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Simple Summary: Lemongrass (Cymbopogon citratus) is frequently consumed as an infusion because
of its pharmacological properties, including suspected anti-inflammatory effects. In this study, we
examined how lemongrass essential oil, a natural product, can help protect against inflammation and
damage caused by stress in cells. We used zebrafish, a small fish often used in scientific research, to
determine how different amounts of lemongrass oil affected their health. Our focus was on how the
oil influenced the movement of certain immune cells (neutrophils), the healing of the fishes’ tail fin,
and the health of their cells. We found that lemongrass oil, at all tested levels, reduced the movement
of these immune cells. Interestingly, higher amounts of the oil slowed down the healing of the tail
fin. We also noticed changes in the activities of some of the fishes’ protective enzymes, which are
important for defending their cells against damage. Our study suggests that lemongrass oil could be
useful for its anti-inflammatory properties and might help protect cells from certain types of stress.
These findings are valuable because they can lead to a better understanding of natural remedies and
their potential use in health and disease management.

Abstract: This study explored the protective capacity of the essential oil (EO) of Cymbopogon citratus
against oxidative stress induced by hydrogen peroxide (H2O2) and the inflammatory potential in
zebrafish. Using five concentrations of EO (0.39, 0.78, 1.56, 3.12, and 6.25 µg/mL) in the presence
of 7.5 mM H2O2, we analyzed the effects on neutrophil migration, caudal fin regeneration, cellular
apoptosis, production of reactive oxygen species (ROS), and activities of the antioxidant enzymes
superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) after 96 h of
exposure. A significant decrease in neutrophil migration was observed in all EO treatments compared
to the control. Higher concentrations of EO (3.12 and 6.25 µg/mL) resulted in a significant decrease in
caudal fin regeneration compared to the control. SOD activity was reduced at all EO concentrations,
CAT activity significantly decreased at 3.12 µg/mL, and GST activity increased at 0.78 µg/mL and
1.56 µg/mL, compared to the control group. No significant changes in ROS production were detected.
A reduction in cellular apoptosis was evident at all EO concentrations, suggesting that C. citratus
EO exhibits anti-inflammatory properties, influences regenerative processes, and protects against
oxidative stress and apoptosis.
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1. Introduction

The use of medicinal plants forms the cornerstone of traditional medicine, which
has existed for millennia. Nonetheless, less than 10% of the current biodiversity has been
explored for potential medicinal applications [1]. The World Health Organization (WHO)
estimates that 80% of developing countries incorporate traditional medicine into their
primary healthcare systems, with 85% using medicinal plants and plant extracts [2]. The
appeal of medicinal plants can be attributed to several factors, such as their diversity, use
as low-cost treatments, and accessibility [3]. Considering the potential advantages of these
plants, it is important to reveal their therapeutic properties and expand our understanding
of their role in contemporary medicine

Cymbopogon citratus (DC.) Stapf, commonly known as lemongrass, has a considerable
impact on ethnopharmacological applications worldwide [4]. With its geographical distri-
bution spanning Asia, Africa, and Australia, each region harnesses its therapeutic attributes
within the framework of traditional medical practices. In these geographical contexts,
C. citratus manifests in a myriad of medicinal roles. Typically, the applications of C. citratus
involve the preparation of infusions and decoctions, leading to the development of thera-
peutics for managing febrile conditions and disorders of the gastrointestinal and central
nervous systems [5]. Many of the medicinal properties of C. citratus arise from its essential
oil (EO). This EO, derived from the plant’s secondary metabolic processes, has attracted
scientific interest because of its potential as a promising source for novel pharmacological
developments targeting conditions linked to oxidative stress and inflammation [4,6]. Given
its wide-ranging therapeutic potential, a thorough scientific investigation of C. citratus EO
(CEO) is essential.

Oxidative stress is caused by an imbalance between the production of reactive oxygen
species (ROS) and the elimination of antioxidants. If not properly regulated, ROS can
cause damage to proteins, lipids, and DNA, and induce cytokine production that increases
inflammation, apoptosis, and necrosis [7]. Inflammation allows the immune system to
remove harmful stimuli and initiate tissue repair. However, prolonged inflammation can
also contribute to disease progression [8]. Oxidative stress and inflammation are closely
intertwined—each can trigger and exacerbate the other [9]. Given the need for treatments
that can disrupt this cycle, there is growing interest in plant derivatives that moderate
oxidative stress and inflammation.

The multifaceted exploration of phytochemicals and compounds sourced from the nat-
ural milieu presents a challenge because of the polydispersity of metabolites, which could
exhibit altered functionalities when removed from their inherent ecological niche [10]. The
pursuit of identifying plant-based compounds with pharmaceutical potency necessitates a
meticulous examination of various parameters including, but not limited to, cultivation
practices, ethnopharmacological history, utility, processes of active compound isolation, and
subsequent characterization. Moreover, integral components of this scrutinizing process
include the appraisal of the drug’s potency and safety parameters, as well as undertaking
both preclinical and clinical assessments [11]. The execution of rigorous toxicological
assessments, employing animal models, is essential to identify the potential harmful con-
sequences associated with these bioactive compounds. Furthermore, investigating the
multiple chemical configurations in natural substances may lead to the discovery of novel
molecules with pharmacological potential [12].

The zebrafish (Danio rerio) model offers many benefits for drug screening [13]. It serves
as a viable alternative to traditional laboratory animals such as rats, mice, and rabbits [14]
because of its morphological, genetic, and physiological parallels with humans [15]. The
zebrafish model enables swift and accurate assessment of various substances and their
potential impacts [16,17]. In addition, zebrafish are easy to handle, show rapid develop-
ment, are cost-effective, and can be employed at all life stages [18]. In addition, zebrafish
possess a sequenced genome [19], external reproduction, and transparent embryos [20].
Consequently, this model offers significant insights into the mechanisms of toxicity in
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medicinal plants and assists in the identification and discovery of new pharmaceuticals for
the treatment of a range of diseases [14].

Due to the increasing demand for the identification of new bioactive compounds with
therapeutic potential from natural sources, the present study aimed to evaluate the anti-
inflammatory potential of Cymbopogon citratus essential oil (CEO) by analyzing neutrophil
recruitment and caudal fin regeneration in zebrafish larvae. In addition, the protective
effect of EO on oxidative stress, cell apoptosis, and the production of reactive oxygen
species (ROS) induced by hydrogen peroxide is evaluated. Our core hypothesis posits that
CEO could exhibit advantageous characteristics in modulating inflammatory responses
and oxidative stress in zebrafish, potentially presenting promising therapeutic applications
in human medicine.

2. Materials and Methods
2.1. Chemicals and Reagents

1-phenyl-2-thiourea (PTU), 1-Chloro-2,4-dinitrobenzene (CNDB), 2′,7′-dichlorofluorescein
diacetate (DCF-DA), acridine orange, calcium chloride, nitroblue tetrazolium chloride (NBT),
dimethyl sulfoxide (DMSO), dibasic potassium phosphate, monobasic potassium phos-
phate, riboflavin, and tricaine were purchased from Sigma (Darmstadt, Germany). Hy-
drogen peroxide (H2O2) and methionine were purchased from Synth. Ethylenediaminete-
traacetic acid (EDTA) was purchased from Vetec (Duque de Caxias, Brazil). Ethyl alcohol,
potassium chloride, sodium chloride, magnesium sulfate, and Sudan black were purchased
from Êxodo Científica (Sumaré, Brazil). Bradford reagent was purchased from Perfyl Tech
(São Bernardo do Campo, Brazil).

2.2. Plant Material and Obtaining Essential Oil

The C. citratus used in this study was sourced from the UFLA Medicinal Plants Garden,
Lavras, MG, Brazil (latitude: 21◦13′48.8′′ S; longitude: 44◦58′28.5′′ W). A specimen was
deposited in the UFLA Herbarium for reference (voucher specimen-ESAL18409). In this
study, we followed the CEO extraction method detailed by Duarte da Silva [21]. Briefly,
the process involved the steam distillation of 996.14 g of fresh leaves with eight liters of
distilled water. The distillation was carried out over a period of three hours to ensure
optimal extraction of the oil. Post distillation, the EO was purified using decantation. The
extracted EO was then meticulously stored under controlled conditions until it was needed
for further experimental use. In summary, the predominant constituents of the EO include
geranial (43.72%) and neral (29%), which are isomers of citral, and myrcene (18.30%).

2.3. Zebrafish Maintenance and Embryo Collection

Adult wild-type zebrafish were raised and maintained in a recirculating water system
specifically designed for the species (Hydrus ZEB-60, Alesco, SP, Brazil) as described by
Duarte da Silva et al. [21]. Briefly, the culture conditions comprised a temperature of
28 ± 1 ◦C, a 14/10 h light/dark cycle, twice daily feeding with a flake diet, and daily
provision of Artemia nauplii. All eggs were gathered from natural spawning events and
kept in E3 medium (NaCl 5 mM, KCl 0.17 mM, CaCl2 0.33 mM, MgSO4 0.33 mM; pH 7.4).
Harvested fertilized eggs were gently rinsed in E3 medium, screened under a microscope
(CX31, Olympus, Tokyo, Japan), and selected for downstream assays under a 40× objective.
Subsequently, 4 h post fertilization (hpf), embryos were singled out and transferred, in
triplicates of 20 embryos per plate, into Petri dishes containing one of the CEO dilutions
(0.39, 0.78, 1.56, 3.12, or 6.25 µg/mL) in 0.5% DMSO vehicle control. Culture plates were
then incubated at 28.5 ◦C. Test concentrations were defined based on the basis of LC50
(9.02 µg/mL) data from our previous study [21].

2.4. Neutrophil Migration

To assess neutrophil migration, 20 embryos at 8 hpf were exposed to 0.003% 1-phenyl-
2-thiourea (PTU; Sigma-Aldrich, St. Louis, MO, USA) to inhibit tyrosinase, a key enzyme
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in the melanogenic pathway. After 72 hpf, larvae were exposed to the determined concen-
trations of EO for 2 h before lesioning the caudal fin. In addition to evaluating neutrophil
migration at each CEO concentration, we also assessed it in the control treatment and in a
separate set of larvae exposed only to DMSO to discern the specific effects of CEO from
those of the solvent. The larvae were then anesthetized with 0.016% tricaine, positioned in
a Petri dish, and the caudal fin primordia were cut with a surgical scalpel blade just past the
notochord with the aid of a stereomicroscope at 10× objective [22,23]. The larvae were re-
turned to the tested solutions and incubated at 28 ± 1 ◦C for 6 h [24]. After 6 h, larvae were
fixed overnight with 4% paraformaldehyde solution and subsequently stained with Sudan
black for 20 min [24,25]. Larvae were washed in 70% ethanol to remove excess dye to facili-
tate the visualization of individual neutrophils [26]. Images were captured and counting
was performed using a stereomicroscope at 10× objective (Olympus, model CX31).

2.5. Caudal Fin Regeneration

Twenty larvae from each treatment group, the control (unamputated and amputated
only fish), DMSO, 0.39, 0.78, 1.56, 3.12, and 6.25 µg/mL groups, were used to analyze the
caudal fin regeneration process, following the protocol of Sun et al. [27]. The embryos
obtained were kept in E3 medium until 72 hpf. Larvae were anesthetized with 0.016%
tricaine, added to a Petri dish, and the caudal fin primordia was cut with a surgical
scalpel blade just after the notochord, under the aid of a stereomicroscope at 10× objective
(Olympus, model CX31) [22,23]. Larvae were photographed immediately after amputation
(0 h post amputation (hpa)) using a microscope at 10× objective (Olympus, CX3, Tokyo,
Japan). The larvae were then placed in the respective OE concentrations in a 96-well plate
(1 larva per well) with 200 µL and photographed again at 72 hpa. The regenerated area of
the larval caudal fin was quantified using Motic Image Plus 3.0 software.

2.6. Antioxidant and Apoptotic Activity Induced by Hydrogen Peroxide (H2O2)

To evaluate the antioxidant and apoptotic effects of EO, hydrogen peroxide (H2O2)
was used as an intracellular inducer of oxidative stress [28]. This compound readily diffuses
across cell membranes, reacting with intracellular ions to generate hydroxyl radicals, which
are highly reactive and induce cell death via oxidative signaling [29–32]. The embryos were
exposed to CEO concentrations at 1 hpf, followed by the addition of 7.5 mM of H2O2 to
each plate. To evaluate the antioxidant and apoptotic effects, they were exposed to H2O2
until 96 hpf and 72 hpf, respectively [31,33].

Antioxidant enzyme activity was assessed using a pool of 20 larvae per replicate,
totaling 60 larvae per treatment group: control (exposed and unexposed to H2O2), DMSO,
0.39, 0.78, 1.56, and 3.12 µg/mL groups. Larvae were exposed to CEO immediately post
fertilization and maintained up to 96 hpf. The larvae were placed in microtubes con-
taining 400 µL of cold phosphate-buffered saline (PBS) and homogenized with a glass
rod. Subsequently, the homogenates were centrifuged at 4000× g at 4 ◦C for 15 min, and
the supernatants were collected and stored at −20 ◦C until further analysis [34]. Protein
concentration in the homogenates was determined according to the method described by
Bradford [35] at 595 nm. Catalase (CAT; EC 1.11.1.6) activity was determined using the
method of Claiborne [36]. A mixture of 30 µL of homogenized larval supernatant, 135 µL
of PBS, and 135 µL of H2O2 was used. The decrease in absorbance was measured using a
spectrophotometer at 240 nm for 2 min. The results are expressed in µ/mol of hydrogen
peroxide degraded per minute per mg of protein. Superoxide dismutase (SOD; EC 1.15.1.1)
activity was determined according to Song et al. [37]. An enzymatic assay solution was
prepared containing 100 µL of PBS, 2 µL of EDTA, 40 µL of methionine, 11 µL of ultrapure
water, and 15 µL of NBT. The reading was performed at 560 nm and the results were
expressed in units of SOD per mg of protein [37,38]. Glutathione-S-transferase (GST; EC
2.5.1.18) activity was measured using the method proposed by Habig and Jakoby [39]. A
total of 15 µL of homogenate, 50 µL of reduced glutathione-GSH, and 180 µL of CDNB was
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used. Absorbance reading was performed at 340 nm for 3 min using a spectrophotometer.
The results are reported as units per mg of protein [40].

For apoptotic cell identification, at 72 hpf 20 larvae treated with CEO were washed
twice with E3 medium, followed by staining with a solution containing 5 µg/mL of
acridine orange (AO) for 20 min in a dark, room-temperature environment [41,42], as
recently detailed by Duarte da Silva et al. [21]. Apoptotic cells were also assessed in the
control groups (exposed and unexposed to H2O2 and exposed to DMSO).

For the quantification of reactive oxygen species (ROS), 20 larvae per treatment were
selected. The determination of ROS was performed using a fluorescence probe method.
In this procedure, the animals were incubated with DCF-DA at a concentration of 10 µM.
The incubation was conducted for 20 min at room temperature and in dark conditions,
according to the methodology established by Driver et al. [43] and described in further
detail by Duarte da Silva et al. [21].

2.7. Statistical Analysis

To assess data normality, the Shapiro–Wilk test was initially employed for the data
analysis. Once normal distribution was confirmed, an Analysis of Variance (ANOVA) was
performed. Should any significant differences be identified, they were further investigated
using Tukey’s post hoc test, with a predetermined significance threshold of 5%. All statis-
tical analyses were carried out using Minitab® software, version 18 (Minitab LLC, State
College, PA, USA).

3. Results
3.1. Neutrophil Migration

In all treatment groups exposed to CEO, a significant decrease in neutrophil migration
was observed compared to the control groups (Figure 1).
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Figure 1. Influence of CEO on neutrophil migration. The data are represented as mean ± standard
deviation (n = 20 larvae per treatment). Different superscript letters indicate significant differences
between groups according to Tukey’s post hoc test.

3.2. Tail Regeneration

Regarding tail fin regeneration (Figure 2), a significant decrease was observed in the
groups treated with 3.12 and 6.25 µg/mL concentrations of EO compared to the other
groups tested (Figure 3). However, the control group that had undergone caudal fin
amputation showed a level of regeneration similar to that of the groups treated with 0.39,
0.78, and 1.56 µg/mL CEO, with no statistically significant differences observed among
these groups (Figure 3).
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Figure 3. Influence of CEO on caudal fin regeneration in zebrafish larvae. Data presented as
mean ± standard deviation (n = 20 larvae per treatment). Differing superscript letters denote signifi-
cant statistical differences between treatment groups as determined by Tukey’s test.

3.3. Antioxidant Activity Induced by H2O2

SOD activity significantly decreased in groups treated with 0.39 and 3.12 µg/mL
of CEO compared to the untreated control group, the group treated with H2O2, and the
group treated with DMSO (Figure 4A). However, the groups treated with H2O2 and DMSO
showed increased SOD activity compared to the EO-treated groups at concentrations of 0.39,
0.78, and 3.12 µg/mL (Figure 4A). The group treated with 3.12 µg/mL EO had significantly
lower CAT activity compared to the untreated control group, the H2O2 control group, and
the group treated with 0.78 µg/mL EO (Figure 4B). Conversely, GST activity tended to
increase with higher EO concentrations to a concentration of 1.56 µg/mL. Notably, the
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highest GST activity was observed in the groups treated with 0.78 and 1.56 µg/mL EO,
which surpassed the control groups (Figure 4C). In the context of the present study, it
is pertinent to acknowledge that the evaluation of SOD, CAT, and GST activity at the
uppermost concentration of 6.25 µg/mL was precluded due to the substantial mortality
rates observed during the exposure phase to the essential oil (EO). This factor made it
difficult to carry out a reliable assessment in this concentration range.
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(B) catalase (CAT), and (C) glutathione s-transferase (GST) in zebrafish embryos/larvae at 96 h post
fertilization (hpf). Data are depicted as mean ± standard deviation (n = 60 larvae per treatment).
Differing superscript letters denote statistically significant differences among groups as per Tukey’s
test.

3.4. ROS and Apoptosis Induced by H2O2

The generation of ROS showed no significant differences between the tested CEO
concentrations and the control groups (Figure 5A). In terms of apoptosis, the 0.39 µg/mL
CEO concentration showed a decrease relative to other treatment groups; however, this
change was not statistically significant compared to the control groups (Figure 5B). Interest-
ingly, the 3.12 µg/mL CEO concentration also appeared to lower apoptosis levels, closely
mirroring the results for the 0.78 and 1.56 µg/mL CEO concentrations (Figure 5B). It should
be noted that for the highest concentration of 6.25 µg/mL, apoptosis evaluation was not
feasible due to the elevated mortality rates observed during the experimental phase.
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of the control group (n = 60 larvae per treatment). Different superscript letters indicate significant
differences between groups according to Tukey’s test.
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4. Discussion

Inflammation is the primary response of the innate immune system to the entry of
pathogens, foreign bodies, or injuries into the tissue [44]. The primary goal of the in-
flammatory response is to localize and eliminate factors that interfere with homeostasis
and initiate tissue restoration [45,46]. The inflammatory process involves tissue-resident
cells, blood vessels, proteins, and immune cells [44,47]. During the recruitment process,
macrophages and neutrophils are overactivated and induce the production of proinflam-
matory cytokines [48].

Neutrophil migration serves as the initial leukocyte response to tissue damage and
infection and plays a crucial role in physiological responses to inflammation [49]. These
cells function by localizing, phagocytosing, and eradicating micro-organisms by generating
ROS and/or antibacterial proteins. The quantity of migrating leukocytes corresponds to the
severity of inflammation [50]. However, unregulated and excessive neutrophil activity can
result in persistent inflammation, tissue damage, and disease progression [51]. The present
study demonstrates that all tested concentrations show potential anti-inflammatory effects
by significantly decreasing neutrophil infiltration during inflammation compared with
the control, underlining the therapeutic potential for controlling inflammatory processes.
Leite et al. [52] demonstrated that the EO of C. winterianus inhibits carrageenan-induced
neutrophil migration in mice in a dose-dependent manner. This suppression could be due
to the inhibition of inflammatory mediators such as nitric oxide, prostaglandin E2, and
cytokines like IL-1β, IL-6, and TNF-α that facilitate cell migration [53]. Certain molecules,
specifically monoterpenes such as neral and geranial present in CEO, could contribute
to the partial inhibition of inflammatory substances [54]. Citral has also been shown to
limit the production of IL-1b, IL-6, and TNF-α [55,56]. Furthermore, EOs from lemongrass,
geranium, and mint containing compounds such as citral, geranial, neral, and carvone have
demonstrated inhibitory effects on proinflammatory cytokine production [57,58].

Neutrophil migration plays a critical role in tissue regeneration, a process through
which damaged structures partially or completely regenerate. Zebrafish demonstrate a high
capacity for epimorphic regeneration, including the ability to regenerate various complex
structures such as the fins, heart, brain, and retina [59]. During regeneration, the wound
epidermis and blastema are formed in response to tissue amputation. These structures,
through coordinated actions, regulate cell proliferation and morphogenesis [22]. While
appropriate neutrophil migration is important for mounting an immune response during
regeneration, excess activity can contribute to tissue damage if improperly regulated [22]. In
the present study, the lowest CEO concentrations did not significantly differ from the ampu-
tation control group; however, the highest concentrations (3.12 and 6.25 µg/mL) impeded
the regeneration process. This inhibition may be related to the results of the embryotoxicity
test, in which larvae showed morphological changes such as lordosis and deformity in
the tail, as observed in another study [21], affecting the regeneration of the caudal fin,
even with CEO showing a positive effect on neutrophil migration. Studies have shown
that teratogenic effects can be attributed to the compounds present in CEO, such as citral,
linalool, geraniol, geranyl acetate, and combinations of these compounds [60,61]. These
compounds act rapidly in the organism and can affect respiration rates and cause damage
to physiological processes and muscle activities, leading to permanent paralysis [62]. This
evidence helps explain the inhibition of regeneration observed at higher concentrations,
which could result from teratogenic effects disrupting physiological processes beyond the
impact on productive neutrophil activity.

Therefore, signaling molecules known to regulate developmental processes have
become the primary focus of regeneration research. One example is retinoic acid (RA),
which is involved in several regenerative processes, such as the regeneration of fins and
hearts in zebrafish [63]. Citral, one of the compounds in the CEO, has been investigated
as an inhibitor of the RA signaling pathway, affecting tissue regeneration. Research on
zebrafish larvae and adults exposed to citral has shown that it inhibits RA signaling,
affecting wound epithelium, blastema formation, and fin regeneration [64]. Studies with
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the sea cucumber (Holothuria glaberrima) have demonstrated a significant reduction in
intestinal rudiment, cell division, and differentiation in regenerated tissues compared with
controls [65]. Furthermore, a study with axolotl (Ambystoma mexicanum) indicated that
citral slowed the regeneration rate of forelimbs, severely affecting their pattern [66].

In the protochordate ascidian species (Polyandrocarpa misakiensis), citral inhibited the
formation of the posterior half of the intestine (esophagus, stomach, and intestine) after
amputation [67].

Living organisms undergo various chemical reactions, including electron oxidation
and reduction, which are fundamental to metabolic processes [68,69]. These reactions can
lead to the generation of free radicals, which are highly unstable and reactive molecules
produced when electrons are uncoupled in the outer valence shell [68,70]. Oxidative stress
results from either an excess production of these radicals or a deficiency in antioxidant
systems [68,70]. Antioxidant enzymes, such as SOD, CAT, and GST, play vital roles in de-
fending against oxidative stress induced by free radicals [71,72]. SOD converts superoxide
(O2

−) into hydrogen peroxide (H2O2), whereas CAT catalyzes the degradation of H2O2
into water and oxygen [73,74]. GST facilitates the biotransformation of exogenous and
endogenous compounds, thereby detoxifying the body from ROS [75–77]. In our study,
H2O2 acted as an intracellular promoter of oxidative stress, inducing cell apoptosis via
oxidative signaling [29,32]. H2O2 is a stable molecule that diffuses rapidly across the cell
membrane and is converted into highly reactive hydroxyl radicals [30]. In our study, the
animals were pre-treated with CEO, resulting in a significant decrease in SOD levels. This
suggests the antioxidant role of the EO and its potential to reduce the demand for SOD
production in combating ROS. These observed decreases can be attributed to a mechanism
of simultaneous antioxidant action between the compounds [78], such as monoterpenes,
especially citral, which has shown antioxidant activity in previous studies [79,80]. A study
involving C. martinii EO in rats demonstrated a reduction in SOD activity, which was
attributed to the combined action of linalool and β-caryophyllene [78]. These compounds
are also present in CEO, as described in our previous study [21]. CAT levels showed an
increase, except for at the highest concentration, which displayed a significant decrease
compared with the control. The CAT results can be explained by the dosages used. Con-
centrations lower than 3.12 µg/mL were not sufficient to inhibit the action of ROS present
in the organism [78], since the induction of stress in the organism made too much H2O2
available in the medium. Terpenoids, the main components of EOs, are responsible for
their antioxidant action [81,82], which may explain the decrease in SOD and CAT activity.
Conversely, we observed a significant increase in GST levels, particularly at concentrations
of 0.78 and 1.56 µg/mL. Buch et al. [83] evaluated the neuroprotective effect of C. martinii
EO against global cerebral ischemia/reperfusion (I/R)-induced oxidative stress in rats
and observed similar results for GST activity. These findings suggest that CEO may mod-
ify the activities of antioxidant enzymes, potentially acting as a protective agent against
oxidative stress.

ROS overproduction is associated with cell death because ion imbalance can cause
both direct and indirect damage to nucleic acids and change the structure and function
of cellular lipids and proteins, ultimately leading to cell death [68,70]. In this study, we
observed that none of the EO concentrations showed significant differences compared
with the control groups. However, when examining apoptosis, all concentrations of CEO
appeared to reduce apoptosis compared with the H2O2 control group. Despite no significant
differences being observed in comparison with the control, the concentrations of 0.39 and
3.12 µg/mL appeared to decrease cell apoptosis. Moreover, the 3.12 µg/mL concentration
showed effects similar to those of the 0.78 and 1.56 µg/mL concentrations and DMSO. The
composition of CEO may help to inhibit cell apoptosis. This view is corroborated by studies
that have demonstrated the beneficial effects of EOs on neuroprotection against glutamate-
induced cell necrosis [84]. Furthermore, a study conducted with Litsea cubeba—which, like
CEO, has citral as its primary active compound—showcased its renoprotective potential
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against renal inflammation due to its antiapoptotic effect [85]. Consequently, the CEO may
have exerted a protective effect on H2O2-exposed larvae.

5. Conclusions

The results observed in our study suggest that CEO has potential anti-inflammatory
properties and can act protectively against free radicals. These findings support the rel-
atively scarce literature on the safe use of CEO. Given these encouraging results, we
strongly recommend further exploration of CEO’s potential effects in animal models for a
comprehensive understanding of its therapeutic implications.
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