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Simple Summary: Olive mill waste-water (OMWW) is a liquid waste produced by the olive oil
industry that has been recently regarded as a good source of polyphenols. Phenolic molecules are
among the most active secondary molecules in the gut for their antioxidant, anti-inflammatory and
antimicrobial effects. They may also contribute to positively changing the distribution of gut microbial
species, but their effects have not been widely explored in pigs. The intestinal porcine epithelial cell
line IPEC-J2 represents a good model for the study of innate immunity and inflammatory response
in animal intestinal diseases and has already been used to investigate the effect of phytogenic feed
additives on swine intestinal epithelium. This study aimed to evaluate the in vitro effects of an
OMWW extract enriched in polyphenols on Salmonella typhimurium (S. typhimurium) infection in
IPEC-J2 cells. Polyphenols extracted from OMWW showed the ability to regulate the host–pathogen
interaction by decreasing S. typhimurium invasiveness and modulating the expression of many innate
immune genes.

Abstract: The dietary supplementation of olive oil by-products, including olive mill waste-water
(OMWW) in animal diets, is a novel application that allows for their re-utilization and recycling and
could potentially decrease the use of antibiotics, antimicrobial resistance risk in livestock species, and
the occurrence of intestinal diseases. Salmonella serovar typhimurium is one of the most widespread
intestinal pathogens in the world, causing enterocolitis in pigs. The aim of this study was to investigate
the effect of an OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) in the immune
response of an intestinal porcine epithelial cell line (IPEC-J2) following S. typhimurium infection. Cells
were pre-treated with OMWW-extract polyphenols (OMWW-EP, 0.35 and 1.4 µg) for 24 h and then
infected with S. typhimurium for 1 h. We evaluated bacterial invasiveness and assayed IPEC-J2 gene
expression with RT-qPCR and cytokine release with an ELISA test. The obtained results showed
that OMWW-EP (1.4 µg) significantly reduced S. typhimurium invasiveness; 0.35 µg decreased the
IPEC-J2 gene expression of IL1B, MYD88, DEFB1 and DEFB4A, while 1.4 µg down-regulated IL1B
and DEFB4A and increased TGFB1. The cytokine content was unchanged in infected cells. This is
the first study demonstrating the in vitro immunomodulatory and antimicrobial activity of OMWW
extracts enriched in polyphenols, suggesting a protective role of OMWW polyphenols on the pig
intestine and their potential application as feed supplements in farm animals such as pigs.
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1. Introduction

The extraction of olive oil produces a series of by-products, including olive mill
waste-water (OMWW)—olive vegetation water diluted in the water used during the oil-
extraction process. This by-product is characterized by a high organic material load,
ranging from 36.07 g/L to 230 g/L, and a content of phenolic compounds that varies from
0.9 to 30.5 g/L [1,2]. The large amount of this by-product (30 million m3), produced every
year in the Mediterranean basin, contributes to environmental pollution due to the high
presence of organic compounds, including phenolic ones [3–6]. This by-product comprises
about 50% of the total phenolic compounds of the olive fruit [7], with different phenolic
types, mainly tyrosol, hydroxytyrosol, verbascoside and oleuropein [8–10], which are
highly known for their antioxidant, antimicrobial and anti-inflammatory activities [11–15].
The supplementation of olive by-products, including OMWW, as a source of polyphenols
in animal diets potentially represents an innovative strategy for olive oil waste recycling, in
line with the current concept of the circular economy [16–22].

In the swine industry, the use of antibiotics can favor the occurrence of antimicrobial
resistance in bacteria of the pig intestinal microbiome, therefore increasing the risk of severe
intestinal diseases and impairing the pig’s growth performance, especially at the weaning
stage [23–25]. For this reason, this habit has been limited in various countries. Among
pig intestinal diseases, salmonellosis is one of the most common and it represents a severe
problem for the swine industry worldwide [26]. Salmonella enterica serovar typhimurium
(S. typhimurium) is the agent of a very widespread enterocolitis form, which can be sub-
clinical, but it can also be associated with a reduction in both productive performance and
average daily gain in pigs [27,28].

In order to restrict the use of antibiotics, novel feeding strategies are required to mod-
ulate intestinal and immunological functions, as well as to improve the development and
health of the swine gastrointestinal tract [23]. Given the correlation between bioactive
molecules, such as polyphenols, and the pig intestinal microbiota and immune response
to enteric diseases, their use can have a good impact on pig gut health [23]. The health
benefits of polyphenols derive from their antioxidant, anti-inflammatory, and/or gene-
regulating effects in tissues. Several studies showed that they help decrease the risk of
many diseases, including intestinal ones, but the mechanisms correlated are not clear and
need further investigation [29–31]. At present, they can be considered among the most
active secondary bioactive molecules in the gut, contributing to beneficial changes in the
distribution of gut microbial species, reducing pathogenic bacteria, and/or promoting
the growth of probiotics [29,32,33]. A number of in vivo studies demonstrated that the
administration of dietary polyphenols resulted in a reduction of pathogenic species and an
increase in probiotic species in the intestinal microbiota of rats, pigs, and calves [32,34–37].
Olive oil by-products rich in polyphenols (e.g., olive leaf extract) were able to interfere
with the growth of intestinal bacteria, including Salmonella [38,39]. Compared to human
and laboratory animals (e.g., rats and mice), responses to polyphenols have been less
explored in farm animals, such as pigs [29]. However, it has been recently demonstrated
that the supplementation of natural polyphenols in piglets could contribute to alleviat-
ing weaning stress and improve intestinal barrier function, thus providing a nutritional
strategy to protect intestinal health [40,41]. Other studies examined changes in the pig gut
microbiome after the consumption of plant polyphenols, thanks to their ability to reduce
oxidative stress and inflammation [42,43] and modulate immune cells and gut microbiota
composition [29,44–46]. This action contributes to an improvement in intestinal bacterial
function, decreases the release of microbial components into the circulation, and stimulates
host immune response [47].

A suitable in vitro model to assess the immunomodulatory properties of polyphe-
nols is represented by the porcine jejunal epithelial cell line IPEC-J2. This continuous
cell line provides a valuable model to study both innate immunity and inflammatory
responses in human and animal intestinal diseases [26,48–52]. Indeed, IPEC-J2 cells are in-
testinal porcine enterocytes isolated from the jejunum of an unsuckled neonatal pig, which
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showed the ability to express and produce cytokines, toll-like receptors (TLRs), defensins,
and mucins [53]. In particular, these cells spontaneously secrete the pro-inflammatory
chemokine IL-8 and possess ideal characteristics for in vitro studies on host–intestinal
pathogen interactions [49,50,54]. Indeed, the primary host-cell barrier against pathogens
is represented by the mucosal innate immune system, which is characterized by toll-like
receptor (TLR) pathways, NF-kB signaling activation (with inflammatory cytokine release),
and Type-I Interferon (IFN) responses [49,55]. Moreover, gastrointestinal tract homeostasis
can be maintained when the immune response against commensal bacteria is controlled.
When this equilibrium is compromised, excessive immune response causes an inflamma-
tory condition [56]. Besides epithelial cells’ mechanical function, their role in gut microbiota
homeostasis was recently recognized, as they are involved in maintaining the balance be-
tween host microbial components and gut immune cells [57]. In addition, IPEC-J2 cells
mime the physiological characteristics of intestinal cells and have therefore been employed
in several studies on Salmonella infections [53,58], providing valuable information on host
responses to this bacteria. In fact, invasion with S. typhimurium in IPEC-J2 cells was com-
parable to that occurring in porcine ileal mucosal explants [59]. This cell line has been
employed in studies focused on pigs’ innate immune response to dietary treatments [60],
which can be regarded as a reference for in vitro studies of innate immunity in neonatal
intra-epithelial cells after dietary stimuli [48,60]. These cells showed high morphological
and functional similarities to porcine enterocytes in vivo; therefore, they were employed to
evaluate the effects of phytogenic feed additives on swine intestinal epithelium [61]. In re-
cent years, various plant-feed additives have demonstrated antioxidant, antimicrobial, and
anti-inflammatory actions and other supporting barrier functions in IPEC-J2 cells [62–65].

With this study, we aimed to investigate in vitro the IPEC-J2 response to S. typhimurium
infection after a pre-treatment with OMWW-extract polyphenols (OMWW-EP), to evaluate
the influence on bacterial invasion and immune cells’ gene expression.

2. Materials and Methods
2.1. Olive Mill Waste-Water Extract and Composition

The OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) was pro-
vided by Stymon Natural Products P.C., Patras, Greece (www.stymon.com, accessed on
21 December 2023). This product derives from OMWW of the olive (Olea Europaea L.)
variety Koroneiki and is produced based on a unique patent (Patent number 1,010,150
IOBE (INT.CL.2021.01) A23L 19/00 A23L 33/105, Stymonphen Liquid) using only green
technologies. Its total polyphenol content was equal to 15,000 ± 592 mg/kg, according
to the Folin–Ciocalteu method [66]; hydroxytyrosol and tyrosol were the main phenolic
compounds (8784 mg/kg and 1638 mg/kg, respectively), detected by HPLC-DAD [67].
The stock solution was filtered, vortexed, and diluted in phosphate-buffered saline (PBS,
Euroclone, Milan, Italy) to reach 1400 µg/mL; from this, different scalar concentrations
of polyphenols (0.35; 0.7; 7; 14; 70; 140 µg) were obtained for the successive analyses by
diluting them in complete culture medium.

2.2. Cell Cultures

Porcine jejunal epithelial cells (IPEC-J2, IZSLER Cell Bank code BS CL 205) were grown
in a mixture (1:1) of Dulbecco’s Modified Eagle (DMEM) (Euroclone, Milan, Italy) and
Nutrient Mixture F-12 (F12) (Euroclone, Milan, Italy) enriched with 10% Fetal Bovine Serum
(FBS, GIBCOTM, Thermofisher Scientific, Milan, Italy), 1% L-glutamine solution (Euroclone,
Milan, Italy) and 1% penicillin/streptomycin solution (Euroclone, Milan, Italy) and kept in
culture at 37 ◦C under 5% CO2.

2.2.1. Cell Viability

First, to determine the most suitable amount of OMWW extract to be used on IPEC-J2
cells, we tested different scalar phenolic dosages using a 2,3-bis-(2-methoxy-4-nitro-5-
sulphophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay, according to the manufac-
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turer’s instructions (XTT Cell Viability Assay, Cell Signaling Technology, Milan, Italy). In
brief, IPEC-J2 cells were plated on 96-well plates (100 µL per well, 0.1 × 105) in complete
culture medium and incubated for 24 h at 37 ◦C under 5% CO2 until confluence. The day
after, the seeding cells on the 96-well plates were exposed to different doses of OMWW-EP
(0.35, 0.7, 1.4, 14, 70, 140 µg), and untreated cells were employed as a negative control.
Two independent experiments were performed, each including four technical replicates
(four wells) for each of the seven experimental conditions: untreated cells (control) and cells
treated with six different doses of OMWW-EP (0.35, 0.7, 1.4, 14, 70, and 140 µg). An XTT
assay was performed at 24 h and at the end of the treatments, and the cell culture medium
was removed and replaced with 100 µL of the fresh DMEM/F12 medium supplemented
with XTT detected solution (1:50). The plates were then incubated again at 37 ◦C under 5%
CO2 for 2 h, and the absorbance was measured at 450 nm using a multimode microplate
reader (Glomax, Promega, Milan, Italy). This assay was performed two times for each
phenolic concentration.

2.2.2. Bacterial Invasion

An isolate of S. typhimurium strain (ATCC 14028) was used to evaluate bacterial inva-
sion in IPEC-J2 cells. In three independent experiments, IPEC-J2 cells were seeded into a
12-well plate (1 mL per well, 1.5 × 105 cells/mL) and incubated until confluence. Cells were
treated with OMWW-EP (0.35 µg and 1.4 µg) for 24 h. S. typhimurium was stored at −80 ◦C
until use, then thawed and grown overnight (18–24 h at 37 ◦C) in Brain Heart Infusion (BHI)
(Sigma, Saint Louis, MO, USA). Then, it was sub-cultured in BHI and incubated for 2 h at
37 ± 1 ◦C to obtain a mid-log phase culture. The strain was pelleted and re-suspended in
DMEM/F12 and L-glutamine medium to obtain a concentration of 108 CFU/mL and used
to infect pig intestinal IPEC-J2 cells pre-treated with 0.35 µg and 1.4 µg of OMWW-EP for
24 h; infected cells without polyphenolic pre-treatment were used as comparison, while
uninfected cells were employed as a negative control. For each of the three independent
experiments, one plate was used, employing one well for each replicate, resulting in four
replicates for each experimental condition: cells without phenolic pre-treatment and in-
fected (ST); cells pre-treated with two OMWW-EP dosages and infected (ST + 0.35 µg
POL; ST + 1.4 µg POL). Cells were stimulated with 1 mL/well of bacterial suspension
at 108 CFU/mL and incubated at 37 ◦C under 5% CO2 for 1 h. Then, monolayers were
washed five times with DMEM/F12 and L-glutamine medium (1 mL/well) and treated
with 1 mL of colistin 300 µg/mL at 37 ◦C under 5% CO2 for 2 h to remove all extracellular
bacteria. Cells were washed four times with medium and lysed by adding 200 µL/well
1% of Triton X-100 (Merck KgaA, Darmstadt, Germany) in PBS (Euroclone, Milan, Italy)
at room temperature for 5 min (min); then, they were blocked by adding 800 µL of PBS to
each well. The resulting cell suspension was vortexed, serially diluted in PBS, and seeded
on XLD (Sigma, Saint Louis, MO, USA); then, it was incubated for 24–48 h at 37 ◦C for
intracellular bacterial counts.

2.2.3. Modulation of the Immune Response

Cells from the IPEC-J2 line were seeded into 12-well plates (1 mL per well,
3 × 105 cells/mL) and then incubated at 37 ◦C under 5% CO2 until confluence. Two experi-
mental designs were applied: the first one to evaluate the effect of OMWW-EP on IPEC-J2
gene expression and cytokine release, and the second one to investigate cellular pathways
modulated by OMWW pre-treatment behind host–pathogen interactions in S. typhimurium
infection. For the first experiment, cells were treated with OMWW-EP at 0.35 µg, 0.7 µg,
1.4 µg or 7 µg for 24 h, alongside untreated controls. A total of three independent exper-
iments comprising two replicates each (one well for each replicate) were used for each
experimental condition: cells with medium only (control); cells treated with OMWW-EP
(0.35 µg POL, 0.7 µg POL, 1.4 µg POL and 7 µg POL). For the second, cells were treated
with OMWW-EP at 0.35 µg or 1.4 µg for 24 h, then infected with 1 mL of 108 CFU/mL
S. typhimurium suspension and incubated at 37 ◦C under 5% CO2 for 1 h. Moreover, cells
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infected with S. typhimurium without OMWW-EP pre-treatment were used as a control of
the infection, and cells with the medium only were used as an untreated and uninfected
control. To summarize, four independent experiments, including three replicates (one well
for each replicate), were used for each experimental condition: cells with medium only
(control); infected cells only (ST); cells pre-treated with polyphenols (0.35 and 1.4 µg);
and infected (0.35 µg POL + ST; 1.4 µg POL + ST). After the first incubation, cells were
washed five times and again incubated in their medium at 37 ◦C under 5% CO2 for 3 h.
The resulting IPEC-J2 cell supernatants were stored at −80 ◦C until our evaluation of the
cytokine contents. In parallel, cells were lysed with 400 µL of RLT Buffer (Qiagen, Hilden,
Germany) and, after incubation for 10 min (min) at room temperature, collected and stored
at −80 ◦C until RNA extraction and RT-q PCR analysis.

2.3. RNA Extraction and Reverse Transcription Quantitative PCR (RT-qPCR)

Total RNA was extracted from the cells described in Section 2.2.3 for both the ex-
perimental designs using Rneasy Mini Kit (Qiagen s.r.l., Milan, Italy) in the Qiacube
System (Qiagen s.r.l., Milan, Italy), in accordance with the manufacturer’s instructions.
The quality of extraction was assessed using a Qubit 3.0 Fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA). The same amount of RNA for each sample (250 ng) was
reverse-transcribed into cDNA using a iScript cDNA Synthesis Kit (Bio-Rad, Milan, Italy).
Amplification was performed on a CFX96TM Real-Time System (Bio-Rad, Milan, Italy)
using SoFastTM Eva Green Supermix (Bio-Rad, Milan, Italy) following a protocol previ-
ously described [48]. Primers of target genes, coding for C-X-C motif chemokine ligand 8
(CXCL8), interleukin 1 beta (IL1B), IL18, nitric oxide synthase 2 (NOS2), nuclear factor
kappa B subunit 1 (NFKB1), RELA proto-oncogene (NFKB/p65), toll-like receptor 4 (TLR4),
toll-like receptor 5 (TLR5), myeloid differentiation primary response gene 88 (MYD88),
transforming growth factor beta 1 (TGFB1), beta defensin 1 (DEFB1), beta defensin 2
(DEFB4A), and reference genes glyceraldehyde 3-phosphate dehydrogenase (GADPH) and
hypoxanthine phosphoribosyltransferase 1 (HPRT1) were described in previous studies
(Table 1). The relative normalized expression of the selected genes was assessed using the
2−∆∆Ct method [68], comparing different conditions. Samples scored negatively when the
Ct was ≥39.

Table 1. Primer set sequences of target and reference genes.

Gene Primer Sequences Amplicon
Length Source

IL18 For-5′-CGTGTTTGAGGATATGCCTGATT-3′

Rev-5′-TGGTTACTGCCAGACCTCTAGTGA-3′ 106 [48]

IL1B For-5′-AATTCGAGTCTGCCCTGTACCC-3′

Rev-5′-TGGTGAAGTCGGTTATATCTTGGC-3′ 110 [49]

NOS2 For-5′-CGTTATGCCACCAACAATGG-3′

Rev-5′-AGACCCGGAAGTCGTGCTT-3′ 84 [48]

TGFB1 For-5′-CGCGTGCTAATGGTGGAAAG-3′

Rev-5′-CCGACGTGTTGAACAGCATA-3′ 87 [48]

CXCL8 For-5′-TTCGATGCCAGTGCATAAATA-3′

Rev-5′-CTGTACAACCTTCTGCACCCA-3′ 175 [69]

MYD88 For-5′-GCAGCTGGAACAGACCAACT-3′

Rev-5′-GTGCCAGGCAGGACATCT-3′ 62 [69]

NFKB1 For-5′-CCCATGTAGACAGCACCACCTATGAT-3′

Rev-5′-ACAGAGGCTCAAAGTTCTCCACCA-3′ 131 [69]

NFKB/p65 For-5′-CGAGAGGAGCACGGATACCA-3′

Rev-5′-GCCCCGTGTAGCCATTGA-3′ 61 [69]
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Table 1. Cont.

Gene Primer Sequences Amplicon
Length Source

DEFB1 For-5′-CTGTTAGCTGCTTAAGGAATAAAGGC-3′

Rev-5′-TGCCACAGGTGCCGATCT-3′ 80 [48]

DEFB4A For-5′-CCAGAGGTCCGACCACTA-3′

Rev-5′-GGTCCCTTCAATCCTGTT-3′ 87 [48]

TLR4 For-5′-TGGCAGTTTCTGAGGAGTCATG-3′

Rev.–5′ –CCGCAGCAGGGACTTCTC-3′ 71 [48]

TLR5 For-5′-TCAAAGATCCTGACCATCACA-3′

Rev.-5′ –CCAGCTGTATCAGGGAGCTT-3′ 59 [48]

GAPDH For-5′-ATGGTGAAGGTCGGAGTGAA-3′

Rev-5′AGTGGAGGTCAATGAAGGGG-3′ 61 [48]

HPRT1 For-5′-AACCTTGCTTTCCTTGGTCA-3′

Rev-5′-TCAAGGGCATAGCCTACCAC-3′ 150 [48]

2.4. Cytokine Quantification

The cytokine content was investigated in culture supernatants of IPEC-J2 described in
Section 2.2.3, using both experimental designs. Cells were treated for 24 h with OMWW-EP
(0.35 and 1.4 µg) without infection. Moreover, after OMWW pre-treatment, cells were
infected (1 h) with S. typhimurium after a polyphenolic pre-treatment, alongside the corre-
sponding controls. The culture medium was changed, and the cells were incubated for 3 h
at 37 ◦C under 5% CO2. Then, culture supernatants were collected, centrifuged (at 2500× g
for 3 min), and kept at -80 ◦C until use. Levels of GM-CSF, IL-1α, IL-1β, IL-1Ra, IL-6, IL-8,
IL-10, IL-18 were determined using the Porcine Cytokine/Chemokine Magnetic Bead Panel
Multiplex assay (Merck Millipore, Darmstadt, Germany) and a Bioplex MAGPIX Multiplex
Reader (Bio-Rad, Hercules, CA, USA), following the manufacturer’s instructions [48].

2.5. Statistical Analyses

A Kolmogorov–Smirnov test was conducted to check for Gaussian distribution in the
data sets, concerning the viability assay, gene expression, cells invasion, and protein release.
Data showing Gaussian distributions were checked for significant differences by one-way
ANOVA or unpaired T-test. Results failing the Kolmogorov–Smirnov test were checked
for significant differences by non-parametric Kruskal–Wallis test, followed by a Dunn’s
Multiple Comparison post-hoc test. The significance threshold was set at p < 0.05 (Prism 5,
GraphPad Software, GraphPad Software Inc., San Diego, CA, USA).

3. Results
3.1. Cell Viability

Cells from the IPEC-J2 line cells were exposed to scalar doses of OMWW-EP (0.35, 0.7,
1.4, 7, 14, 70, 140 µg), and 24 h later, viability was measured through an XTT assay. The
XTT viability test showed that treatment with OMWW-EP at 140 µg and 70 µg induced
a statistically significant (p < 0.0001) decrease in IPEC-J2 viability after 24 h (Figure 1)
OMWW-EP exposition. The other concentrations tested did not show a significant effect.
The two doses (0.35, 1.4 µg) not affecting IPEC-J2 viability were therefore selected for the
following experiments.

3.2. Salmonella Typhimurium Invasiveness

A significant (p < 0.05) decrease in S. typhimurium invasiveness into IPEC-J2 cells
(p < 0.05; log10 CFU/3 × 105 cells) after an exposure to OMWW-EP of 1.4 µg for 24 h was
demonstrated when compared with controls (untreated infected cells). CFU data were
converted into log10 values (Figure 2).
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Figure 2. Effects of OMWW-extract polyphenols (OMWW-EP) on S. typhimurium penetration into
IPEC-J2 cells. Data are expressed as log10 CFU of penetrated, intracellular ST/3 × 105 cells. The
mean value of five replicates + standard error is presented, and dots indicate samples included in
each group. The significant difference between S. typhimurium infected cells and pretreated with
different concentrations of OMWW-EP (ST + 0.35 µg POL—pink; ST + 1.4 µg POL—fuchsia) and
S. typhimurium infected cells (ST—blue) is indicated by * (* p < 0.05).

3.3. Modulation of Immune Response

The immunomodulant effect of OMWW-EP at two dosages (0.35 µg and 1.4 µg) was
monitored through RT-qPCR and ELISA tests.
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3.3.1. OMWW-Extract Polyphenols’ Effect on IPEC-J2 Gene Expression and
Cytokine Release

The effect of OMWW-EP (0.35 µg and 1.4 µg) treatment for 24 h on IPEC-J2 cells
was monitored through RT-qPCR. A panel of seven genes was analyzed (Table 1), and
the levels of treated cells were compared to untreated control cells. Moreover, complete
results for the other polyphenol dosages are reported in the Supplementary Figure S1.
A significant decrease in CXCL8 (p < 0.001), IL18 (p < 0.05), and MYD88 (p < 0.001) and
a significant increase in NOS2 (p < 0.05) were observed in cells exposed to 0.35 µg of
OMWW-EP (Figure 3). The treatment with 1.4 µg of OMWW-EP triggered a significant
decrease in CXCL8 (p < 0.001) and MYD88 (p < 0.001). The other genes under study were
not significantly modulated (Figure 3).
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Figure 3. Effects of 24 h OMWW-extract polyphenols on IPEC-J2 gene expression. The RT-qPCR
analysis was performed to evaluate CXCL8, IL18, MYD88, NFKB1, NFKB/p65, TGFB1 and NOS2 gene
expression. Data are presented as bar plots displaying the mean value of normalized expression,
standard error as error bars and dots indicate samples included in each group. For each gene and
cytokine, differences between treated with polyphenols (0.35 µg POL—light green; 1.4 µg POL—gray)
vs. untreated (Control—dark green) cells were evaluated through one-way ANOVA followed by
a Dunnett’s test or a Kruskal–Wallis test followed by Dunn’s multiple comparison test; * p < 0.05,
** p < 0.01.

3.3.2. OMWW-Extract Polyphenols’ Effect on IPEC-J2 Cytokine Release

In parallel, the impact of scalar doses of OMWW-EP (0.35, 1.4 µg) on cytokine levels
in IPEC-J2 culture supernatants was investigated using multiplex ELISA. Eight cytokines
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were tested: IL-1α, IL-1β, IL-1Ra, IL-6, IL-8, IL-10, IL-18 and GM-CSF (Figure 4). The levels
of GM-CSF and IL-β were below the assay detection limit. Exposure to polyphenols did
not alter the levels of IL-1α, IL-1Ra, and IL-10 in IPEC-J2 culture supernatants (Figure 4).
In agreement with the RT-qPCR data, these compounds decreased the levels of the pro-
inflammatory cytokines IL-6, IL-8, and IL-18, although a statistically significant difference
was observed only for the latter (Figure 4).
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Data are presented as box and whisker plots displaying median and interquartile range (boxes) and
minimum and maximum values (whiskers). For each gene and cytokine, differences between treated
with polyphenols (0.35 µg POL—light green; 1.4 µg POL—gray) and untreated (Control—dark green)
cells were evaluated through one-way ANOVA followed by a Dunnett’s test or a Kruskal–Wallis test
followed by Dunn’s multiple comparison test; * p < 0.05.

3.3.3. OMWW-Extract Polyphenols’ and S. typhimurium Infection Effects on IPEC-J2
Gene Expression

The effect of OMWW-EP pre-treatment for 24 h in IPEC-J2 responses to S. typhimurium
infection (for 1 h) was evaluated. First, a panel of 10 genes was analyzed through RT-qPCR
(Table 1). We observed a significant increase in CXCL8 (p < 0.0001), MYD88 (p < 0.0016),
DEFB1 (p < 0.0001), and DEFB4A (p < 0.0044) in cells not exposed to OMWW (control) in
response to S. typhimurium infection (Figure 5).

Then we investigated the impact of OMWW-EP in IPEC-J2 ability to respond to
S. typhimurium infection. Different results were obtained depending on polyphenol dosages.
The pre-treatment of infected cells with 0.35 µg induced a significant decrease in IL1B
(p = 0.019), MYD88 (p = 0.062), DEFB1 (p < 0.0001) and DEFB4A (p = 0.0012) compared to
untreated infected cells, whereas with a pre-treatment of infected cells using 1.4 µg showed
a significant decrease in IL1B (p = 0.019) and DEFB4A (p = 0.023) and a significant increase
in TGFB1 (p = 0.008) (Figure 5). Other genes under study were not significantly modulated
(Figure 5).

3.3.4. OMWW-Extract Polyphenols’ and S. typhimurium Infection Effects on IPEC-J2
Cytokine Production

To further investigate the immunomodulatory properties of OMWW-EP, we assayed
the cytokine contents in the supernatants of un-infected and untreated IPEC-J2 and
S. typhimurium-infected cells (ST) pretreated or not with OMWW-EP (0.35 µg or 1.4 µg)
(Figure 6). S. typhimurium infection triggered an enhanced release of pro-inflammatory
cytokines, such as IL-1α (p = 0.02927), IL-6 (p < 0.0001), and IL-8 (p = 0.0006) (Figure 6).
OMWW-EP did not affect the cytokine content in S. typhimurium-infected IPEC super-
natants (Figure 6). Values of GM-CSF and IL-1β were below the reference range values.
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Figure 5. Gene expression of IPEC-J2 cells in response to S. typhimurium infection with OMWW-
extract polyphenol (OMWW-EP) pre-treatment. The tested conditions for IPEC-J2 cells were: unin-
fected and untreated cells (Control—dark green), infected with S. typhimurium (ST—blue), pre-treated
with 0.35 µg OMWW-EP and infected (0.35 µg POL + ST—pink), and pre-treated with 1.4 µg OMWW-
EP and infected (1.5 µg POL + ST—fuchsia). Data are reported as mean value and standard error,
and dots indicate samples included in each group. Statistical tests were carried out comparing all
conditions vs. ST. Significant differences: * p < 0.05, ** p < 0.01, *** p <0.001.
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Figure 6. Cytokine release by IPEC-J2 cells in response to S. typhimurium infection after OMWW-
extract polyphenol (OMWW-EP) pre-treatment. The tested conditions for IPEC-J2 cells were: unin-
fected and untreated cells (Control—dark green), infected with S. typhimurium (ST—blue), pre-treated
with 0.35 µg OMWW-EP and infected (0.35 µg POL + ST—pink), and pre-treated with 1.4 µg OMWW-
EP and infected (1.5 µg POL + ST—fuchsia). For each cytokine, differences between ST-infected
cells and the other conditions were evaluated through one-way ANOVA followed by a Dunnett’s
test or a Kruskal–Wallis test followed by Dunn’s multiple comparison test; * p < 0.05, *** p < 0.001;
**** p < 0.0001.
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4. Discussion

Gut epithelial cells have a predominant role as the first defense from pathogenic
insults [53,57]. Thus, the obtained results regarding the modulation of immune genes in the
intestinal epithelium after treatment with polyphenols are a prodromal step to feed supple-
mentation with polyphenols in livestock species. The IPEC-J2 cell line was chosen on the
basis of our previous studies [48–50,52]. Indeed, it represents a good model for investigating
epithelial immune response in pigs, in order to evaluate the ability of OMWW polyphenols
to modulate the in vitro gut immunological response to S. typhimurium infection.

Our screening of different amounts of OMWW-extract polyphenols (OMWW-EP)
carried out in the first part of the study through the IPEC-J2 viability test allowed us to
choose the appropriate dosages for the successive analyses (Figure 1). We then investigated
the effect of pre-treatment with OMWW-EP (0.35 and 1.4 µg) on IPEC-J2 cells for 24 h with
or without an infective insult and found that exposure to these compounds triggered a
decreased expression of CXCL8, IL18, and MYD88 genes; IL-18 release; and an up-regulation
of NOS2 gene expression (Figures 3 and 4). The anti-inflammatory effect of polyphenols
is due to complex cellular mechanisms that are still not clear, but most of them have been
correlated with the NF-kB pathway [45]. CXCL8 is a pro-inflammatory chemokine (IL-8)-
encoding gene whose expression could be regulated by the TLR4/MyD88/NF-kB pathway.
In our study, OMWW-EP seemed to exert anti-inflammatory action by decreasing MYD88 (a
gene with a pivotal role in NF-kB activation) and therefore CXCL8 gene expression. Indeed,
in other studies, dietary supplementation with grape seed cake (another by-product rich
in polyphenols) was shown to significantly reduce MYD88 gene expression in the colon
of Dextran Sulfate Sodium (DSS)-treated piglets [70], and Li et al. [71] demonstrated the
ability of other natural polyphenols (the flavonoids quercetin and catechin) to restore the
increased expression of MYD88 in LPS-stimulated murine macrophage RAW 264.7 cells.

In addition, our data demonstrated the ability of OMWW-EP to decrease both the
expression and secretion of IL-18. IL-18 is a member of the IL-1 family, with an important
role in the inflammatory response [72–77]. Its release must be tightly controlled, in order to
avoid the development of auto-inflammatory diseases [73].

These data suggest a possible effect of OMWW polyphenols on host–pathogens in-
teraction, which was successively tested in vitro using S. typhimurium assay. In this way,
the ability of a pre-treatment with different dosages of OMWW-EP (0.35 and 1.4 µg) to
decrease S. typhimurium invasiveness and modulate immune response related-genes in
S. typhimurium-infected cells was assessed. First of all, our data confirmed S. typhimurium’s
ability to penetrate IPEC-J2 cells (Figure 2), which is known to be related to the up-
regulation of the pro-inflammatory molecule CXCL8 [49], as we found (Figures 5 and 6). In
our analysis, we additionally found that S. typhimurium’s invasion of IPEC-J2 significantly
increases the expression of MYD88 gene (Figure 5) encoding for the MyD88 adaptor protein,
which is the mediator of NF-kB activation, essential for the stimulation of pro-inflammatory
gene expressions. Not surprisingly, we therefore observed the increased release of other pro-
inflammatory cytokines (IL-1α, IL-6, IL-18) after S. typhimurium infection, in accordance
with a previous study [49] (Figure 6). It is known that mucosal bacteria are able to stimulate
the transcription of pro-inflammatory genes through epithelial cell invasion, interacting
with many receptors such as TLR or acting on NF-kB [44]. Surface-expressed TLRs are
activated by the pathogen-associated molecular patterns (PAMPs), which are microbe struc-
tures, exploiting the adaptor molecule MyD88 and stimulating NF-kB translocation into the
nucleus [49]. The activation of the nuclear factor NF-kB leads to the increased transcription
of pro-inflammatory mediators (such as the cytokines IL-8, IL-1B, IL-6 and TNF) [78], as
shown in our experiment (Figure 6).

Interestingly, the pre-treatment with OMWW extract enriched in polyphenols reduced
S. typhimurium invasiveness. Thus, we tried to highlight molecules influencing this host–
pathogen interaction, modulated by the polyphenol treatment. Firstly, the expression of
two TLRs (TLR4 and TLR5) was investigated, but no effects on S. typhimurium invasion
after OMWW-EP pre-treatment were observed.
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As for the effects on pro-inflammatory cytokines and related pathways, we observed a
down-regulation of IL1B in S. typhimurium-infected IPEC-J2 cells after OMWW-EP pre-treatment
(both dosages). A down-regulation of MYD88 for the 0.35 µg group was detected as well.

The expression of MYD88 was also investigated and showed a decrease in S. typhimurium-
infected cells in the 0.35 µg pre-treatment group, while MYD88 gene expression was raised in
cells infected and not pre-treated with OMWW-EP. The pre-treatment with 0.35 µg OMWW-
EP probably prevented the activation of NF-kB and pro-inflammatory mediators through the
down-regulation of this adaptor molecule-encoding gene (MYD88).

Moreover, inflammasome-induced cell death contributes to host control of S. typhimurium
infection. Species differences in inflammasomes may contribute to zoonotic immune tolerance.
Inflammasomes are molecular platforms that promote the maturation of the proinflammatory
cytokines IL-1β and IL-18. During enteric Salmonella infection, the activation of caspase-1 and
the production of IL-1β and IL-18 provide a protective host response [79]. The inflammasome
activation could be mediated by MyD88, but there are other pathways in the activation signal-
ing: various PAMPs, DAMPs, or intracellular changes induce the formation of the NLRP3
inflammasome composed of NLRP3 as a PRR, pro-caspase-1, and adapter proteins such as
the apoptosis-associated speck-like protein containing a caspase recruitment domain [80].

At both dosages (0.35 and 1.4 µg), the polyphenolic pre-treatment induced a down-
regulation of pro-inflammatory cytokine IL1B, which is also involved in the inflammasome
reaction, together with IL-18 [73–77]. The combined effect of OMWW-EP on IL-18, which
induced gene expression and reduced cytokine release (without Salmonella infection), leads
the authors to suppose that this is the pathway through which OMWW-EP potentially
protects IPEC-J2 cells against S. typhimurium infection.

In line with our results, the ability of the polyphenol resveratrol to potentially protect
the intestinal barrier against deoxynivalenol (DON)-induced dysfunction and Escherichia coli
(E. coli) translocation in IPEC-J2 cells [64] and S. typhimurium infection was demonstrated.
Several in vitro studies concerning intestinal cells demonstrated that plant extracts rich in
polyphenols or isolated molecules can limit induced-inflammation processes [30,81–84].
It was also shown that natural polyphenols can modulate inflammasome activation [77],
interfering with the production (both at mRNA and protein levels) of pro-inflammatory
mediators [30]. Moreover, it has been demonstrated that IL1-β is reduced by polyphenols
such as curcumin and resveratrol [84–86]. Other good sources of polyphenols, i.e., dietary
grape seed cake, decreased IL1B gene expression and protein concentration in fattening pigs’
spleens [87]. Feeding weaned pigs with polyphenol-rich plant products (grape seed, grape
marc meal extract, and spent hops) down-regulated various pro-inflammatory cytokines,
including IL-1β [44], in the intestine, and the oleuropein glycoside polyphenol significantly
decreased the release of IL1-β in LPS-stimulated human whole-blood cultures [88].

Meanwhile, we did not observe differences between OMWW-EP-treated and untreated
IPEC-J2 cells concerning the expression and release of other pro-inflammatory cytokines in
response to S. typhimurium infection. This probably relates to the fact that these inflamma-
tory molecules are primarily stimulated by TLR4 receptors, whose expression seemed to
not be significantly modulated by polyphenols. We also might speculate that OMWW-EP
could reduce the levels of pro-inflammatory cytokine release in response to Salmonella if a
lower infective dose is used.

Not only pro-inflammatory but also anti-inflammatory cytokines such as IL-10 and
TGF-β were tested. In particular, TGF-β can dampen the inflammatory effects of cytokines
such as IL-1β, IL-12, TNF [89].

In our experiments, we observed that S. typhimurium infection determined a decrease
in TGFB1 expression in IPEC-J2 cells. This is not surprising, considering a recent study by
Qin et al. [90], who mimed the bacterial infection process with an LPS stimulus in human
Caco-2 colon cells. The authors observed a down-regulation of several genes involved in
the inflammation response linked to TGF-beta signaling pathways. Interestingly, the pre-
treatment with OMWW-EP (1.4 µg) induced the up-regulation of TGFB1 in infected cells
compared to cells that were infected without OMWW-EP pre-treatment. The TGFB1 gene
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encodes the TGF-beta superfamily ligands and binds different TGF-beta receptors, regulating
gene expression as well as cell growth, proliferation, and differentiation [91]. It is produced
by different cell types, including the intestinal cells [92], and is a cytokine involved in the
homeostasis of the epithelial barrier, which is normalized by up-regulating the expression
of tight junction proteins [93]. The up-regulation of this gene in our experiments may be
correlated with a possible inhibitory action of bacterial replication inside the cells, in line with
Huang et al. [91]., who demonstrated that, in pigs, the inhibition of S. typhimurium intracellular
replication can be associated with TGFB1 increase. Moreover, in a study by Nallathambi
et al. [93], a polyphenol-rich grape seed extract was able to enhance TGFB1 expression in
Caco-2 cells, in line with the observed increase in tight junction protein expression.

Finally, the expression of genes coding for antimicrobial peptides (AMPs), released
during early response to invading pathogens, was investigated. These molecules show
efficacy in disrupting both the Gram-positive and Gram-negative bacterial membranes and
are also expressed in epithelial cells of the gastrointestinal tract [26]. Beta-defensins are
known AMPs also involved in the maintenance of the homeostasis in the gut microbiota,
regulating its composition and thus protecting from microbial pathogens [48,75,94], and
it is well known that IPEC-J2 cells express beta-defensin genes [26]. Our results showed
that S. typhimurium invasion up-regulated DEFB1 and DEFB4A gene expressions in IPEC-
J2 cells, as reported by previous studies [26,49]. DEFB4A expression was also increased
in another porcine ileum epithelial cell line (IPI-2I) after infection with S. typhimurium
DT104 [26]. Furthermore, it was demonstrated that E. coli adhesion increases the expression
of DEFB1 and DEFB4A in IPEC-J2 cells [95]. In this study, pre-treatment with OMWW-
EP seemed to induce a return to the basal expression of DEFB1 (at the 0.35 µg dosage)
and DEFB4A (at both dosages) after S. typhimurium infection, counteracting the effect of
bacterial invasion and potentially restoring gut homeostasis.

5. Conclusions

Our results confirmed the potential ability of OMWW-EP to modulate host–pathogen
interactions in pigs by inducing an alteration of S. typhimurium invasiveness. In particular,
our data showed a significant reduction of S. typhimurium’s ability to invade cells pre-
treated with 1.4 µg of OMWW-EP compared to untreated IPEC-J2 cells. Furthermore,
pre-treatment (independently from the dosage) with OMWW-EP modulated several innate
immune-response genes influencing the S. typhimurium invasiveness in IPEC-J2, exhibiting
potential antimicrobial activity by decreasing intracellular bacterial replication. This is
the first study performed in an in vitro swine intestinal model that suggests a potential
protective role of OMWW polyphenols in the pig intestine, paving the way for in vivo
studies to confirm these promising results; increasing our knowledge of related molecular
mechanisms; and making the possible use of this by-product feasible for livestock animal
welfare and health.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani14040564/s1, Figure S1: Effect of 24 h OMWW-extract polyphe-
nols on IPEC-J2 gene expression.
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