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Simple Summary: This review highlights the benefits of using valuable alternative feeds such as crop
residues, silage, grasses, hay, browse, plant leaves, shrubs, and agro-industrial by-products in small
ruminants’ diets. Alternative feeds can significantly improve the productivity and reduce carbon
footprints and GHG fluxes of small ruminant farms, making them both environmentally friendly and
cost-effective. Additionally, these alternative feeds possess antioxidant, antimicrobial, and antiseptic
properties that can enhance the quality of the meat and milk produced.

Abstract: Small ruminants, such as sheep (Ovisaries) and goats (Capra hircus), contribute to ap-
proximately 475 million metric tons of carbon dioxide equivalent (MtCO2e) greenhouse gas (GHG)
emissions, accounting for approximately 6.5% of the global emissions in the agriculture sector. Crop
residues, silage, grasses, hay, browse, plant leaves, shrubs, agro-industrial by-products, poultry litter,
and other alternative feed sources are frequently utilized for small ruminant production. The use of
these valuable alternative feeds can significantly improve animal productivity and reduce carbon
footprints and GHG fluxes, making it both environmentally friendly and cost-effective. Addition-
ally, these alternative feeds possess antioxidant, antimicrobial, and antiseptic properties that can
enhance the quality of the meat and milk produced. By impacting the bacteria involved in ruminal
biohydrogenation, alternative feeds can reduce methane emissions and contribute to a decrease
in the carbon footprint. Overall, the use of alternative feed sources for small ruminants generally
improves their apparent nutrient digestibility and productivity, and has an impact on the production
of greenhouse gases, especially methane. Finally, this review recommends evaluating the economic
analysis of reducing methane emissions in small ruminants by utilizing different feed sources and
feeding techniques.

Keywords: novel feed ingredients; methane emission; bioactive compounds; milk quality; meat
quality; climate change; sustainable livestock

1. Introduction

Increased atmospheric emissions of greenhouse gases (GHGs), such as nitrous oxide
(N2O), carbon dioxide (CO2), and methane (CH4), are the primary cause of climate change.
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These emissions result in unpredictable and erratic rainfall, floods, and droughts [1]. In
2020, agriculture contributed 5865.47 MtCO2e, representing 12.34% of its total emissions
(47,513.15 MtCO2e), including land-use change and forestry [2,3]. In terms of regional
distribution, Africa, South America, and Asia dictate the agricultural emissions, while
Europe, North America and Oceania have the lowest emissions. As far as specific countries
are concerned, the top 5 places on the list of the highest emissions from agriculture are
occupied by India, China, Brazil, the USA, and Indonesia [3].

More than 83% of the total agricultural emissions are due to livestock emissions.
Enteric fermentation is considered the biggest contributor (about 5.5 MtCO2e) to livestock
emissions, followed by manure left in pasture (4.5 MtCO2e) [2]. Small ruminants, such
as sheep (Ovis aries) and goats (Capra hircus), contribute approximately 475 MtCO2e to
greenhouse gas emissions, constituting approximately 6.5% of the global emissions from
the agriculture sector. The combined production of meat and milk from sheep and goats
amounts to around 254 and 175 MtCO2e, respectively [4].

In the same way, several studies have predicted a further future decrease in total
annual rainfall by 15–30% [5] and the expansion of desert climates. This expansion is
attributed to increasing temperatures and decreasing precipitation. Moreover, these effects
are likely to be “severe, pervasive, and irreversible” in the years to come [1,6–9]. Such
changes can negatively affect livestock production and crop yields and threaten food and
nutrition security [3].

In order to deal with these effects, there is an urgent need to transform agriculture,
livestock farming, and food systems towards more sustainable production methods that
respect the environment and meet consumers’ expectations while providing substantial
income and good working conditions to the local farmers [10–14]. The reduction in carbon
footprints and greenhouse gas fluxes, the production of environmentally friendly and
healthier food products, as well as the genetic conservation and preservation of local breeds
that are well-adapted to the local environment, are potential strategies that can be profitable
and can safeguard natural resources for future generations [8,15–18].

To achieve these goals, among the selected strategies, research on livestock and animal
production focuses on alternatives to feed, utilizing valuable wild plant genetic resources and
agro-industrial by-products as potential feed alternatives, either as replacements or supple-
ments. The development of enriched feed using tomato pomace (peels and seeds), faba beans,
and pea by-products in the food industry, characterized by high protein levels, vitamins, and
minerals, can serve as a potential auxiliary to pasture or as a nutrient supplement for mixed
feed [19–21]. Shrubs, agro-industrial by-products, and aromatic plants have been explored as
potential feed alternatives to enhance animal performance [22–24] and improve the quality
of their products to reach consumer demand for safe and high-quality foods [24–26]. These
effects are attributed to their richness in numerous bioactive compounds, such as phenolic
compounds, providing antioxidant activity to reduce meat and dairy products’ oxidation
and extend their shelf life [27,28]. Almond by-products could be potential alternatives to
some forages given their richness in fiber; extracts prepared from whole almond seed, brown
skin, shell, and green shell cover (hull) possess potent free-radical-scavenging capacities [29].
Additionally, the incorporation of sesame meal (46% crude protein (CP)) in ewes’ feeding (at 10
and 20%) enhanced the digestibility of both CP and fiber, consequently improving the average
daily gain, feed conversion ratio, and cost of feed/kg gain in growing lambs when compared
with diets that did not contain sesame meal [30]. Other plant-origin sources can be used as al-
ternatives to dairy feed, such as pigeon pea (Cajanuscajan L. Millsp) leaves [31], Sesbania sesban
leaves [32], olive cake [33], and apricot almond cake-meal [34]. These alternatives can improve
the fat profile with less saturated and more polyunsaturated and monounsaturated fatty acids
(e.g., 18:1 trans-11 fatty acid) [33] without affecting the milk yield or composition [31].

The overall objective of this review was to assess the effects of alternative feed resources
utilizing valuable wild plant genetic resources and agro-industrial by-products on small
ruminants’ productivity, product (milk and meat) quality, methane emissions, rumen
digestibility, and farms’ economic performances.
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2. Alternative Feed Resources in Small Ruminant’s Nutrition

Conventional feed resources have historically been used to meet the nutritional needs
of small ruminants, such as grains, legumes, and forages. However, their wide use and
increasing demand raise issues with respect to sustainable land and water use, greenhouse
gas emissions, and the intensifying competition for arable land between food, feed, and
fuel [35]. Global horticultural waste, in several cases, also results in landfills, increasing eco-
nomic losses and environmental pollution. According to Ridolfi et al. [36], approximately
one-third (1.3 billion tons) of food produced globally is wasted each year, while food waste
was responsible for approximately 55 million metric tons of CO2 equivalent emissions from
municipal solid waste landfills in the United States in 2020 [37]. Therefore, there is a need
for more sustainable feed production, and the utilization of novel resources is crucial. There
are currently various types of alternative feed resources for small ruminant nutrition and
greenhouse gas emission reduction [38–40]: (1) agro-industrial byproducts/co-products,
such as milling, sugar industry byproduct/molasses, starch alcohol, or plant oil, which
stand out for their nutritional, economic, and environmental benefits; (2) forage legumes;
(3) insect feeding; and (4) horticulture food waste.

In terms of agro-industrial byproducts from the brewing industry, brewer’s grain
is considered a good source of protein since it has a crude protein content (CP) ranging
from 19–31% on a dry matter basis (DM). Moreover, brewer’s yeast is also high in protein
(36–50% on a DM basis), has a valuable amino acid profile similar to soy [41], and has
been shown to be effective in replacing maize meal in sheep [42]. On the other hand, dried
distillers’ grains (DDGs) are primarily made from maize, but they can also be produced
from wheat, barley, rye, or a combination of these grains. They are high in protein, fiber, fat,
and soluble sugars, and they are also rich in phosphorus, zinc, and potassium. Moreover,
their fiber content helps to reduce ruminal acidosis in high-grain diets [43].

There are also many byproducts from the milling industry that could be used in small
ruminants’ diets. Maize and wheat gluten meals are two high-protein, medium-energy feed
materials that, according to some researchers, could contain up to 60–75% [44] or 75–80%
CP [45], respectively. Kernel cake has also been used as a source of protein and energy, and
has produced promising results in a high-concentrate feedlot for goats [46]. Other sources
of nutrients that have been used include palm fiber, chickpea flour, rape seed meal, and
cotton seed meal, which could be better described as energy feeds.

Legume forages are known energy and protein sources. They include species like
Leucaena, Sesbania, pigeon pea, lucerne, and clover, and they could be used as cut fodder,
grazed pasture, or even as silage and fermented feeds as alternatives to conventional dry
hay. They have been shown to increase milk production, improve reproductive perfor-
mance, fix nitrogen, and enhance soil fertility [47].

Regarding insect feeding, studies on incorporating insects into small ruminant diets
have shown promising results in terms of protein content and digestibility. Insect farming
is also considered environmentally friendly and helps to reduce reliance on traditional
protein sources such as soy. Insect protein’s lower ruminal N degradation may improve
N utilization efficiency, and, thus, productivity, while decreasing N excretion into the
environment [48]. Insect meal provides a highly digestible protein source, essential amino
acids, and beneficial fatty acids, contributing to better animal performance and weight gain.
It has a well-balanced nutritional profile that includes important amino acids, vitamins,
and minerals [49]. For example, black soldier fly (BSF) larvae could replace soybean meal
in creep feed for post-weaning goat kids without affecting weight gain or blood profiles.
However, because of the chitin content in the frass, using BSF frass in the fattening goat
ration resulted in lower digestibility of DM and organic matter (OM). However, the lactic
acid bacteria (LAB) found in black soldier fly larvae grown on chicken manure have the
potential to serve as probiotics for ruminants [50].

Making use of horticultural waste is an excellent way to reduce food–feed competition
and landfill waste. Fruit and vegetable waste could be a promising alternative feed biomass
for sustainable and clean animal production, opening a new avenue for safe utilization and



Animals 2024, 14, 904 4 of 21

promoting a greener environment. The amount of total soluble sugars in fruit waste is 27%
higher than in vegetable waste. Total antioxidant capacity, flavonoids, and total phenols are
26.2, 103, and 71.8% higher in fruit waste than in vegetable waste, respectively. Both fruit
and vegetable waste are rich in macro- and micro-nutrients; however, fruit waste contains
more K, Fe, and Cu, whereas vegetable waste is high in Ca, K, S, and Na [51].

2.1. Effects on Methane Emission

Methanogenesis has been playing a significant role in digestion, producing methane
as a byproduct of metabolism in ruminant animals, and this process has been a significant
contributor to greenhouse gas emissions [52]. Various mitigation strategies have been
developed to reduce methane (CH4) emissions, including dietary modifications involving
lipids, essential oils, and algae [53,54]. Rumen microorganisms, such as bacteria, protozoa,
and fungal zoospores, are linked to rumen fermentation efficiency. Methane losses appear
relatively constant (6 to 7% of gross energy (GE) intake) for diets containing 30 to 40%
concentrate, and then rapidly decrease to low values (2 to 3% of GE intake) for diets
containing 80 to 90% concentrate [55]. Concentrates high in starch (wheat, barley, and
maize) have a greater negative impact on CH4 production than fibrous concentrates [56].
Lima et al. [57] reported that when the level of concentrate inclusion in the diet exceeded
approximately 50%, goats’ absolute CH4 emission decreased. Feeding orange leaves and
rice straw to Murciano–Granadina goats reduced CH4 emissions without affecting energy
balance [58].

While feeding cellulosic material increases enteric CH4 emissions, the amount depends
on the forage source, chemical composition, and digestibility. This variation allows for
CH4 reduction through dietary management. As a result, it is critical to consider the
implications of the various options presented above when discussing CH4 mitigation.
Local feed resources have been used as alternative feed additives for the manipulation of
rumen ecology, with promising results for replacement in ruminant feeding, in addition to
feed formulation and feeding management. The effects of feed additives are presented as
follows. Saponins are abundant in Camellia Sinesis, Yucca schidigera, Quillaia Saphonia,
and Meidcago sativa. Saponins, which are natural detergents found in many plants, have
an indirect effect on methane emission output by slowing methanogenesis, increasing the
expression of methanogenesis-related genes, and decreasing methanogen abundance [59].
Commercially available extracts of condensed tannins and saponins may exist. Tannin-rich
plants and extracts have been shown in studies to reduce methane production [60]. van
Gastelen et al. [61] reported a 34% increase in dry matter intake of tannin-rich forage in
sheep, and the CH4 yield (g/kg DMI and % GEI) decreased by 23 and 36%, respectively.
Substituting tannin-rich forages for grass pastures or grass silage reduces CH4 emissions
from both dairy cattle and sheep. It is worth noting that the response to tannin feeding
varies greatly depending on the tannin source, type, and molecular weight, as well as the
methanogen community present in the rumen and its concentration in forage and feed
supplements (20 g/kg of dry matter intake, (DMI)) [62].

Flavonoids used as feed additives include celery, parsley, red peppers, chamomile,
mint, ginkgo biloba, and citrus fruit peels. Similarly to tannins, flavonoids are classified as
secondary plant metabolites. They have the capability to reduce protozoa and methanogen
populations, inhibiting methanogenesis. Flavonoids have a significant potential to reduce
methane emissions, but further research in in vivo trials is needed. Dietary fat appears to
be a promising nutritional option for suppressing ruminal methanogenesis while having
no effect on other ruminal parameters [55].

Lipids used as feed additives represent a viable strategy for reducing CH4 emissions
(a 14% reduction in long-term CH4 emissions was achieved when lipid sources were added
to supply 34 g fat/kg of DM) [63]. However, factors such as the physiological stage of
the animal, the composition of the basal diet’s lipids and other nutrients, and the fatty
acid profile of the supplemental oil can influence the maximum oil inclusion in ruminant
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diets. High lipid concentrations (>6% DM) in feed can reduce feed and fiber digestibility,
potentially increasing OM [52].

Plant materials such as flowers, seeds, buds, leaves, herbs, wood, fruits, twigs, garlic,
eucalyptus, clove, rosemary, thyme, paprika, juniper, ginger, and roots are used to extract
plant essential oils (EO), which are volatile, oily, and aromatic liquids. Some essential
oils can influence rumen fermentations and reduce CH4 production in vitro. Encourag-
ingly, certain studies have demonstrated remarkable reductions in CH4 emissions of up
to 90% [64]. However, with the increased use of EOs, there is a need for regulations that
include maximum permissible limits, toxicity considerations, and the capacity of EOs
against specific methanogens, ensuring that they do not adversely affect other groups of
microorganisms in the rumen.

Furthermore, algae have become a subject of research aimed at reducing ruminant
CH4 emissions, with positive findings in methane emission mitigation as a CH4 mitigation
additive. Macroalgae supplementation has emerged as a promising tool for reducing rumi-
nant enteric methane emissions [65]. Furthermore, this additive increased the economic
efficiency of treated animals by approximately 53.13% [66]. However, it is important to
note that long-term oral exposure of animals to high concentrations of Bromoform (CHBr3)
can result in liver and intestinal tumors. On a different note, the inclusion of up to 10% fruit
and vegetable waste in sheep diets improved nutrient utilization and antioxidant status
while lowering GHG emissions. These wastes can also serve as a valuable preformed water
source for livestock in dry areas, resulting in a net reduction in potable water consumption
of 21.78 and in fruit and vegetable waste of 13.92% [51].

2.2. Effects on Rumen Digestibility

Several academics have investigated the use of substitute feed sources for small
ruminants to improve apparent (in vivo) nutrient digestibility and mitigate greenhouse
gas production, particularly methane (CH4) emissions. Consequently, Table 1 presents the
apparent nutrient digestibility of alternative feed resources used to feed small ruminants.

2.2.1. Grasses and Hay

Although Brhanu and Gebremariam [67] reported that an increase in the amount of
khat leftover meal decreased the apparent digestibility coefficient of DM and nutrients
in sheep, in most cases, the use of grasses and hay in small ruminant diets improves the
rumen digestibility. For example, using cactus as a supplement for small ruminants on poor
roughages like straw has been shown to increase the amount of straw consumed, to improve
diet digestibility, and to boost microbial activity [68]. In another report, the inclusion of
60% tomato pomace in the diet of lactating goats significantly increased the apparent
digestibility values, specifically 0.85% for ether extracts and non-fibrous carbohydrates [69].
Wadhwa et al. [70] conducted in vivo studies on goat bucks using a diet containing 0–50%
bottle gourd pulp (Lagenaria siceraria) pomace in iso-nitrogenous and iso-caloric concentrate
mixtures supplemented with green fodder (50:50%), and found that the fungal population
in the rumen increased significantly, while the bacterial and total protozoal population
decreased significantly as the amount of pulp in the diet increased. Although the N-
retention in bucks remained unaffected, the digestibility of CP decreased, whereas that of
acid detergent fiber (ADF) and cellulose rose dramatically. It was determined that adult
ruminant concentrate mixtures can contain up to 50% bottle gourd waste (pulp). With
complete diets containing poultry litter (35%) tested in Nellore and native rams, sheep
exhibited higher DM spontaneous feed intake and DMI, digestible crude protein (DCP),
and total digestible nutrient (TDN) intake per kg than goats [71].

Improved dry matter intake and significant total digestibility of DM, OM, and NDF
were observed in adult sheep fed a total mixed ration (TMR) containing moist okara
silage [72,73]. A mixture of alfalfa hay and concentrate (50:50%) fed to Barki sheep and
Balady goats resulted in 58.5 and 53.4% DM digestibility, 58.4 and 53.5% OM digestibility,
68.1 and 62.6% CP digestibility, and 58.4 and 51.1% neutral detergent fiber digestibility



Animals 2024, 14, 904 6 of 21

in sheep and goats, respectively [74]. Otoni et al. [75] fed sheep a variety of grass and
legume hays and reported in vivo DM digestibility of 47.6, 53.4, 29.3, and 53.2% for Jiggs
hay (Cynodon dactylon), Tifton-85 (Cynodon spp.), stylo (S. capitata × S. macrocephala), and
alfalfa (Medicago sativa) hays, respectively. Yang et al. [76] fed 5, 10, and 15% sorghum hull
as an alternative feed source to growing goats and reported CP digestibility of 14.8%, 19.5%,
and 16.8%. The authors indicated that sorghum hull was used as a feed alternative for
growing goats due to its benefits for growth performance, nutrient digestibility, and plasma
metabolites. Goats were fed four different types of grasses, including Brachiaria-decumbens,
Panicum maximum, Elephant grass, and Mini elephant grass, each at 80% plus 20% rice bran,
according to a study by Ismartoyo et al. [77]. In vivo neutral detergent fiber (NDF) and
ADF digestibility were found to be 54 and 34.5%, 60 and 44%, 47.7 and 66%, and 27.5 and
48.9%, respectively. Finally, the authors came to the conclusion that feeding rice bran (20%)
in a diet that included Brachiaria-decumbens, Panicum maximum, Mini elephant, and Elephant
grass increased the feed’s digestibility and NDF/ADF intake values. Therefore, it could be
concluded that the use of grasses and hays in small ruminant nutrition is highly promising
and could improve the apparent digestibility of nutrients, thus reducing CH4 emissions.

2.2.2. Fruit and Vegetable Waste

Small ruminants are adept at digesting lignocellulosic agro-industrial byproducts.
Therefore, digestible food waste, such as fruit and vegetable byproducts, can also be
utilized as a feed supplement for ruminants [78,79]. For example, when adult sheep were
fed dietary combinations made from varying quantities of fruit waste, as conducted by
Sahoo et al. [51], it was found that, without changing feed intake, the supplemented groups
had considerably improved CP and DM digestibility by 7.3 and 7.6% and 5.5 and 7.2%,
respectively. Carrot top hay, when replaced with 50% of berseem (Trifolium alexandrium)
hay in the diet of Rahmani sheep, increased nutrient digestibility [80] because of its high
nutritive value OM (977.6%), CP digestibility (62%), and TDN (73% on DM basis), in
addition to an ME value of 10.2 MJ/kg DM. When Silivong et al. [81] added brewers’ grains
(5% of the diet DM) to the diet of goats, they observed that the protein supplement, which
was made up of cassava leaves and water spinach, respectively, increased the growth rate
by 44 and 11% and the DM feed conversion by 25 and 5%. According to the authors,
adding brewers’ grains, a fermented byproduct of making “beer”, to a diet that includes
potentially harmful ingredients, like the cyanogenic glucosides found in cassava leaves, can
have prebiotic effects. According to Arun et al. [82], the addition of 50% leftover jackfruit
to the finger millet straw silage diet of Mandya lambs enhanced the nutrient content by
adding nitrogen and fermenting the mixture with Saccharomyces boulardii and Lactobacillus
acidophilus. However, the study found that this did not alter the nutrients’ digestibility or
the amount of DM the lambs consumed. Similarly, in Nkosi et al. [83]’s study, South African
Dorper lambs were fed ad libitum with discarded cabbage (Brassica oleracea var capitata) at
concentrations of 0, 100, 150, and 200 g/kg. The higher the cabbage concentration in the
diet, the lower the DM intake and lamb growth performance were. The addition of cabbage
to the lambs’ diet had a negative effect on their feed conversion rate. Diets containing
cabbage caused the lambs to digest less DM, OM, and NDF than diets without it. Therefore,
the general use of fruit and vegetable byproducts could have a beneficial effect on rumen
digestibility, but since this is not the case for every byproduct, each one should be tested
and evaluated before use.

2.2.3. Silage

While silages are widely used in ruminant nutrition, in a study conducted by Gholami-
Yangije et al. [84], when sunflower (Helianthus annuus) residue silage was substituted for
alfalfa hay and maize silage in the diet of Mohabadi dairy goats, the researchers observed
a decrease in the digestibility of both DM and OM as the amount of sunflower residue
silage (SRS) in the diet increased. It was suggested that the lower DM and OM digestibility
at higher SRS inclusion levels could be a secondary effect of lower CP digestibility. On
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the other hand, when whole corn plant silage was added to the Napier grass diet for
goats at inclusion levels of 25% and 50%, Khaing et al. [85] observed a linear increase in
nutrient digestibility. This increase may be attributed to the fact that whole corn plant
silage has fewer structural carbohydrates than Napier grass, making it more susceptible
to rumen microbial degradation. When 25% or 50% of the whole corn plant silage was
substituted for the Napier grass diet, the apparent digestibility of CP also increased linearly.
This may have been brought on by the diet’s high nitrogen absorption. The whole corn
plant silage incorporated in Napier grass showed a significant decline at the 75% inclusion
level, which may have been caused by the combined diet’s unfavorable associative effect.
Ultimately, the study concluded that feeding a combination of corn silage with Napier
grass at 50% and 100% resulted in high nutrient utilization. According to Munguía-Ameca,
et al. [86], it is possible to incorporate up to 20% of ensiled coffee pulp in Pelibuey lambs’
diets without affecting their productivity, ruminal fermentation, nutrient digestibility, or
carcass and meat characteristics. The study also demonstrated that adding up to 20%
ensiled coffee pulp to the diets of fattening lambs influenced antioxidant compounds in
the diets, antioxidant capacity in blood serum, and the digestibility of CP (74.99% in vivo
digestibility). When sheep were fed cassava leaf silage (CLS) in four different combinations
by Sudarman et al. [87], the consumption of CP, fat, crude fiber, and total digestible nutrients
was significantly impacted, but the consumption of DM was not significantly affected. A
20% concentration or CLS level was found to improve feed efficiency and body weight. The
total number of bacteria did not differ significantly; however, the total number of protozoa
rose with the concentration. In summary, the performance of sheep fed 20% cassava leaf
silage was significantly enhanced, approaching the level attained by feeding concentrate.
Abo-Donia et al. [88] fed ensiled rice straw by water (RSW), molasses plus urea (RMU),
whey (RWh), and untreated rice straw (URS) to sheep as part of their study. The highest
digestibility values for DM, OM, CP, EE, NDF, and ADF were found in the ensiled RWh and
RMU, and these values were significantly higher than those found in RSW. Their study’s
findings suggest that rice straw ensiling could be beneficial if milk whey or sugarcane
molasses plus urea were added to increase the nutritional value and enhance palatability,
feed consumption, and digestibility. Even though ensiling rice straw with additional whey
performed better than ensiling it with additional molasses and urea, the findings suggest
that any of these additives can be utilized to enhance the utilization of rice straw.

2.2.4. Browse and Leaves of Plants

Grazing is a standard practice in most production systems for small ruminants due
to the fact that these animals can utilize a wide range of wild plants for feeding. Haruna
et al. [89] investigated the CP digestibility of four semi-arid browse plants in sheep, ob-
serving an average of 87.55%. They reported varying CP digestibility for different browse
plants: Ficus sycomorus (94.18%), Ziziphus Mauritania (92.41%), Balanites aegyptica (92.37%),
and Celtis integrifolia (71.25%). They showed that these peruse plants act as an elective
feed source particularly during the long dry period in the semi-parched zone due to their
high potential protein digestibility. In a study conducted by Avornyo et al. [90], six fodder
species (Annona senegalensis, Ficus gnaphalocarpa, Pericopsis laxiflora, Pterocarpuserinaceus,
Afzelia africana, and Arachis hypogaea) were fed to dwarf goats in West Africa. The study
found that the digestibility indices of four of the feeds had DM contents of 60 to 75%, and
the digestibility indices of browse species, like groundnut haulm, were within the usual
range for recommended fodder species. Increased nutrient digestion of DM, OM, protein
digestibility, and lipid digestibility was observed in goats supplemented with 6% neem leaf
and 15% polyethylene glycol in the concentrate [91]. Mekuriaw and Asmare [92] examined
the digestibility of concentrate mixtures up to 75% substituted with leaves from the fodder
tree, Ficus thonningii (FTL), in the diets of Washera lambs. They found that these treatment
diets had better digestibility coefficients, with the exception of the 100% FTL supplement
group. Ultimately, it was determined that the leaves of the native fodder tree FTL could
be utilized as a substitute concentrate mixture up to 75% in order to enhance performance
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when fed to Washera sheep in their natural pasture hay diet. Adelusi, et al. [93] fed ground
tree leaves (Azadirachta indica, Newbouldialaevis, and Spondias mombin) to dwarf West African
goats and discovered that the addition had no effect on the digestibility of DM, OM, or
fiber fractions. Nonetheless, there was a notable decline in the animals’ ability to digest
ash and CP when fed ground leaves. A. indica and S. mombin, when added to the animals’
diets, caused the goats’ nitrogen balance to decrease. It can be concluded that, while adding
N. laevis to goats’ diets improved their CP digestibility, nitrogen balance, and retention,
feeding them ground leaves of S. mombin greatly increased their weight gain. Ajagbe
et al. [94] carried out a feeding trial to assess the nutrient digestibility and nitrogen balance
of growing African Dwarf goats fed supplemented cassava peel meal diets. Based on
the nutrient digestibility and nitrogen retention characteristics of cassava peels, the study
concluded that supplementing nitrogen to the diets of goats may enhance the productive
performance of small ruminants.

2.2.5. Agro-Industrial By-Products and Other Alternative Feed Sources

Ahmed et al. [95] evaluated the effects of substituting up to 40% of noug seed cake
with poultry litter for Arsi Bale goats, but they did not find a significant difference in the
in vivo digestibility of DM, OM, CP, neutral detergent fiber (NDF), and acid detergent
fiber (ADF). Lastly, they suggested that this feed compounding, which incorporates up
to 40% poultry litter, is economical and improves the growth performance of goats. Due
to increased nutritional digestibility, linseed oil supplementation at 4% in a fattening diet
increased the average daily gain (ADG) by roughly 29% and decreased the feed conversion
ratio (FCR) by roughly 18% in both goats and sheep [96]. Hao et al. [97] substituted flax
seed meal (FSM) for soybean meal (SBM) in the diets of sheep at four different levels, and
the findings showed that FSM can successfully replace SBM in the diets of fattening sheep,
with 12.0% being the ideal ratio in this scenario. The study demonstrated that adding FSM
to sheep diets in place of certain SBM can improve the apparent digestibility of DM and
NDF throughout the entire digestive tract. Mengistu et al. [98] studied the effects of feeding
Bonga sheep Rhodes grass hay on feed intake, body weight change, and the digestibility of
noug seed (Guizotia Abyssinica) cake substituted with dried mulberry and Vernonia mixed
leaf meal. They showed that a meal consisting of mixed dried mulberry and Vernonia
leaves can replace NSC as a protein supplement by up to 75%, providing yearling Bonga
sheep with the best possible DM and nutrient intakes, as well as body weight gain. This
study also emphasizes the benefits of feeding ruminants meals consisting of mixed leaves
from Vernonia and dried mulberries as a supplement to their basal diet of fibrous feeds.
In a published study, Hao et al. [99] examined the effects on growth performance, rumen
microbial protein synthesis, and nutrient digestion of fattening lambs fed a combination
of soybean hulls and corn bran in place of some corn and corn stover. Three groups of
randomly selected thin-tailed crossbred ram lambs were formed: 0% corn bran and 9%
soybean hulls; 17% corn bran; and 17% soybean hulls. The findings showed that soybean
hulls and corn bran together can successfully replace some of the corn and corn stover in
finishing lambs’ diets, improving nutrient absorption and growth efficiency.

Overall, feed digestibility is an important indicator that can be used as a guide to
determine the amount of nutrients and feed that can be absorbed in the gastrointestinal
tract [100]. In extensive ruminant production systems, as opposed to intensive ones, there
is significantly greater potential for ruminant performance gains and methane emission
mitigation through appropriate forage supplementation and feed selection to enhance
forage and total diet digestibility [101,102].
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Table 1. Digestibility of alternative feed resources for small ruminants.

Alternative Feed Resources
Apparent Digestibility (%) *

DM OM CP EE NDF ADF

Azadirachta indica 1 69.6 71.0 76.2 65.3 70.8 44.7

Spondias mombin 1 71.3 72.1 71.7 73.0 72.3 49.3

Newbouldia laevis 1 71.8 72.0 81.3 78.9 72.8 59.9

Ziziphus mauritania 2 98.4 92.4 58.3

Balanites aegyptica 2 65.2 92.4 69.3

Ficus sycomorus 2 58.1 94.2 64.9

Celtis integrifolia 2 64.2 71.3 70.8

Afzelia africana 3 53.3 52.0 70.8 46.7 28.1

Ficus gnaphalocarpa 3 69.1 63.7 76.3 70.4 64.2

Annona senegalensis 3 69.5 71.6 61.3 62.3 67.1

Arachis hypogaea 3 73.9 75.5 75.2 67.5 68.1

Pericopsis laxiflora 3 62.8 60.7 60.5 60.1 64.3

Pterocarpus erinaceus 3 41.8 54.4 71.9 60.6 53.5

Cassava peels 4 95.3 90.0 93.0 90.0

Sorghum hull 5 57.3 68.0 54.2 57.7 42.3

Poultry litter 6 82.6 77.1 7.37 38.1 27.7

BottleGourd (Lagenaria siceraria) Pomace 7 54.2 57.3 57.7 46.6 40.4

Corn silage 8 71.0 72.8 63.7 61.3 53.1

Fruit waste 9 55.5 57.8 62.5 78.0 49.4 42.5

Vegetable waste 9 56.4 58.6 62.7 78.2 51.0 41.7

Cabbage 10 64.0 65.0 53.0 47.0

khat leftover meal 11 50.9 64.3 82.0 44.9 77.4

Soybean meal 12 57.0 61.3 67.4 41.7 31.6

Flax seed meal 12 57.6 61.7 63.3 42.0 33.1

Noug seed cake 13 68.8 71.5 78.6 63.8 48.0

Mulberry and Vernonia mixed leaves’ meal 13 64.4 66.8 73.9 60.1 41.5

* DM: dry matter, OM: organic matter, CP: crude protein, EE: ether extract, NDF: neutral detergent fiber, ADF:acid
detergent fiber. Adapted from: 1 Adelusi et al. [93], 2 Haruna et al. [89], 3 Avornyo et al. [90], 4 Ajagbe et al. [94],
5 Yang et al. [76], 6 Ahmed et al. [95], 7 Wadhwa et al. [70], 8 Khaing et al. [85], 9 Sahoo et al. [51], 10 Nkosi et al. [83],
11 Gebremariam and Brhanu [67], 12 Hao et al. [97], 13 Mengistu et al. [98].

3. Alternative Feed Resources and Small Ruminants’ Product Quality
3.1. Milk Production

For several decades, studies have been conducted to assess the effects of alternative
feeds on milk yield and quality in small ruminants, as well as on other animal perfor-
mance parameters [103,104]. Given their chemical composition, which is rich in bioactive
molecules and secondary metabolites such as phenols and tannins, shrubs, legume seeds
and pods, and local agro-industrial by-products, such as olive pomace, tomato spent grains,
and date scraps, which are inexpensive and widely available, these feeds can influence
milk production (Table 2).
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3.1.1. Wild Plants, Leaves, and Shrubs

It is eminent in the literature that tanniniferous resources are the main suppliers
of condensed tannins. They are widely distributed in the plant kingdom and present
in angiosperms and gymnosperms. Plants rich in condensed tannins are abundantly
found within the legume family, particularly in numerous forage species such as sainfoin
(Onobrychis viciifolia), sulla (Hedysarium coronarium), pedunculate, and horned trefoil (Lotus
pedonculatus and Lotus corniculatus), as well as several Acacia species [105]. The effect of
tannin-producing feeds on milk yield and the composition of milk fat and protein varies
considerably depending on the concentration of tannins present in the feed, and results
frequently display inconsistency. Condensed tannins in high concentrations generally
exert negative effects on animal performance. However, moderate concentrations can have
positive effects [106]. In this context, there have been reports indicating that tannins can
enhance the fatty acid (FA) profile of milk by influencing ruminal FA metabolism. This,
in turn, leads to an increase in the outflow of beneficial fatty acids (such as CLA and n-3
PUFAs) from the rumen, ultimately improving their concentrations in milk [107].

Wang et al. [108] examined the effect of tannin concentration on the yield and compo-
sition of sheep milk. Ewes grazing Lotus corniculatus with moderate tannin amounts, with
or without polyethylene glycol (PEG), were studied. PEG is a binding agent capable of
forming complexes with condensed tannins without disrupting animal digestion [109]. The
supplementation had no impact on milk yield until the fifth week of lactation. However,
from the sixth to the eleventh week, the milk yield increased significantly. At week 11, the
milk yield was significantly higher in ewes fed the PEG-free diet. The milk fat content was
higher in the PEG-supplemented group, showing the lowest milk yield. Sulla flexuosa
(Hedysarum flexuosum L.), a native leguminous plant in Mediterranean regions, was em-
ployed as an alternative protein source in goat diets, replacing alfalfa, with the primary aim
of enhancing forest rangeland nutrition [110]. The observed rise in polyunsaturated fatty
acid (PUFA) levels in the milk of animals fed sulla could be attributed to the presence of
tannins. These tannins may have influenced the activity of rumen microflora, consequently
reducing the biohydrogenation process of PUFA [106].

In a more recent study, Jerónimo et al. [111] reported that incorporating extracts
abundant in condensed tannins from rockrose (Cistus ladanifer L.) and quebracho (Schinopsis
lorentzii) into the diets of Serpentina goats resulted in a reduction in branched-chain fatty
acids and C18:1 trans-10 in milk fat. Notably, dietary supplementation with condensed
tannins did not impact the intake of polyunsaturated fatty acids (PUFA), 18:1 trans-11,
18:2 cis-9, or trans-11, nor did it impact the milk yield. In Canindé, Repartida, and Saanen
goats, conventional feed enriched with condensed tannins from Acacia mearnsii (50 g/kg
DM) has been shown to increase the levels of C14:1, cis-9, C18:2n6, C18:3n6, C18:3n3,
polyunsaturated fatty acids (PUFA), and long-chain fatty acids. Simultaneously, it reduces
the levels of C12, C14, and ω6/ω3, as well as the atherogenicity index, in milk fat, all
without any modifications to nutrient intake or animal performance [112].

3.1.2. Legumes and Algae

As shown in the Table 2 replacing cereals with grain legumes as alternative protein
resources in ruminant diets generally enhances the milk yield and improves the lipid
profile [113,114]. In Chios ewes, the inclusion of Camelina sativa seeds at 16% (DM) resulted
in a significant reduction in milk fat and an improvement in milk quality from a human
health perspective. This improvement was achieved by altering the content of saturated
fatty acids, adjusting the proportions of α-linolenic acid (C18:3 n-3), C18:2 cis-9, and trans-
11 (CLA), and modifying the ω6/ω3 ratio. Additionally, there was a reinforcement of milk
oxidative stability, evidenced by a significant increase in the activity of catalase (CAT),
superoxide dismutase (SOD), malondialdehyde (MDA), protein carbonyls, and glutathione
peroxidase (GSH-Px) [115]. In a more recent study, the Spirulina, an edible blue-green
algae rich in bioactive compounds such as vitamins, minerals, antioxidants, and γ-linolenic
acid, was used to enrich the feed of Chios ewes at a rate of 15 g/ewe/day. This dietary
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intervention demonstrated an improvement in the potential oxidative status of both the
ewes’ organisms and their milk, without exerting any effects on milk yield or chemical
composition [116].

3.1.3. Agro-Industrial By-Products

The incorporation of agro-industrial by-products into ruminant diets can lead to re-
duced feeding costs and environmental impacts, contributing to improvements in animal
performance and product quality [103]. Utilizing unmarketable tomato (Solanum lycoper-
sicum L.) or olive by-products supplemented with sunflower oil (20 g/kg DM) as alternative
feeds has been found to modulate the lipid profile in Murciano–Granadina dairy goats.
This approach results in an increase in C18:1 trans-11, C20:2, and conjugated linoleic acid,
and a decrease in C4:0, C6:0, and C8:0. Furthermore, it leads to an overall increase in
total saturated fatty acids and a reduction in C18:1 n-9 cis, as well as both total mono- and
polyunsaturated fatty acids [117]. Moreover, incorporating olive by-products up to 20%
(DM) in the diets of Damascus dairy goats has been associated with heightened expression
of genes involved in lipogenic pathways (including de novo synthesis, fatty acid uptake
and transport, and fatty acid desaturation), along with their regulatory elements such
as transcription factors. Specifically, there was increased expression of SLC2A1, VLDLR,
and FABP3 in the mammary glands. Additionally, there was an upregulation of FASN
and SLC2A1 genes in adipose tissue [118]. At the same concentration of 20% (DM), olive
by-products exhibited a linear increase in the concentration of unsaturated fatty acids (FA)
of up to 20%, monounsaturated FA up to 23%, polyunsaturated FA up to 11%, and rumenic
acid (CLA cis-9, trans-11) up to 61% in the milk of Chios ewes. Consequently, this led
to a reduction in the atherogenicity and thrombogenicity milk indices by 31% and 27%,
respectively [119].

Table 2. The effect of some alternative feeds on the quality and quantity of milk from small ruminants.

Alternative Feed Main Findings Reference

Sulla flexuosa
(Hedysarum flexuosum L.)

-Antioxidant capacity (+)
-Unsaturated fatty acids (+) Boukrouh et al. [110]

Linseed -Reduction in milk urea
-n-3 FA and CLA (+) Maamouri et al. [120]

Leaves of Acacia cyanophylla -Reduction in milk urea Maamouri et al. [120]

Camelina Seed -Antioxidant capacity (+)
-Unsaturated fatty acids (+) Mierlita and Vicas [121]

Olive by-products silage Tomato surplus silage -Saturated fatty acids (−)
-Unsaturated fatty acids (+) Arco-Pérez et al. [117]

Tomato fruits, citrus pulp, brewer’s grain, and brewer’s yeast
-Casein content (+)
-Unsaturated fatty acids (+)
-Saturated fatty acids (−)

Romero-Huelva et al. [122]

Cynodondactylon L. (Tifton) hay -Milk production (+)
-Fat content (+) Mizael et al. [69]

Date waste -Milk yield (+) Boudechiche et al. [123]

Olive cake and tomato pomace -Fat content (+) Abbeddou et al. [33]

+ = improved/increased, − = declined/decreased.

3.2. Meat Production

The use of unconventional feeds, such as shrubs and plant by-products, as potential
alternatives (either as a replacement or as a supplement) for enhancing animal perfor-
mance and product quality has been explored [124,125]. In fact, when speaking about
unconventional feeds, a special reference must be made to aromatic plants (APs), since
their use in small ruminant feeding has shown numerous advantages in terms of meat
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quality and production. Studies have shown that the rearing of lambs on pastures rich in
APs has been associated with an increase in slaughter weight and a decrease in carcass fat
proportion [126,127], while when cull ewes were fed on AP-rich pastures, the fatty acid
profiles were improved, the n-3 PUFA content was increased, and the lipid oxidative stabil-
ity and meat color were improved [128]. On the other hand, when APs were incorporated
into the diet, they tended to improve the tissular composition of carcasses and meat quality
of young lambs [129].

Important quantities of aromatic and medicinal plant by-products are generated from
the distillation industry, which could be valuable natural sources of antioxidants due
to their richness in phenolic compounds [130]. Distilled leaves are discarded after the
extraction of essential oils, whereas they could constitute an interesting alternative feed
for small ruminants given their protein and energy content and their richness in bioactive
compounds [123]. Rosemary distillation by-products were used in a lamb fattening trial, in
combination with other local resources, as a substitute for commercial concentrate [131,132].
The results showed that the growth performances and meat physicochemical characteristics
(pH, water cooking loss, color parameters, and protein content) were not affected by the
diet, but the intake of these by-products showed their effectiveness in protecting meat
against discoloration (high red index and chrominance during the storage period) and lipid
oxidation (1.3 mg MDA/kg of meat). The inclusion of rosemary distillation by-products
also increased the total polyunsaturated fatty acids and the ratio of polyunsaturated fatty
acids to saturated ones.

Furthermore, the partial substitution of roughage by rosemary distillation by-products
in cull ewes showed a decrease in branched-chain fatty acid content without changes in
the sum of n-6 or the n-6/n-3 ratio. In addition, the meat from the rosemary distillation
by-product diet retained its red color throughout the storage period. Concerning lipid
oxidation, the lowest values were recorded in the rosemary by-product groups, remaining
below 1.7 mg MDA/kg until the end of the storage period. Consequently, the level
of oxidation of this meat was below the threshold (2 mg MDA/kg) for the detection of
rancidity. The intake of rosemary by-products did not affect the meat’s sensory quality [133].
Similarly, the total substitution of hay by rosemary distillation by-products improved lambs’
growth performance, but did not modify carcass characteristics [124]; however, it retarded
meat lipid oxidation during storage and improved meat color stability [24]. Hence, the
meat α-tocopherol concentration from lambs receiving rosemary distillation by-products
was four times higher (>6 µg/g) compared with the control ones (1.5 µg/g).

In addition to rosemary, the substitution of roughage or concentrate with myrtle distil-
lation by-products in cull ewes showed that these residues could replace up to 87% of hay
and up to 30% of concentrate in the ewes’ diet without showing any negative effects on body
weight, carcass characteristics [130], or meat quality [26]. The chemical composition, pH, and
color of the meat were not affected by the addition of myrtle residues. However, feeding
the ewes these by-products resulted in meat richer in polyphenols and α-tocopherol (9 vs.
3 µg/g DM for myrtle and control groups, respectively). In addition, from the third day of
meat storage, lipid oxidation was improved by the addition of myrtle residues, being lower
for the two myrtle groups compared with the control one (0.51 vs. 1.11 mg MDA/kg meat).

On the other hand, the extraction of olive oil generates important quantities of by-
products like pulp, skin, and water, which constitute environmental pollutants owing to
their elevated organic composition. The valorization of these by-products in the form of
animal feeds could reduce the expenses associated with waste management and animal
feeding. In this context, the dietary incorporation of olive cake (280 g/day) into Barbarine
lambs reared indoors or on a Medicago arborea rangeland did not alter the slaughter pa-
rameters, carcass traits, tissular composition, or meat quality, except for juiciness, which
increased [134]. Similar findings were noted by Kotsampasi et al. [135] after the supple-
mentation of partly destoned exhausted olive cake into the diet of Florina lambs’; no effect
on growth performance, carcass weight, or intramuscular fatty acid profile was observed,
whereas the carcasses’ qualitative traits were improved. Similarly, replacing 44% of the
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diet with a blend of agro-industrial by-products containing 18% corn distillers dried grains
with soluble, 18% dried citrus pulp, and 8% exhausted olive did not change the growth
performance, carcass weights, or yield [38], but increased the meat’s shelf-life (6 days
of refrigerated storage) and improved its fatty acid profile by decreasing saturated and
increasing polyunsaturated FA content [136]. Furthermore, the dietary incorporation of
stoned olive by-products in the form of cake (35%) enhanced the oxidative stability of
Appenninica lamb meat and improved the fatty acid composition of meat when combined
with linseed (17% and 10%) [137]. This combination had no effects on feed intake, growth
rates, or carcass characteristics; however, it increased the content of C18:3n-3 in intramuscu-
lar total lipids [138]. Additionally, the administration of polyphenols extracted from olive
mill wastewater exhibited positive effects on Saanen goat kid meat. This administration re-
sulted in enhancements in the fatty acid profile, specifically increasing oleic and conjugated
linoleic acid contents and reducing malondialdehyde formation [139].

Transitioning to alternative agro-industrial residues, it is essential to emphasize that
within the tomato juice and pulp industries, around 10% of the total tomato weight is
designated as waste. The chemical composition of tomato pomace includes approximately
16% CP and 57% NDF [140]. Due to its favorable chemical composition and absence of
acceptability issues, tomato pomace has emerged as a significant component in the diets
of small ruminants [69,141]. Previous studies have explored the utilization of tomato
residue in various forms, such as silage [142] or in combination with other residues [122].
Researchers have concluded that these dietary approaches do not adversely impact animal
performance or product quality.

Moreover, the chemical composition of sesame seed meal varies according to the
extraction method. The dry matter contents of sesame seed meal ranged from 83 to
96%, while the CP contents ranged from 23 to 46% [143]. Drawing a connection to this
composition, the incorporation of sesame hulls in lamb diets (100 and 200 g/kg feed,
respectively) improved the final weight and carcass characteristics, but led to similar
meat oxidative stability and fatty acid profiles [144]. However, in another study, the
effects of using sesame seed waste did not affect the growth performances nor the carcass
characteristics of Karayaka lambs [145].

In a more recent study, de Castro et al. [146] found that incorporating oilseed cakes
into the diets of lambs had significant effects on the lipid and protein composition of
meat, specifically in the Longissimus lumborum. The inclusion of oilseed cakes resulted
in decreased cooking losses and influenced various color parameters, such as L*, a*, b*,
chroma, and hue angle. Additionally, it induced alterations in the total fatty acid (FA)
composition and FA profile. Notably, there was a reduction in hypocholesterolemic fatty
acids, although it did not have any discernible impact on indicators of atherogenicity,
thrombogenicity, or cholesterolemia.

4. Alternative Feed Resources and Farms Economic Performances

Depending on the farm species, feed costs constitute a significant portion of live-
stock production expenses, ranging from 60% to 85% of the total annual cost inputs [45].
Therefore, the use of alternative feeding resources, which, in general, cost less than the
conventional ones, could optimize efficiency and sustainability in livestock farming by
reducing production costs [147]. However, in the relevant literature, it is rare to find data
that provide a sufficient evaluation of the economic performance of alternative feeding
strategies for the production of small ruminants.

In Brazil, Silva et al. [148] reported that enriching sheep feed with wet brewery residue
at 30% generated the highest profit (USD 0.27/kg of BW) and the lowest total expenses
(USD 13,247.07). In a separate study, Lima-Cavalcanti et al. [149] evaluated the economic
viability of including licuri oil in the diet of Santa Ines ewes at various levels. The recorded
results indicated that the control diet yielded the highest gross revenue (USD 609.39);
nevertheless, there was a loss (USD 50.96) in terms of economic performance indicators.
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In northern Jordan, incorporating black cumin meal (Nigella sativa) as an alternative
feed in Awassi ewes at 100 g/kg of dietary DM resulted in a decrease in feed costs from USD
399/ton to USD 353/ton, proving to be economically beneficial. Additionally, the utilization
of this cost-effective feed positively influenced milk production. As a result, the cost of milk
was significantly reduced with the alternative diet compared to the conventional one [104].

Similarly, Mahmoud and Bendary [150] reported a significant decrease in daily costs
and a remarkable increase in economic efficiency by 57% through the utilization of a
combination of black cumin meal (Nigella sativa) and sesame seed meal as protein sources
in the rations of growing lambs. Moreover, the substitution of bovine cheese whey for
traditional feed significantly reduced annual feedlot costs, decreasing expenses from USD
6790.04 to 4497.97 for finishing 240 lambs. This alternative feed not only ensured adequate
performance in Morada Nova sheep, but also contributed to a reduction in labor costs
and an improvement in the sale price of lambs [151]. Cassava root sieviate and cassava
leaf were used as supplements to Panicum feed for West African Dwarf goats in Nigeria.
The results demonstrated a decrease in feed costs alongside an increase in weight gain,
contributing to enhanced farm profitability [152].

5. Concluding Remarks

Confronted with environmental constraints and food insecurity driven by demo-
graphic growth, there is an imperative need to cultivate more sustainable animal produc-
tion practices. In small ruminants such as sheep (Ovisaries) and goats (Capra hircus), the
utilization of alternative feeds, such as shrubs, plants, and agro-industrial by-products, can
significantly enhance animal productivity, reduce carbon footprints, and mitigate green-
house gas fluxes. This approach is environmentally friendly as it addresses critical issues
associated with feed manufacturing, including land, energy, and water use, whilst also
being cost-effective. Moreover, alternative feeds could be used to improve the quality of
the meat and milk produced. By influencing the bacteria involved in ruminal biohydro-
genation, these feeds can diminish methane emissions, thereby contributing to a reduction
in the overall carbon footprint.
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