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Simple Summary: Artificial intelligence tools, such as convolutional neural networks, are used in
tracking and counting animals, species identification, and measurement of morphometric data in
order to optimize operations and minimize the animals’ stress and physical injuries when they are
handled, which lead to an increase in disease and mortality in livestock. This study aims to evaluate
and understand the effectiveness of counting different quantities of Serrasalmidae fingerlings by
means of images using neural networks. These are promising tools to strengthen round fish farming,
an important species for South American aquaculture, in order to increase production efficiency,
profitability, and the transparency in the commercialization of fingerlings.

Abstract: Aquaculture produces more than 122 million tons of fish globally. Among the several
economically important species are the Serrasalmidae, which are valued for their nutritional and
sensory characteristics. To meet the growing demand, there is a need for automation and accuracy
of processes, at a lower cost. Convolutional neural networks (CNNs) are a viable alternative for
automation, reducing human intervention, work time, errors, and production costs. Therefore,
the objective of this work is to evaluate the efficacy of convolutional neural networks (CNNs) in
counting round fish fingerlings (Serrasalmidae) at different densities using 390 color photographs in
an illuminated environment. The photographs were submitted to two convolutional neural networks
for object detection: one model was adapted from a pre-trained CNN and the other was an online
platform based on AutoML. The metrics used for performance evaluation were precision (P), recall
(R), accuracy (A), and F1-Score. In conclusion, convolutional neural networks (CNNs) are effective
tools for detecting and counting fish. The pre-trained CNN demonstrated outstanding performance in
identifying fish fingerlings, achieving accuracy, precision, and recall rates of 99% or higher, regardless
of fish density. On the other hand, the AutoML exhibited reduced accuracy and recall rates as the
number of fish increased.

Keywords: aquaculture; Internet of Things; neural network
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1. Introduction

The production of aquatic organisms reached 122.6 million tons in 2020, a record
for the aquaculture sector [1]. This growth is mainly due to increasing demand from
the population, and in order to meet it, scientific research and technological innovations
have been developed [2]. Among these, the most widespread and applied ones are those
that generate market value, such as improvements in agility, accuracy, performance, cost
reduction, convenience and ease of management, and traceability and/or process control
through automation [3].

The counting of fish is essential for monitoring, control, and traceability. This is usually
carried out by sampling using containers according to the species and average weight of
the animals [4]. However, there is great variation in weight for most farmed species, even
if size classification is performed, which results in errors in counts completed through
sampling. This process has also been accomplished manually, which causes stress to the fish
and laborers, it is time-consuming, and it is subject to human error [5]. To minimize such
problems, there is a global trend toward the implementation of the Internet of Things (IoT)
and artificial intelligence (AI) for automation and traceability in aquaculture, providing
greater accuracy in the quantification of the flock, greater health control, and food safety
for the consumer [6].

Artificial intelligence tools, such as connectionist techniques or artificial neural net-
works (ANNs), simulate biological synapses, which enables learning for recognition,
counting, and classification of objects according to the organization and interaction of
neurons [7,8]. The first ANNs presented limitations in processing large amounts of visual
data. Therefore, analogously, convolutional neural networks (CNNs) emerged [7]. Focused
on image analysis, CNNs have provided advances in fish identification, biometrics [9,10],
and marine ecology [11,12]. In these neural networks, the classification, identification, and
detection of features occur from sequential convolution layers, which allow for learning
independence in each convolution. The extraction of the main features of the image without
being fully connected in layers, provides a lightness in the connections in order to facilitate
and improve the performance in recognizing objects in images [13–15].

In aquaculture, these technologies are observed in the tracking and counting of ani-
mals, species identification, and measurement of morphometric data. These technologies
optimize operations and minimize the animals’ stress and physical injuries when they
are handled, leading to a decrease in diseases and mortality in fish stock [6,16]. In the
scientific literature, methods of counting and tracking fish by images obtained in aquatic
environments are considered less invasive and more effective than manual or automated
methods available on the market, with accuracy above 90% [17].

The number of objects contained in the image can affect this accuracy, especially in
situations where the objects are overlapping and aggregated [18]. In fish fingerlings, the
distribution of animals in the environment are not uniform, and this overlapping and
aggregation of animals occur more frequently as the density of animals increases.

Studies evaluating the effectiveness of CNNs in counting different quantities of fry
are still scarce in the scientific literature, especially for round fish (Serrasalmidae; Characi-
formes), despite the importance of these species for aquaculture in Latin America [19,20].
Among the Serrasalmidae species, those of economic importance are pacu, pirapitinga,
tambaqui, and their respective hybrids due to the nutritional and sensory characteristics
of their meat, which appeal to consumers [21,22]. In view of the above, the aim of this
research is to evaluate the effectiveness of counting different quantities of Serrasalmidae
fry by means of images using CNNs.

2. Materials and Methods
2.1. Database

The dataset was obtained at the headquarters of the company “Alevinos Rio Verde”,
located in the municipality of Rio Verde, state of Goiás, Brazil. The fingerlings, approx-
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imately three centimeters in length, were placed in blue-bottom 25 L containers with a
40 cm diameter and illuminated with LED light for sharpness, as shown in Figure 1.
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Figure 1. Fingerling image collection platform.

A total of 390 color photographs of round fish fingerlings (Serrasalmidae) were cap-
tured in an illuminated environment using a 12-megapixel, 4608 × 2592 resolution iPhone
XR smartphone camera. The files were divided into equal numbers and organized into
work folders, each containing 65 images, and named according to the number of fish
present in the photos (9, 20, 30, 40, 50, and 60 fingerlings) (Figure 2). A fraction of 70% of the
photos was used for training, 20% for validation, and 10% for testing the CNN as proposed
by Malcher and Guedes [23] and Vendruscolo [24] and then compared for performance.
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Figure 2. Images of the dataset with 9 (a), 20 (b), 30 (c), 40 (d), 50 (e), and 60 (f) round fish fingerlings
(Serrasalmidae).

2.2. Pre-Processing and Labeling the Fish

After collecting and organizing the data, the fish were identified and marked with
bounding boxes (masks) on each image using the LabelImg (https://docs.roboflow.com/
annotate/use-roboflow-annotate/model-assisted-labeling, accessed on 1 February 2024)
graphical tool (Figure 3).

https://docs.roboflow.com/annotate/use-roboflow-annotate/model-assisted-labeling
https://docs.roboflow.com/annotate/use-roboflow-annotate/model-assisted-labeling
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Data labeling was conducted in a collaborative manner, involving the use of a platform
that optimizes and simplifies the process. Loading of data is followed by a crucial pre-
processing phase. At this stage, techniques for resizing, normalizing, and converting
formats were applied, guaranteeing uniformity and quality in the data. The labeling team
carried out a visual analysis, marking the fish identified in the images. Subsequent review
and correction by the supervision team ensured the consistency and accuracy of the labels.
The cross-validation stage, in which team members reviewed each other’s labels, promotes
agreement and accuracy. Once completed and validated, the labeled dataset was exported
in the desired format, ready to be used to train machine learning models. Collaborative
supervision by the team provided a robust approach, drawing on diverse perspectives. The
software employed simplified the process, facilitating efficient coordination throughout the
data labeling cycle and contributing to the reliability of the labels.

This step is crucial for the success of the neural network regardless of the framework
used, because it is through labeling that network learning occurs [25]. Thus, the correct
selection of the boxes is a determinant of effectiveness in recognizing and counting fish [16].
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Data augmentation was used, which involves introducing variations to existing im-
ages or training data, providing fundamental diversification to the dataset. This, in turn,
improves the model’s ability to generalize effectively to unobserved data. In short, data
augmentation has emerged as a valuable strategy for strengthening the generalizability of
deep learning models, especially in data-limited scenarios. It offers an effective solution to
the challenges associated with overfitting and improve the robustness of the model in face
of variations in real data.

2.3. Fish Detection and Counting

For the detection and counting of fish, two models with detection algorithms were
used, and their effectiveness were compared. One of them was an open-source, free
license, and real-time detection CNN proposed by Bochkovskiy et al. [26] and was freely
available on GitHub (https://github.com/, accessed on 1 February 2024)/Google Colab
(https://colab.research.google.com, accessed on 1 February 2024). The other one has an
online platform, is consolidated in the market, and can operate in various environments to
solve complex problems in an automated and didactic way [27,28]. Data processing was
performed on a computer with an Intel Core i5-10400.2.90 GHZ × 12 processor (Intel, Santa
Clara, CA, USA), with 32 gigabytes (GB) of RAM (Dell Inc., Round Rock, TX, USA) and
240 GB of solid-state disk (SSD) (Kingston Technology, Fountain Valley, CA, USA) storage,
and the total number of iterations of all the training data was 200 epochs.

The architecture of the first convolutional neural network used consists of 415 layers
that formed a deep model for object detection. Initially, the input was processed by
convolutional layers, where the first layers (indices 0 to 4) performed convolutions with
different filters to extract low-level features. Layers 5 and 6 perform additional convolutions
and were connected to layer 4 via a concatenation. The next block (indices 7 to 22) repeated
convolutions with deeper layers, followed by a concatenation in layer 10. This pattern was
repeated with some variations to build a richer representation of features. Pooling layers
(indices 12, 25, 38, 51, 76, and 89) were used to reduce spatial dimensionality and preserve
the most important features. Subsequent layers (indices 43 to 62) included convolutions
and concatenations to form an intermediate block before connecting to higher resolution
layers. Layers 63 to 75 applied additional convolutions and use up sampling to increase
spatial resolution. The final part of the architecture (indices 76 to 105) involved repetitive
blocks of representative convolutions (RepConv) and ended with the IDetect layer, which
was specific to object detection. This IDetect layer used information about the dimensions
of the grid and the sizes of the boxes to perform object detection at different scales. This
architecture, illustrated in Figure 4, reflects a complex configuration, where the network
learns to represent hierarchical features at various scales to perform the task of object
detection. The use of convolutional layer repetitions and concatenations contributes to the
network’s ability to learn rich and complex representations. Table 1 below shows the main
parameters used to configure the neural network.
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Table 1. Parameters used to configure the neural network.

Implementation Details Parameters

Training

r0 = 0.01,
lrf = 0.1, momentum = 0.937
weight_decay = 0.0005
box = 0.05,
loss_ota = 1
Batch size = 2
Max-epochs = 200
Loss_function = BCE (Binary Cross Entropy)
Input_size = 768 × 1024
IOU_thres = 0.45

Environment
CUDA:0 (Tesla T4, 15,102.0625 MB)
Platform = Python 3.8
Implementation tools = PyTorch

The model employed in the paid platform adopts an AutoML (automatic machine
learning) approach, and although it does not disclose the underlying architecture, it offers
a notable advantage in the versatility and simplicity in the process of training computer
vision models. Its main feature is the ability to provide an accessible and user-friendly en-
vironment, which is especially designed for users without extensive experience in machine
learning. This simplified approach makes it considerably easier to train customized models
for specific computer vision tasks. The platform prioritizes usability and adaptability,
making it an attractive choice for those who want to obtain custom models without the
need for an in-depth understanding of the intricate details of machine learning.

2.4. Evaluation Metrics

The performance of a CNN in object recognition was estimated by evaluation metrics.
Commonly, the metrics were derived from a confusion matrix that categorizes the model’s
hits and misses in rows and columns into four variables: true positive (TP) when correctly
identified, false positive (FP) when the object is wrongly detected, true negative (TN) when
a result in which the model correctly predicted the negative class, and false negative (FN)
when a result in which the model incorrectly predicted the negative class [29].

The identification of the CNN model used was based on the intersection between the
bounding boxes made manually around the object and the bounding boxes predicted by
the neural network (Figure 5). It was considered a hit when the intersection over union
(IoU) of predicted and demarcated boxes reached the threshold of 50% (mAP@0.5) [30].
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From these variables, the accuracy (A), precision (P), recall (R), and F-Score were
calculated. The accuracy revealed the ratio of correct predictions in the test set considering
all elements identified in the images, whether true or false. Precision indicated the TP hit,
i.e., the percentage of identified fish fingerling that were truly fish. Recall or sensitivity rep-
resented the number of fish in the image recognized by the model, consequently revealing
which were not identified (FN). The F-Score was the weighted average of precision and
recall. In this work, balanced data with a class to be identified (fish) were used, and the
metrics used to evaluate the performance of the networks were:

A = (TP + TN)/(TP + TN + FP + FN) (1)

P = TP/(TP + FP) (2)

R = TP/(TP + FN) (3)

F − Score = 2 ∗ (P ∗ R)/(P + R) (4)

The approach adopted was strategically balanced, prioritizing the minimization of
false negatives (FNs) and false positives (FPs) in a similar way, recognizing the equivalent
importance of both types of errors. To implement this strategy, we used the threshold
adjustment, modifying the model’s decision threshold. This action aims to balance the rate
of FNs and FPs, ensuring that neither type of error was favored over the other. Threshold
manipulation is an effective technique for personalizing the model’s decisions. It is sensitive
to the specific context of the application and tolerant of different types of mistakes. This
balanced approach was adopted to ensure robust performance, while also considering the
implications of false negatives and false positives in the application scenario.

3. Results

The two evaluated models achieved a mAP above 0.8 (80%). According to the method-
ology, a minimum mAP of 0.5 was required. The results indicated that the neural networks
were effective in identifying Serrasalmidae fingerlings using 200 epochs for training.

The accuracy, precision, recall, and F-Score were above 99% for all fish densities for the
CNN, with higher values observed for lower densities. For the AutoML model, precision
(P) was above 99% for all fish densities, but accuracy and recall decreased from 86% to 59%
according to the fish density (10 to 60 fish, respectively). The F-Score also decreased with
an increase in fish, ranging from 92.5% to 74% for AutoML (Table 2).

Table 2. Accuracy, precision, recall, and F-Score of CNN and AutoML models in the identification of
Serrasalmidae fingerlings by images at densities of 10, 20, 30, 40, 50, and 60 fish.

Fish Accuracy Precision (%) Recall (%) F-Score (%)

Number CNN AUTOML CNN AUTOML CNN AUTOML CNN AUTOML

10 99.0 86.0 100 100 99.0 86.0 99.5 92.5

20 100 79.7 100 99.5 100 80.0 100 89.0

30 99.0 61.0 99.7 100 99.4 61.0 99.5 75.8

40 99.3 52.0 99.8 100 99.5 52.0 99.6 69.0

50 99.3 43.0 99.8 100 99.5 43.0 99.6 60.1

60 99.4 59.0 100 100 99.4 59.0 99.7 74.0

The increase in the number of animals compromised the sensitivity of the AutoML
model, reflecting a considerable increase in false negatives (FNs) and causing a direct and
negative impact on accuracy, recall, and F-Score. In cases where the network’s precision
was 100%, such as in photos of 10, 30, 40, 50, and 60 fish submitted to AutoML, the model
did not identify false positives (FP = 0), meaning that all images identified with fingerlings
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were indeed fingerlings. However, the low sensitivity or recall, from 86% to 43%, directly
affected the accuracy of the AutoML model, resulting in a sharp drop of densities of 30 fish or
more. The worst performance in images with higher fish densities may be related to animal
agglomerations that led to fish overlapping in the image. On the other hand, the CNN’s
high sensitivity (above 99%) and speed resulted in lower precision compared to the AutoML
model, causing, for example, the container’s edge to be identified as a fish (Figure 6).
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Nevertheless, the CNN model presented better performance when evaluating the
metrics together, maintaining sensitivity and precision balanced with very low FNs, while
controlling the incidence of FPs in all image categories, achieving rates above 99% in the
four evaluated metrics.

4. Discussion

Costa et al. [31] achieved a mean average precision (mAP-0.5) of 97.30%, but they used
12 and 24 epochs. The use of fewer epochs reduces unnecessary expenses on computational
resources. This result supports the idea that metrics for convolutional neural networks
should be evaluated integrally and not separately, depending on the objective for which
they were designed and trained [32–34].

Convoluted neural networks model used employ algorithms with high detection speeds
that extract image characteristics in a single step, reducing interactions. This disfavors preci-
sion but allows for real-time object detection [35]. The trend towards faster detection speeds is
desirable for monitoring and interventions to be performed dynamically in real-time through
automation and the IoT in Industry 4.0 [36]. However, this model maintained a precision
rate above 99.5%. It can recognize, classify, and distinguish objects in a single step with high
accuracy and sensitivity. It is more efficient than other CNN’s, other computer vision algo-
rithms, such as the RCNN and Fast RCNN, and traditional fish biometric methods [35,37,38].
Achieving an accuracy of 99% or higher was a significant result for the CNN model.
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Park and Kang [39] considered neural networks with 97% accuracy in identifying fish
in underwater images as high performing, based on a dataset of 5,000 images. In another
study, Cai et al. [40] evaluated different neural networks to identify fish with spring viremia
of carp disease. They found that it was necessary to include an MPDIoU loss function to
obtain results above 95%. In their work, they used a dataset of 1814 images (training: 1450;
test: 364) out of a total dataset of 10,000 images.

Our study utilized fewer images compared to other authors, resulting in reduced
efforts for image collection, labeling, computational costs for training, and testing. The suc-
cess of the neural network can be attributed to its characteristics and the high image quality.

Sharpness of the object to be identified and quality of the image were crucial for
training the neural network. Developing a high-precision target detection neural network
model requires a good dataset as a preliminary requirement. In an aquatic environment,
images may be distorted, blurred, or have color distortion due to factors such as water
refraction, dispersion, and color attenuation [41]. However, in this study, none of the col-
lected images were excluded. Data was collected under controlled experimental conditions
with clean water, making the fry easily visible. Other studies conducted with fish in similar
environmental conditions have also achieved accuracies of over 95% [18].

This study suggests that the first neural network used was more effective in counting
fish, and it was not affected by the overlapping or aggregation of fish, as accuracy remained
unchanged even when the density of fish increased. The second model was unable to
achieve this, as accuracy decreased with an increase in the density of fish per image.

The experimental conditions and the technological tool developed for counting Ser-
rasalmidae fingerlings can be easily applied in units that sell them, particularly in retail
units, as a replacement for the current method of manual counting through sampling. In
these commercial units, the animals are counted and packaged for transportation. This
process was conducted in a clean water environment.

5. Conclusions

It can be concluded that convolutional neural networks were effective in detecting
and counting fish fingerlings in images. However, the results may vary depending on the
specific neural network used, particularly in relation to different quantities of fish. The
first model based on a CNN showed excellent performance in recognizing fish fingerlings,
with accuracy, precision, and recall rates equal to or greater than 99%, regardless of fish
density. However, the AutoML model’s accuracy, precision, and recall rates decreased as
the number of fish increased.

Author Contributions: Conceptualization, M.P.F. and A.C.C.; methodology, M.P.F. and A.C.C.;
software, B.M.B. and L.O.P.d.S.; validation, B.M.B., L.O.P.d.S., J.M.N., K.A.d.P.C. and M.A.P.d.S.;
formal analysis, A.C.C.; investigation, A.S.S., L.d.C.L., L.D.H., M.B.P., I.R.d.R., R.M.d.S.d.M. and
R.F.d.O.; resources, A.C.C.; data curation, M.P.F., A.C.C., A.S.S., L.d.C.L., L.D.H., M.B.P., I.R.d.R.,
R.M.d.S.d.M. and R.F.d.O.; writing—original draft preparation, M.P.F.; writing—review and editing,
A.C.C., H.F.d.C.F., J.M.N., K.A.d.P.C., P.H.d.O.V. and M.A.P.d.S.; supervision, A.C.C.; project admin-
istration, A.C.C.; funding acquisition, A.C.C. All authors have read and agreed to the published
version of the manuscript.

Funding: We thank IF Goiano, FAPEG, and CNPQ for funding the project. We are grateful to Alevinos
Rio Verde for helping with development.

Institutional Review Board Statement: This research is in accordance with the ethical principles
of animal experimentation adopted by the Animal Use Committee of the Instituto Federal Goiano
(CEUA/IF Goiano), Goiás, Brazil (Protocol 9792080621, 10 November 2021).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflicts of interest.



Animals 2024, 14, 606 10 of 11

References
1. FAO. The State of World Fisheries and Aquaculture: Towards Blue Transformation; Food and Agriculture Organization of the United

Nations: Rome, Italy, 2022. [CrossRef]
2. Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell,

M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [CrossRef]
3. Massruhá, S.M.F.S.; Leite, M.A.A.; Luchiari, A., Jr.; Evangelista, S.R.M. A transformação digital no campo rumo à agricultura

sustentável e inteligente. In Agricultura Digital: Pesquisa, Desenvolvimento e Inovação nas Cadeias Produtivas, Embrapa; Embrapa
Agricultura Digital: Campinas, Brazil, 2020; pp. 21–42. Available online: https://www.alice.cnptia.embrapa.br/bitstream/doc/
1126214/1/LV-Agricultura-digital-2020-cap1.pdf (accessed on 6 June 2023).

4. Lima, A.F.; Silva, A.P.; Rodrigues, A.P.O.; Bergamin, G.T.; Torati, L.S.; Pedroza Filho, M.X.; Maciel, P.O. Biometria de Peixes:
Piscicultura Familiar. 2013. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/972070/biometria-
de-peixes-piscicultura-familiar (accessed on 7 July 2023).

5. Yu, C.; Fan, X.; Hu, Z.; Xia, X.; Zhao, Y.; Li, R.; Bai, Y. Segmentation and measurement scheme for fish morphological features
based on Mask R-CNN. Inf. Process. Agric. 2020, 7, 523–534. [CrossRef]

6. Chrispin, C.; Angela, S. ApCNNication of artificial intelligence in fisheries and aquaculture. Biot. Res. Today 2020, 2, 499–502.
7. Fiorin, D.V.; Martins, F.R.; Shuch, N.J.; Pereira, E.B. ACNNicações de redes neurais e previsões de disponibilidade de recursos

energéticos solares. Rev. Bras. Ens. Fís. 2011, 33, 1309–1325. [CrossRef]
8. Lorena, A.C.; Jacintho, L.F.O.; Siqueira, M.F.; Giovanni, R.; Lohmann, L.G.; Carvalho, A.C.P.L.F.; Yamamoto, M. Comparing

machine learning classifiers in potential distribution modelling. Expert Syst. Appl. 2011, 38, 5268–5275. [CrossRef]
9. Shen, Y.; Zhou, H.; Li, J.; Jian, F.; Jayas, D.S. Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 2018,

145, 319–325. [CrossRef]
10. Deep, B.V.; Dash, R. Underwater fish species recognition using deep learning techniques. In Proceedings of the 6th International

Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 665–669. [CrossRef]
11. Yu, X.; Ma, Y.; Farrington, S.; Reed, J.; Ouyang, B.; Principe, J.C. Fast segmentation for large and sparsely labeled coral images. In

Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019.
12. Modasshir, M.; Rekleitis, I. Enhancing Coral Reef Monitoring Utilizing a Deep Semi-Supervised Learning Approach. In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020;
pp. 1874–1880.

13. Goodfellow, I.; Bengio, Y.; Courville, A. Convolutional Networks. In Deep Learning; MIT Press: Cambridge, UK, 2016; Chapter 9;
pp. 326–366.

14. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [CrossRef]
15. Passos, B.T.O. Mundo do Ponto de Vista das Redes Neurais Convolucionais. Available online: https://ateliware.com/blog/

redes-neurais-convolucionais (accessed on 13 July 2023).
16. Rocha, W.S.; Doria, C.R.C.; Watanabe, C.Y.V. Fish detection and measurement based on mask R-CNN. In Proceedings of the

Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de Galinhas, Brazil, 7–10 November 2020; pp. 183–186.
[CrossRef]

17. Wang, S.H.; Zhao, J.W.; Chen, Y.Q. Robust tracking of fish schools using CNN for head indentification. Multimed. Tools Appl. 2017,
76, 23679–23697. [CrossRef]

18. Feng, D.; Xie, J.; Liu, T.; Xu, L.; Guo, J.; Hassan, S.G.; Liu, S. Fry Counting Models Based on Attention Mechanism and
YOLOv4-Tiny. IEEE Access 2022, 10, 132363–132375. [CrossRef]

19. Ribeiro, F.M.; Lima, M.; Costa, P.A.T.; Pereira, D.M.; Carvalho, T.A.; Souza, T.V.; Silva, F.F.E.; Costa, A.C. Associations between
morphometric variables and weight and yields carcass in pirapitinga Piaractus brachypomus. Aquac. Res. 2019, 50, 2004–2011.
[CrossRef]

20. Costa, A.C.; Balestre, M.; Botelho, H.A.; Freitas, R.T.F.; Gomes, R.C.S.; Campos, S.A.S.; Foresti, F.P.; Hashimoto, D.T.; Martins,
D.G.; Prado, F.D.; et al. Imputation of genetic composition for missing pedigree data in Serrasalmidae using morphometric data.
Sci. Agric. 2017, 74, 443–449. [CrossRef]

21. Costa, A.C.; Botelho, H.A.; Gomes, R.C.S.; Sousa, C.S.A.; Reis, N.R.V.; Balestre, M.; Prado, F.D.; Hashimoto, D.T.; Martins, D.G.;
Porto, F.F.; et al. General and specific combining ability in Serrasalmidae. Aquac. Res. 2018, 50, 717–724. [CrossRef]

22. Costa, A.C.; Serafini, M.A.; Reis Neto, R.V.; Santos, P.F.; Marques, L.R.; Rezende, I.R.; Mendonça, M.A.C.; Allaman, I.B.; Freitas,
R.T.F. Similarity between Piaractus mesopotamicus, Colossoma macropomum and their interspecific hybrids. Aquaculture 2020,
526, 735397. [CrossRef]

23. Malcher, D.B.; Guedes, E.B. Classificação inteligente do teste de corte do cacau com redes neurais convolucionais profundas. In
Anais do XIII Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais; Sociedade Brasileira de Computação:
Porto Alegre, Brazil, 2022; pp. 31–40. [CrossRef]

24. Vendruscolo, D.G.S.; Drescher, R.; Souza, H.S.; Moura, J.P.V.M.; Mamoré, F.M.D.; Siqueira, T.D.S. Estimativa da altura de eucalipto
por meio de regressão não linear e redes neurais artificiais. Rev. Bras. Biom. 2015, 33, 556–569.

25. Tzutalin. Labelimg Graphical Image Annotation Tool and Label Object Bounding Boxes in Images. 2018. Version 1.8.1. Available
online: https://github.com/tzutalin/labelImg.git (accessed on 1 March 2023).

https://doi.org/10.4060/cc0461en
https://doi.org/10.1038/s41586-021-03308-6
https://www.alice.cnptia.embrapa.br/bitstream/doc/1126214/1/LV-Agricultura-digital-2020-cap1.pdf
https://www.alice.cnptia.embrapa.br/bitstream/doc/1126214/1/LV-Agricultura-digital-2020-cap1.pdf
https://www.embrapa.br/busca-de-publicacoes/-/publicacao/972070/biometria-de-peixes-piscicultura-familiar
https://www.embrapa.br/busca-de-publicacoes/-/publicacao/972070/biometria-de-peixes-piscicultura-familiar
https://doi.org/10.1016/j.inpa.2020.01.002
https://doi.org/10.1590/S1806-11172011000100009
https://doi.org/10.1016/j.eswa.2010.10.031
https://doi.org/10.1016/j.compag.2017.11.039
https://doi.org/10.1109/SPIN.2019.8711657
https://doi.org/10.48550/arXiv.1511.08458
https://ateliware.com/blog/redes-neurais-convolucionais
https://ateliware.com/blog/redes-neurais-convolucionais
https://doi.org/10.5753/sibgrapi.est.2020.13007
https://doi.org/10.1007/s11042-016-4045-3
https://doi.org/10.1109/ACCESS.2022.3230909
https://doi.org/10.1111/are.14099
https://doi.org/10.1590/1678-992x-2016-0251
https://doi.org/10.1111/are.13913
https://doi.org/10.1016/j.aquaculture.2020.735397
https://doi.org/10.5753/wcama.2022.222804
https://github.com/tzutalin/labelImg.git


Animals 2024, 14, 606 11 of 11

26. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
[CrossRef]

27. Bhattacharyya, J. Step by Step Guide to Object Detection Using Roboflow. Developers Corner. 2020. Available online:
https://analyticsindiamag.com/step-by-step-guide-to-object-detection-using-roboflow/#:~:text=Roboflow%20is%20a%20
Computer%20Vision,Roboflow%20accepts%20various%20annotation%20formats (accessed on 2 August 2022).

28. Lin, Q.; Ye, G.; Wang, J.; Liu, H. Roboflow: A data-centric workflow management system for developing AI—Enhanced
robots. In Proceedings of the 5th Conference on Robot Learnin, London, UK, 8–11 November 2021; Available online: https:
//proceedings.mlr.press/v164/lin22c/lin22c.pdf (accessed on 11 December 2023).

29. Souza, V.; Araújo, L.; Silva, L.; Santos, A. Análise comparativa de redes neurais convolucionais no reconhecimento de cenas. An.
Comput. Beach 2020, 11, 419–426.

30. Kukil. Intersection over Union (IoU) in Object Detection and Segmentation. Learn OpenCV. Available online: https://learnopencv.
com/intersection-over-union-iou-in-object-detection-and-segmentation/ (accessed on 26 October 2023).

31. Costa, C.S.; Zanoni, V.A.G.; Curvo, L.R.V.; Carvalho, M.A.; Boscolo, W.R.; Signor, A.; Arruda, M.S.; Nucci, H.H.P.; Marcato, J., Jr.;
Gonçalves, W.N.; et al. Deep learning apCNNied in fish reproduction for counting larvae in images captured by smartphone.
Aquac. Eng. 2022, 97, 102225. [CrossRef]

32. Buckland, M.; Gey, F. The relationship between recall and precision. J. Am. Soc. Inf. Sci. 1994, 45, 12–19. [CrossRef]
33. Davis, J.; Goadrich, M. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International

Conference on Machine Learning—ICML, Pittsburgh, PN, USA, 25–29 June 2006. [CrossRef]
34. Tatbul, N.; Lee, T.J.; Zdonik, S.; Alam, M.; Gottschlich, J. Precision and recall for time series. arXiv 2019, arXiv:1803.03639.
35. Wangenheim, A. Deep Learning: Detecção de Objetos em Imagens. Universidade Federal de Santa Catarina. 2018. Available

online: https://lapix.ufsc.br/ensino/visao/visao-computacionaldeep-learning/deteccao-de-objetos-em-imagens/ (accessed
on 11 October 2022).

36. Bandyopadhyay, H. Yolo: Real-Time Object Detection exCNNained. 2022. Available online: https://www.v7labs.com/blog/
yolo-object-detection#h2 (accessed on 11 October 2022).

37. Kasinathan, T.; Singaraju, D.; Uyyala, S.R. Insect classification and detection in field crops using modern machine learning
techniques. Inf. Process. Agric. 2020, 8, 446–457. [CrossRef]

38. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of- freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

39. Park, J.H.; Kang, C. A study on enhancement of fish recognition using cumulative mean of YOLO network in underwater video
images. J. Mar. Sci. Eng. 2020, 8, 952. [CrossRef]

40. Cai, Y.; Zekai Yao, Z.; Jiang, Z.; Qin, W.; Xiao, J.; Huang, X.; Pan, J.; Feng, H. Rapid detection of fish with SVC symptoms based on
machine vision combined with a NAM-YOLO v7 hybrid model. Aquaculture 2024, 582, 740558. [CrossRef]

41. Zhao, Z.; Liu, Y.; Sun, X.; Liu, J.; Yang, X.; Zhou, C. Composited FishNet: Fish Detection and Species Recognition from Low-Quality
Underwater Videos. IEEE Trans. Imag. Process. 2021, 30, 4719–4734. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2004.10934
https://analyticsindiamag.com/step-by-step-guide-to-object-detection-using-roboflow/#:~:text=Roboflow%20is%20a%20Computer%20Vision,Roboflow%20accepts%20various%20annotation%20formats
https://analyticsindiamag.com/step-by-step-guide-to-object-detection-using-roboflow/#:~:text=Roboflow%20is%20a%20Computer%20Vision,Roboflow%20accepts%20various%20annotation%20formats
https://proceedings.mlr.press/v164/lin22c/lin22c.pdf
https://proceedings.mlr.press/v164/lin22c/lin22c.pdf
https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/
https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/
https://doi.org/10.1016/j.aquaeng.2022.102225
https://doi.org/10.1002/(SICI)1097-4571(199401)45:1%3C12::AID-ASI2%3E3.0.CO;2-L
https://doi.org/10.1145/1143844.1143874
https://lapix.ufsc.br/ensino/visao/visao-computacionaldeep-learning/deteccao-de-objetos-em-imagens/
https://www.v7labs.com/blog/yolo-object-detection#h2
https://www.v7labs.com/blog/yolo-object-detection#h2
https://doi.org/10.1016/j.inpa.2020.09.006
https://doi.org/10.3390/jmse8110952
https://doi.org/10.1016/j.aquaculture.2024.740558
https://doi.org/10.1109/TIP.2021.3074738

	Introduction 
	Materials and Methods 
	Database 
	Pre-Processing and Labeling the Fish 
	Fish Detection and Counting 
	Evaluation Metrics 

	Results 
	Discussion 
	Conclusions 
	References

