesterol synthesis
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caused by MMI and N100 may have widespread adverse effects on the overall physiology
of the B. gargarizans embryos through the disruption of membrane structure.

Apart from being an important component of cell membranes, cholesterol is also
the precursor of bile acids, vitamin D and several steroid hormones [43]. A reduction in
cholesterol synthesis can consequently result in decreased steroid production [53]. Gluco-
corticoids, a kind of steroid involved in embryonic growth and maturation, play important
roles in various physiological processes [54,55]. In our study, genes associated with gluco-
corticoid synthesis were also significantly downregulated in the MMI and N100 groups,
such as 3β-hsd and cyp21a1. Previous studies reported that glucocorticoids modulate glu-
cose metabolism by promoting gluconeogenesis and inhibiting glucose uptake in peripheral
tissues, and influence lipid metabolism by promoting lipolysis in adipose tissue [56,57].
In addition, glucocorticoids contribute to the maturation of various organs, they main-
tain alveolar expansion by stimulating the production of surfactant proteins, and adjust
development of liver, kidney, and neural tissues by regulating cellular proliferation and
differentiation [54,58,59]. Therefore, we speculated that glucocorticoid deficiency caused
by MMI and N100 can lead to impaired energy homeostasis and damage the development
of organs, ultimately delaying the embryonic development process of B. gargarizans. Con-
sistent with this inference, in our study, MMI and N100 exhibited the earliest and most
pronounced inhibitory effects on embryonic development stage.

Glucocorticoids also function as potent anti-inflammatory agents, and a decrease
in their expression can result in immunologic dysfunction, increased inflammation, and
impaired immune system modulation [60]. MUC5AC is an inflammatory response-
induced mucin protein, and its production has been reported to be suppressed by
glucocorticoids [61,62]. In our study, the expression level of muc5ac was significantly
up-regulated in the MMI and N100 groups. Increased MUC5AC production is associated
with mucus hypersecretion, which can lead to the formation of thickened mucus layers and
impaired clearance of luminal contents [63]. This can interfere with the proper functioning
of the digestive and respiratory tracts, leading to impaired nutrient absorption and airway
obstruction [64,65]. Besides, excessive mucus production can foster a microenvironment
for pathogen growth and colonization, increasing the risk of infection and inflammation in
organisms [12,66]. Thus, the elevated expression level of muc5ac in B. gargarizans embryos
after MMI and N100 exposure may disrupt normal physiological processes and increase
susceptibility to infections.

Furthermore, we also found that the expression level of il-22r was significantly upreg-
ulated in the MMI and N100 groups. IL-22R is a cell surface receptor that binds to IL-22, an
immune cytokine generated by various immune cells [67]. Previous studies have shown
that the increased expression of IL-22R was observed in various types of inflammation
involving epithelial tissue and mucosal surfaces, such as inflammatory bowel disease (IBD),
atopic dermatitis, and chronic obstructive pulmonary disease (COPD) [68]. In inflammatory
diseases, IL-22R-mediated signal transduction maintains tissue homeostasis and mitigates
inflammation by facilitating tissue repair, fine-tuning the inflammatory response, and bol-
stering antimicrobial defense mechanisms [68–70]. Therefore, it can be inferred that MMI
and N100 exposure treatment may induce the inflammation associated with the mucosal
barrier, and the increased expression levels of il-22r in B. gargarizans embryos indicate
potential adaptive responses to inflammation.

Inducible nitric oxide synthase (iNOS) is an enzyme that produces a great deal of
nitric oxide (NO) in response to various inflammatory and immune stimuli [71]. Numerous
previous studies have shown that NO, as an important inflammatory mediator, is involved
in the pathogenesis of various diseases and tissue injuries [72,73]. For example, in mice
with hemorrhagic shock, NO produced by iNOS promotes the activation of proinflam-
matory transcription factors, eliciting an inflammatory response that contributes to organ
impairment in the liver and lungs [74]. During sepsis, the increased expression of iNOS
leads to excessive release of NO, which causes relaxation of vascular smooth muscle and
disruption of calcium homeostasis, leading to ventricular dysfunction [75]. Moreover, ex-
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cessive NO production suppresses the proliferation and differentiation of T cells, which can
lead to immunosuppression and impair the organism’s ability to mount effective immune
defenses [76]. In our results, the expression level of inos was significantly upregulated in
the MMI, N10 and N100 groups. Therefore, we speculated that the upregulation of inos
expression level after MMI and nitrate exposure would lead to the massive production of
NO, which would disrupt the balance of immune response in B. gargarizans embryos, and
lead to inflammation and tissue damage.

BNIP3, a member of the Bcl-2 protein family, is a pro-apoptotic protein that localizes
to the outer mitochondrial membrane [77]. It engages with other proteins to destroy the
integrity of the mitochondrial membrane, resulting in the release of Cytochrome c and
other pro-apoptotic factors, which in turn activates apoptotic pathways and results in
cell death [78]. In the heart, BNIP3-mediated necrosis of cardiac myocytes can contribute
to ischemic heart disease, including myocardial infarction [79]. In the lung, activation of
BNIP3 can result in necrotic cell death in lung epithelial cells, contributing to the progression
of severe lung diseases, such as acute lung injury and acute respiratory distress syndrome
(ARDS) [80]. In the liver, an overexpression of BNIP3 induces mitophagy disorder and
apoptosis, promoting the development of hepatocellular carcinoma (HCC) [78]. In the
current study, the significant upregulation of bnip3 expression level was observed in MMI
and N100 groups; we thus speculate that MMI and N100 may disrupt mitochondrial
integrity and function by upregulating bnip3, leading to cell death and tissue damage in
B. gargarizans embryos.

5. Conclusions

In the current study, morphological results showed that T4, MMI, N10, and N100 expo-
sures inhibited the growth and development of B. gargarizans embryos, among which MMI
and N100 demonstrated the earliest and most significant inhibitory effects on embryonic
development. Simultaneously, transcriptome analysis of GO and KEGG functional enrich-
ment showed that the top 30 enriched pathways shared by MMI and N100 were the most
abundant among the four treatment groups. In addition, after the exposure to MMI and
nitrate (especially N100), the expression levels of genes related to thyroid morphogenesis
and cholesterol metabolism were significantly downregulated, while the expression levels
of genes related to inflammation and apoptosis were significantly upregulated. Based
on transcriptomic and morphological analysis, we suggest that the inhibition of MMI
and nitrate on the embryonic development of B. gargarizans may come from the similar
mechanism: they disrupt thyroid morphogenesis, cholesterol and glucocorticoid synthesis,
and induce inflammation and apoptosis. These effects may contribute to impaired energy
homeostasis and organ development, ultimately delaying the embryonic development
process. Collectively, these findings contribute to the understanding of the adverse ef-
fects of nitrate on B. gargarizans embryos and provide a new insight into the mechanisms
of toxicity of amphibian embryos to nitrate exposure on the level of morphological and
molecular biology.
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