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Simple Summary: Early monitoring and warning of mastitis in dairy cows in intensive farms in
a timely manner are of great significance for protecting the welfare of cows, reducing the farms’
economic losses, and ensuring the quality and safety of dairy products. In this study, nine machine
learning algorithms were used to predict naturally occurring clinical bovine mastitis pertaining to
four specific stages of lactation. The Z-standardized dataset presents better results than the non-
standardized ones. The multilayer artificial neural net (MNET) algorithm and random forest (RF)
models are best suited for clinical mastitis prediction and management in farms. We also calculated
the peak milk yield (PMY) of mastitic cows and that of healthy ones, and the former is higher than
the latter. Overall, the results showed that machine learning algorithms can be applied to analyze
real-time data obtained from intensive farms to develop an alerting system for the prediction of
naturally occurring mastitis.

Abstract: In commercial dairy farms, mastitis is associated with increased antimicrobial use and
associated resistance, which may affect milk production. This study aimed to develop sensor-based
prediction models for naturally occurring clinical bovine mastitis using nine machine learning
algorithms with data from 447 mastitic and 2146 healthy cows obtained from five commercial farms
in Northeast China. The variables were related to daily activity, rumination time, and daily milk yield
of cows, as well as milk electrical conductivity. Both Z-standardized and non-standardized datasets
pertaining to four specific stages of lactation were used to train and test prediction models. For all
four subgroups, the Z-standardized dataset yielded better results than those of the non-standardized
one, with the multilayer artificial neural net algorithm showing the best performance. Variables
of importance had a similar rank in this algorithm, indicating the consistency of these variables as
predictors for bovine mastitis in commercial farms with similar automatic systems. Moreover, the
peak milk yield (PMY) of mastitic cows was significantly higher than that of healthy cows (p < 0.005),
indicating that high-yielding cattle are more prone to mastitis. Our results show that machine learning
algorithms are effective tools for predicting mastitis in dairy cows for immediate intervention and
management in commercial farms.
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1. Introduction

Clinical mastitis in early lactation can have negative impacts on the productivity of
cows, including a temporary or permanent decrease in milk quality and production [1].
Mastitis significantly affects the welfare of animals at the individual or herd level and
poses threats to the sustainability of dairy farming [2]. Prediction of mastitis at an early
stage will help in successful disease intervention and reduce the risk of transmission of
the pathogen, thereby potentially reducing the use of antibiotics [3–5]. Furthermore, early
intervention could alleviate any pain or discomfort and hence increase the welfare of
cows [6]. Measurement of somatic cell count (SCC) is the most frequently used method to
indirectly evaluate subclinical and clinical mastitis at the herd or cow level [7,8]. In most
farms, even in large commercial ones, the SCC in a cow or herd is normally tested once
a month [9]. The electrical conductivity (EC) of milk, which is recorded for each milking,
can also be used as a clinical predictor for mastitis of cows milked using rotary/robotic
milkers [10–13]. There is a significant relationship between day rumination time and days
relative to calving, twinning, subclinical hypocalcemia, subclinical ketosis, and retained
fetal membrane [14]. Rumination and activity coupled with milk yield and body weight
can be used to identify dairy cows with health disorders, such as mastitis, metritis, and
lameness [15–17], ketosis [18], as well as the severity of inflammatory conditions evaluated
using rumination time during the peripartum period [19].

Various commercially available sensors in intensive farms facilitate the collection
and availability of a large amount of data, including estrus detection, synchronization
protocol programming, and health management, which help in the efficient production and
management of farms [20–22]. Recently, many researchers have explored the prediction or
detection of subclinical/clinical mastitis in cows milked with automatic milking systems
using classical machine learning algorithms such as support vector machine (SVM) [23,
24], decision tree [25,26], random forest [25,27], gradient-boosted tree [25,27,28], Naïve
Bayes [25,29], logistic regression [25,30], and neural networks [31–36]. Only a few studies
on automatic milking systems have been conducted using random forest, Naïve Bayes, and
extreme gradient [3] and SVM [37] algorithms to develop prediction or detection models
on real-time data collected from milking parlors and/or management software adopted on
the farms.

The deep learning algorithm has been used to detect key parts of the body of the dairy
cow and the lameness of dairy cows in the Yangling district [38,39]. Data generated from
precision dairy technology adopted by commercial farms have not been used previously
for early warning, detection, or diagnosis of mastitis in dairy cows in Northeast China.
This study aimed to verify the ability of machine learning algorithms to efficiently predict
clinical mastitis in dairy cows based on real-time data of rumination time and physical
activity generated from the monitoring collars, coupled with variables such as the EC of
milk and milk yield from the rotary milking system.

2. Materials and Methods

This research was part of a large study aimed at developing a technology to improve
farm management using big data, with a special focus on continuous monitoring, prediction,
and precise detection of health disorders in lactating cows and calves in commercial herds
in Northeast China using precision dairy technology and rotary/side by side milking
system, along with environmental factors. Considering mastitis is more likely to occur in
early productive life and lactation stages, cows were divided into subgroups according to
their lactation stage, namely stage 1 (0–28 days in milk (DIM)), stage 2 (29–100 DIM), stage
3 (101–200 DIM), and stage 4 (201–305 DIM). We also accounted for parity (for mastitic
cows, 25 cows with parity one, 63 cows with parity two, 117 cows with parity three, and
242 cows with parity ≥ 4, respectively; for healthy cows, 128 cows with parity one, 753 cows
with parity two, 571 cows with parity three, and 694 cows with parity ≥ 4, respectively)
to investigate the differences in forecast results. To obtain reliable results and improve
decision-making by farm managers, data from healthy cows with similar DIM, daily milk
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yield, and the same parity as that of the sick ones were collected. All animal procedures
were performed following the guidelines for the care and use of experimental animals at
Heilongjiang Bayi Agricultural University (Daqing, China). The animal ethics committee
of Heilongjiang Bayi Agricultural University approved the study protocol (FBD201603006).

2.1. Animal Housing and Feeding

We collected original data over 2.5 years (January 2020 to June 2022) from five commer-
cial farms in Northeast China, the practical base of our university. The farms were located
in three cities at latitudes and longitudes of 47.42 E to 51.03 E and 124.45 N to 129.18 N for
the first city, 45.46 E to 46.55 E and 124.19 N to 125.12 N for the second city, and 44.04 E to
46.40 E and 125.42 N to 130.10 N for the third city.

Details about the environment of animal houses, collars worn by the cows, rotary
milking systems, feeding patterns, and management modes used in the five farms are
as reported previously [40]. The farms applied a total mixed ration to feed cows twice
daily (500 h and 1300 h), with the feed pushed whenever necessary and fresh water
made available at all times. They were milked thrice daily (300 h, 1100 h, and 1900 h)
using a milking system (Data Flow, SCR Engineers Ltd., Netanya, Israel). The herds of
these five farms were all monitored by neck collars (Collar, SCR Engineers Ltd., Netanya,
Israel). Three farms adopted the Yimu Cloud management system (Yimu Technology
Ltd., Beijing, China), and the other two used Data Flow Client management system (Data
Flow, SCR Engineers Ltd., Netanya, Israel). Two farms raised 900~1000 cows per year
on average during the period of experiment, with 1000~1200 cows, 1100~1200 cows, and
1600~1700 cows on the other three farms, respectively. Overall, the management modes
and feeding patterns were similar among the considered herds.

2.2. Data Collection and Study Design

Information about the procedure of data collection and health-monitoring program is
reported in detail in a companion manuscript [40]. The health-monitoring program was
defined by our research team before the start of this study, and the farm staff (for each
farm, 1 manager, 3 technicians, and 1 veterinarian with more than 15 years of experience
monitoring cow health) were responsible for conducting the daily health monitoring of
dairy cows. Clinical signs of mastitis were examined every three days by observing
the udder and milk (i.e., hard quarter, heat or swelling, clots in milk, flakes, lumps, or
clear/yellow milk) following calving until day 28 and were subsequently determined every
seven days throughout lactation. Time from detection to diagnosis should not exceed 6 h,
and details of animals, including cow identification number, quarter, date and time of
diagnosis, and staff involved in the detection and diagnosis of disorders, were input to the
management system software within 5 min after diagnosis.

In the present study, we monitored the weekly records of a total of 3031 healthy
cows (without any disease during the experiment) and 587 cows suffering from naturally
occurring clinical mastitis, with 685 mastitis events recorded from January 2020 to June
2022. The cows were initially grouped into two categories, mastitic cows and healthy cows,
which were assigned a value of 1 and 0 when used as dependent variables, respectively,
with the day of diagnosis and treatment considered as d-0, and the original variables were
collected from seven (d-7) or three days (d-3) before diagnosis. After data preprocessing,
the final data included information about parity, DIM, age at the time of disorders, milk
yield, activity, six variables related to rumination time (daily rumination time, rumination
at daytime, rumination at nighttime, the ratio of rumination time at daytime to that at
nighttime, rumination deviation every 2 h, absolute values of the weighted rumination
variation), and three variables related to the EC of milk (peak electrical conductivity of
milk, daily percentage of the electrical conductivity of milk, standard deviation of the
largest change in conductivity over the last three shifts) for a total of 2146 healthy cows and
447 mastitic cows (Tables 1 and S1).
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Table 1. Number of mastitic cows in the four subgroups.

Subgroups
No.

No. of Cows
No. of Records of
Physical Activity

No. of Records of
Rumination Time

No. of Records of Electrical
Conductivity of Milk

0–28 DIM (14.7 ± 7.4) 74 592 3552 888
29–100 DIM (61.8 ± 21.1) 196 1568 9408 2352
101–200 DIM (141 ± 26.7) 111 888 5328 1332
201–305 DIM (254 ± 41.4) 66 528 3168 792

Total 447 3576 21,456 5364

DIM: days in milk.

2.3. Statistical Analyses

Statistical analyses were performed for all variables unless otherwise stated. The
values of each variable in the interval (QL − 1.5 IQR, QU + 1.5 IQR) were used to conduct
statistical analyses and to establish prediction models or were otherwise removed, where
QL was represented as the lower quartile of each variable, QU was represented as the
upper quartile, and IQR was represented as the upper quartile minus the lower quartile.
After removing missing data and outliers, descriptive statistical tests were performed to
characterize the measures of location and variability using means of frequency distribution
tables and histograms; thereafter, the χ2 and t-tests were performed for categorical outcomes
and continuous variables, respectively. Results were considered statistically significant at
p < 0.05 (trends declared at 0.05 < p ≤ 0.10).

As the dataset used in this study to forecast mastitis was collected from five intensive
farms that used the same collars, rotary milking system, and management system, the
dataset was transformed using Z-standardization (that is, each variable was subtracted
from the mean, and then divided by the standard deviation, such that the original values
were mapped to an interval of [0, 1]) for stable and reliable generalization of the prediction
model for the environment of other farms. Prediction models based on machine learning
algorithms were applied to both the original and transformed datasets for the selection of
the optimal prediction model.

2.4. Machine Learning Algorithms

We employed nine machine learning algorithms, including multilayer artificial neu-
ral net (MNET), binary logistic, SVM, Rpart, random forest, XGboost, AdaBoost, linear
discriminant analysis (LDA), and Naïve Bayes using the R software version 4.1.2 (R Core
Team, 2021, https://www.r-project.org/, accessed on 12 June 2022). For each adopted algo-
rithm, “set seed ( )” was used to ensure the repeatability of our results, and we randomly
divided data according to the dependent variable “Species” (binary variable “0” repre-
sented “healthy cows” vs. “1” “mastitic cows”) using the “createDataPartition” function.
When performing each machine learning algorithm, a data subset consisting of 75% of the
observations was selected as training data to construct the predicting models; the data
subset consisting of the remaining 25% was used as testing data to assess the performance
of the models. The parameters for the other eight machine learning algorithms used in this
study were set as described previously [40].

The performance of each machine learning algorithm was assessed based on their
sensitivity, specificity, accuracy, precision, Matthew’s correlation (evaluation indicator for
the results of the binary classification model, especially for imbalanced category data),
and area under the receiver operating characteristic (ROC) curve (AUC) value, which are
defined as follows:

Sensitivity =
TP

TP + FN
, Specificity =

TN
TN + FP

, Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision =
TP

TP + FP
, MCC =

TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

https://www.r-project.org/
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For definitions of the abbreviations, see the companion article [40]. The description of
the process of machine learning algorithms for developing the mastitis prediction model is
shown in Figure 1.
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3. Results
3.1. Variations in Variables of Milk Yield and Rumination Time

The approximate prevalence of clinical mastitis in the five commercial dairy farms
ranged from 15 to 35% per 365 days during the experimental period. For the two farms
that raised 900~1000 cows per year on average, the approximate prevalence of mastitis was
35% and 30%; for the farm with 1000~1200 cows, the approximate prevalence of mastitis
was 25%; for the farm with 1100~1200 cows, the approximate prevalence of mastitis was
28%; and for the farm with 1600~1700 cow, the approximate prevalence of mastitis was
15%. Figure 2 depicts the general increasing trend of the six variables, which showed
top importance in the trained prediction models. From d-3 to d-0, milk production was
reduced in cows with mastitis, which is evident from the observed decreasing trend in
the four stages (Figure 3A). For mastitic cows in the 0–28 DIM group, average daily milk
showed higher variation (decreased from 38.82 ± 11.87 to 22.91 ± 12.32 kg/day) than in the
other three stages. An increasing trend was observed for the ratio of daytime to nighttime
rumination time (Figure 2A). For the cows in the 0–28 DIM group, the ratio of daytime to
nighttime rumination time showed a larger variance (Figure 3B). This observation may be
due to a sudden decrease in rumination during calving and an increase following calving in
addition to mammary gland infection. Differences in rumination time every 2 h in mastitic
cows in subgroups 0–28 and 201–305 DIM increased significantly from d-3 to d-0, whereas
on d-2, cows in the subgroups 29–100 and 101–200 DIM showed a small decline (Figure 3C).

A noticeable increasing trend was observed in the absolute value of weighted rumi-
nation variation per 2 h from d-3 to d-0 (Figure 3D), with the largest variation on d-0, as
expected. Significant differences (p < 0.001) in this variable were observed between the
0–28 and 29–100 DIM and 101–200 and 201–305 DIM subgroups.
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Figure 3. Bar plots with error bars of the variables involved in the training model on d-3 to d-0 for
cows in the four subgroups. Subgraphs (A–G) represent subgroups of variables of average daily
milk yield, ratio of rumination time at daytime to that at nighttime, rumination deviation every 2 h,
absolute values of the weighted rumination variation, peak electrical conductivity of milk, daily
percentage of change of the electrical conductivity of milk, and standard deviation of the largest
change in conductivity over the last three shifts. The x-axis represents time from d-3 to d-0—that
is, 3 days before diagnosis to 1 day before diagnosis—and the diagnosis day. The colors violet,
blue, green, and yellow represent the subgroups “0–28 DIM”, “29–100 DIM”, “101–200 DIM”, and
“201–305 DIM”, respectively. DIM, days in milk.
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3.2. Variations in Milk Electrical Conductivity

The largest variance for EC of milk (Figure 3E) was observed in mastitic cows in the
29–100 DIM subgroup, with a mean and standard deviation of 5.77 ± 0.58 mS/cm on d-3,
5.59 ± 1.13 mS/cm on d-2, 5.92 ± 0.58 mS/cm on d-1, and 6.04 ± 0.61 mS/cm on d-0. For all
mastitic cows, the average values for EC of milk in the four subgroups were 5.77 ± 0.61 mS/cm
on d-3, 5.72 ± 0.78 mS/cm on d-2, 5.88 ± 0.59 mS/cm on d-1, and 6.05 ± 0.65 mS/cm on
d-0, respectively. The values on d-3 were significantly lower than that on d-0 (p = 0.021), d-2
(p = 0.014), and d-1 (p = 0.047). The daily percentage of EC change showed a gradually increasing
trend (Figure 3F). There was a significant difference in the maximum change in conductivity
over the last three shifts (Figure 3G) between mastitic cows at 0–28 DIM and the other three
subgroups on d-3 and d-1 (p < 0.001).

3.3. Variations in Peak Milk Yield and Days in Milk

We calculated the peak milk yield (PMY) and DIM of PMY of mastitic and healthy
cows. The PMY for all 447 mastitic cows was 5.60 ± 11.10 kg/day higher than that of
the 2146 healthy cows (p < 0.005). The values of PMY of mastitic cows in the 0–28 and
29–100 DIM subgroups were 55.77 ± 4.23 and 55.79 ± 7.81 kg/day, respectively. The
PMYs of mastitic cows in the 0–28 and 29–100 DIM subgroups were 9.06 ± 7.11 and
6.62 ± 10.44 kg/day higher than those of healthy cows (p < 0.005), while the difference in
DIM of PMY between mastitic cows and healthy cows was not statistically significant.

3.4. Performances of Different Machine Learning Algorithms Using Non-Standardized Data

Due to the imbalance present in binary data (the number of healthy cows was four
to five times higher than mastitic cows), we speculated that the accuracy may not be
focused on the minority (mastitic cows). We used the Matthews correlation coefficient
(MCC) to evaluate the metrics of the trained and tested models in the different machine
learning algorithms.

Table 2 summarizes the performances of the nine machine learning algorithms based
on non-standardized data for cows in the four specific lactation stages. For non-standardized
data of cows at 0–28 DIM, the specificities of the nine machine learning algorithms varied
from 85.59 to 94.59%, and the accuracy varied from 81.76 to 91.89%, while only the precision
of the MNET algorithm exceeding 80% showed sensitivity. These results may be due to the
high fluctuation of milk yield and large variation in the EC of milk and variables related to
the rumination time of cows in this subgroup. As one of the model performance evaluation
criteria, the MCCs of the nine machine learning algorithms were not high. The low precision
signified that more healthy cows were provided to the veterinarians when the algorithms
were developed into warning software. The overall performance of non-standardized data
of cows in the 29–100 DIM subgroup was better than that of the 0–28 DIM subgroup, except
for the performance of the LDA algorithm. Overall, the performance of MNET was better
than that of the other algorithms, with all six criteria exceeding 0.80, with a specificity of
94.55% and an accuracy of 93.30%. Random forest had the second-best results for cows
in this subgroup. For non-standardized data of cows in the 101–200 DIM subgroup, the
sensitivity and precision of all nine algorithms were very low, although specificity was more
than 80% (more than 90% for four algorithms). For cows in the 101–200 and 201–305 DIM
subgroups, random forest showed better results than those of the other algorithms.

3.5. Performance of Different Machine Learning Algorithms Using Z-Standardized Data

Table 3 summarizes the performances of the nine machine learning algorithms using
Z-standardized data for cows in the four specific lactation stages. The sensitivity of the XG-
boost algorithm increased from 1.52 to 13.26% when compared to that of non-standardized
data. For data on cows in the 0–28 DIM group, XGboost and random forest performed
better with similar results. Results of the Z-standardized data of cows in the four subgroups
were better than those of non-standardized data. These results indicate that XGboost is
better at modeling Z-standardized data of a large magnitude. For cows in the 0–28 DIM
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subgroup, the sensitivity, specificity, and accuracy of the MNET algorithm were higher than
90%, with the precision reaching 82.93%. Similarly, MNET showed a robust performance
for cows in the 0–28 and 29–100 DIM subgroups, and the performance of random forest
was the best for cows in the 101–200 and 201–305 DIM subgroups. Moreover, for cows in
the subgroup 29–100 DIM, the specificities of six algorithms exceeded 90%, with the largest
value of 96.73% for MNET, and the sensitivities of eight algorithms exceeded 80%, except
for LDA. MNET performed the best among all the trained and tested models for cows in
the subgroup 29–100 DIM, with an increase in sensitivity, specificity, and accuracy of 6.99,
7.14, and 7.07%, respectively, and the largest increase in precision of 17.22%. The Naïve
Bayes algorithm showed a similar increasing trend in performance. The performance of
the LDA algorithm showed improvement from that of non-standardized data; however,
its performance was poorer than those of the other algorithms. Overall, the sensitivities
of six models were higher for the 29–100 DIM subfamily than those in the other three
stages, which suggests a possible application of the algorithm to develop a practical alert
system for predicting mastitis in cows. Furthermore, nine out of nineteen variables of
importance had a similar rank in the MNET algorithm in cows of the 0–28 and 29–100 DIM
subgroups (Figure 4), indicating the consistency of these variables as predictors for mastitis
of dairy cows in commercial farms with similar automatic systems. Parity did not have any
significant effect on the occurrence of mastitis, which may be due to the small sample size
or the variables involved in the algorithm.
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Table 2. Performances of the nine machine learning algorithms using non-standardized data for cows in the four specific lactation stages.

Metrics
Subgroups

Models

Sensitivity Specificity Accuracy Precision Matthews Correlation
Coefficient AUC

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

MNET 0.8378 0.8980 0.7857 0.7879 0.9459 0.9455 0.9302 0.8511 0.9189 0.9330 0.8947 0.8346 0.8378 0.8544 0.7857 0.6500 0.7838 0.8303 0.7159 0.6032 0.8965 0.8971 0.8721 0.7150
Logistic 0.7027 0.8469 0.6429 0.5455 0.8559 0.7964 0.8605 0.8404 0.8176 0.8097 0.8070 0.7638 0.6190 0.5971 0.6000 0.5455 0.5365 0.5856 0.4920 0.3859 0.7428 0.6628 0.6660 0.6055

SVM 0.6757 0.8163 0.6964 0.6061 0.8649 0.8909 0.8663 0.8511 0.8176 0.8713 0.8246 0.7874 0.6250 0.7273 0.6290 0.5882 0.5270 0.6826 0.5444 0.4528 0.7200 0.8073 0.6982 0.6529
Rpart 0.6486 0.7959 0.7321 0.7879 0.9279 0.9164 0.8953 0.8936 0.8581 0.8847 0.8553 0.8661 0.7500 0.7723 0.6949 0.7222 0.6065 0.7055 0.6167 0.6632 0.6951 0.8572 0.7714 0.7583

RF 0.6757 0.8980 0.8036 0.8182 0.9279 0.9091 0.9419 0.9043 0.8649 0.9062 0.9079 0.8819 0.7576 0.7788 0.8182 0.7500 0.6279 0.7730 0.7500 0.7030 0.8334 0.7644 0.8591 0.8325
XGboost 0.6757 0.6735 0.8030 0.8182 0.9189 0.9455 0.9244 0.9302 0.8581 0.8740 0.8908 0.8992 0.7353 0.8148 0.8030 0.8182 0.6121 0.6607 0.7274 0.7484 0.7741 0.7244 0.8914 0.8755
Adaboost 0.6757 0.7653 0.7321 0.7273 0.9279 0.8945 0.9128 0.8511 0.8649 0.8606 0.8684 0.8189 0.7576 0.7212 0.7321 0.6316 0.6279 0.6476 0.6449 0.5539 0.8031 0.7005 0.7755 0.7011

LDA 0.6757 0.5918 0.4643 0.6970 0.8829 0.8000 0.8314 0.7979 0.8311 0.7453 0.7412 0.7717 0.6579 0.5133 0.4727 0.5476 0.5537 0.3753 0.2975 0.4613 0.6160 0.5697 0.5153 0.6079
NB 0.7027 0.7857 0.8030 0.6364 0.8919 0.8400 0.8721 0.8511 0.8446 0.8257 0.8529 0.7953 0.6842 0.6364 0.7067 0.6000 0.5894 0.5883 0.6506 0.4784 0.7128 0.7064 0.7844 0.6660

S1, S2, S3, and S4 represent stage 1 (0–28 DIM), stage 2 (29–100 DIM), stage 3 (101–200 DIM), and stage 4 (201–305 DIM), respectively. AUC, area under the curve; DIM, days in milk;
MNET, multilayer artificial neural net; SVM, support vector machines; RF, random forest; NB, Naïve Bayes.

Table 3. Performances of the nine machine learning algorithms using Z-standardized data for cows at the four specific lactation stages.

Metrics
Subgroups

Models

Sensitivity Specificity Accuracy Precision Matthews Correlation
Coefficient AUC

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

MNET 0.9189 0.9184 0.8636 0.8485 0.9369 0.9673 0.9360 0.9063 0.9324 0.9544 0.9160 0.8915 0.8293 0.9091 0.8382 0.7568 0.8281 0.8828 0.7925 0.7281 0.9205 0.9182 0.8969 0.8400
Logistic 0.7027 0.8469 0.7273 0.7879 0.8739 0.8036 0.8663 0.8438 0.8311 0.8150 0.8277 0.8295 0.6500 0.6058 0.6761 0.6341 0.5622 0.5940 0.5808 0.5919 0.7150 0.6725 0.7099 0.7039

SVM 0.8649 0.8163 0.7424 0.8182 0.9099 0.8982 0.8721 0.8750 0.8986 0.8767 0.8361 0.8605 0.7619 0.7407 0.6901 0.6923 0.7441 0.6933 0.6013 0.6585 0.8533 0.7852 0.7108 0.7685
Rpart 0.8649 0.8061 0.7879 0.8182 0.9189 0.9200 0.9012 0.8854 0.9054 0.8901 0.8697 0.8682 0.7805 0.7822 0.7536 0.7105 0.7584 0.7192 0.6799 0.6734 0.8820 0.8682 0.7838 0.7887

RF 0.8919 0.8469 0.9242 0.8788 0.9279 0.9564 0.9535 0.9271 0.9189 0.9276 0.9454 0.9147 0.8049 0.8737 0.8841 0.8056 0.7932 0.8115 0.8660 0.7839 0.8371 0.8912 0.9035 0.8539
XGboost 0.8919 0.8061 0.8182 0.8485 0.9369 0.9236 0.9302 0.9167 0.9257 0.8928 0.8992 0.8992 0.8250 0.7900 0.8182 0.7778 0.8081 0.7251 0.7484 0.7443 0.8663 0.8769 0.8255 0.8633
Adaboost 0.7027 0.8265 0.7727 0.7273 0.9369 0.9345 0.9186 0.8854 0.8784 0.9062 0.8782 0.8450 0.7879 0.8182 0.7846 0.6857 0.6654 0.7586 0.6946 0.6012 0.7721 0.8509 0.8160 0.7200

LDA 0.6757 0.6735 0.6061 0.6970 0.9009 0.8109 0.8314 0.8542 0.8446 0.7748 0.7689 0.8140 0.6944 0.5593 0.5797 0.6216 0.5819 0.4584 0.4316 0.5317 0.6875 0.6208 0.6435 0.6527
NB 0.7027 0.8061 0.6970 0.7576 0.9189 0.9018 0.8895 0.9167 0.8649 0.8767 0.8361 0.8760 0.7429 0.7453 0.7077 0.7576 0.6335 0.6908 0.5893 0.6742 0.7726 0.7527 0.7148 0.7803

S1, S2, S3, and S4 represent stage 1 (0–28 DIM), stage 2 (29–100 DIM), stage 3 (101–200 DIM), and stage 4 (201–305 DIM), respectively. AUC, area under the curve; DIM, days in milk;
MNET, multilayer artificial neural net; SVM, support vector machines; RF, random forest; NB, Naïve Bayes.
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4. Discussion

In commercial dairy farms, mastitis, a disease of the udder that is typically the result
of bacterial infection, is associated with potentially increased use of antimicrobials and
associated resistance, thereby affecting the welfare of dairy cows and increasing the rate of
culling and/or death. Therefore, accurate and efficient mastitis prediction is valuable for
timely intervention, leading to the protection of animal welfare both at individual and herd
levels and ensuring associated food safety.

Relative to the traditional method, machine learning algorithms can model high-
dimensional and noisy data efficiently, which have been successfully used to solve many
biological problems, such as the prediction and detection of subclinical mastitis using
various measurements gathered by automatic milking systems rather than laboratory
tests, thereby reducing experimental costs, and without interfering with the daily working
routine of the farmers or disturbing the cows.

The EC of milk is the measure of the resistance of a material to an electric current.
Mastitis changes the blood capillary permeability [41]. For decades, this change in the
conductivity of milk has been used as an indicator for clinical mastitis [42–44], with the
frequency of use increasing in the dairy industry. Some studies have reported that EC
exceeding 5.5 mS/cm could indicate subclinical mastitis [12,45]. In this study, the average
value of the peak of EC for mastitic cows in all four subgroups exceeded 5.5 mS/cm, with
an average value of 6.02 mS/cm on d-3, 5.99 mS/cm on d-2, and 6.01 mS/cm on d-1.
Similar results were observed for milk yield, which was higher in mastitic cows than in
healthy cows before the onset of mastitis [46]. In the early lactation period, high-yield dairy
cows often experience relatively severe metabolic stress, and their self-immunity becomes
relatively poor, which may give us a clue that cows at this stage are more likely involved in
the risk of mastitis [47].

We also observed a delayed DIM in PMY in mastitic cows (62.51 ± 28.87 days) vs.
healthy cows (55.17 ± 22.07 days), which was consistent with the results reported by Peiter
et al. [48], where the DIM of PMY for mastitic cows in the 0–28 and 29–100 DIM subgroups
were 61.5 ± 30.34 and 62.65 ± 27.02 days, respectively.

Consistent with the results reported by Stangaferro et al. [16] and King et al. [49],
the daily rumination time, rumination time at nighttime, and daily milk yield started to
decrease a few days before the diagnosis of mastitis. In line with our previous report [40],
rumination deviation per 2 h, the sum of absolute values of the weighted rumination
variation, and peak EC of milk showed a similar pattern of gradual increase before the
diagnosis of mastitis. We also considered the daily percentage of change in the EC of milk
and the standard deviation of the largest change in conductivity over the last three shifts
(provided by the rotary milking system and uploaded to the management software), which
showed significant differences between the sick and healthy cows, signifying that these two
variables can be considered when developing a practical mastitis alert system. Although
the variance from d-3 to d-0 in the change in EC of milk over the last three shifts did not
show a noticeable trend as the absolute value of weighted rumination variation per 2 h, the
two variables showed similar contributions to the forecast models.

In first-lactation Holstein-Friesian or Dutch Friesian cows, Barkema et al. [50] found
that 30% of clinical mastitis cases occurred in the first 14 DIM. In first-lactation Iranian
Holsteins, Moosavi et al. [51] found that although more clinical mastitis cases occurred in
the first 74 DIM of lactation than later on, the duration of clinical mastitis was shorter when
it occurred during this period. In this study, we divided the cows into four stages, as de-
scribed in Section 2. For each machine learning algorithm, we presented the results derived
using original non-standardized and Z-standardized data for four specific lactation stages
to find the optimal models for predicting mastitis in cows one or three days before the actual
onset. We also conducted experiments on logarithmic data and min–max normalization,
which showed very poor results (sensitivity, specificity, accuracy; logistic regression, SVM,
LDA, and Naïve Bayes algorithms were lower than 0.35). Using seven machine learning
algorithms, Ebrahimi et al. [25] developed a prediction model of subclinical mastitis with
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several milking features measured using an automated monitoring system and SCC mea-
sured using an inline detector. They analyzed both non-transformed and Z-standardized
datasets and found no significant differences between the two datasets. Ebrahimi et al. [25]
designated EC as the most important parameter for predicting subclinical mastitis. The
sensitivity of all their results exceeded 90%, whereas the specificity was lower than 50%. In
our study, the specificities of all nine machine learning algorithms were higher than their
sensitivities. Only the precision of the MNET algorithm modeled using Z-standardized
data for cows in the 29–100 DIM group reached 90.91%, which indicated that, in future
studies, we need to mine more reliable features to control the false positive rate and keep it
as low as possible.

A previous study [52] has reported that the risk of clinical mastitis increased as parity
increased, which may be because increasing parity increases the chances of infection with
pathogens [53] in addition to the natural loss of teat defense mechanisms or immunity with
an increase in years of service [54]. However, in the present study, parity was not confirmed
as a significant indicator for naturally occurring mastitis. The activity of most cows at estrus
was significantly affected; however, activity in mastitic cows in the four lactation stages did
not display the expected difference nor give significant variance in any prediction model
except in the MNET algorithm for data of cows in the 29–100 DIM subgroup.

Because of differences in the type of milking system used in the five farms, some
parameters related to milk, such as its composition, temperature, or optical properties, were
not included in the current experiment. The low accuracy and precision of the test model,
the exclusion of data regarding milk parameters, and the smaller sample size of clinical
mastitic cases pose challenges in the practical application of the prediction model. In future
studies, in addition to the variables involved in the present study, other parameters should
be mined, and algorithms with better performances should be explored to obtain more
reliable and credible prediction outcomes.

Overall, these results indicated that models based on machine learning algorithms are
useful tools in the development of prediction and/or detection models for mastitis in dairy
cows monitored using collars and milked using a rotary milking system, which provides a
broader understanding of some of the signs and symptoms of mastitis, leading to timely
and efficient control and better management of this disorder.

5. Conclusions

We employed nine machine learning algorithms to analyze original data pertaining
to 30 months and the corresponding Z-standardized dataset of four specific stages of
lactation to train and test prediction models for the recognition and prediction of naturally
occurring mastitis in dairy cows from five commercial farms. For cows in the 0–28 and
29–100 DIM subgroups, the MNET algorithm showed the best performance, and in the
subgroups 101–200 and 201–305 DIM, random forest performed the best on both the
original non-standardized and Z-standardized datasets. This comprehensive analysis
establishes that machine learning algorithms can be applied to analyze real-time data
obtained from intensive farms to develop an alerting system for the prediction of naturally
occurring mastitis.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ani14030427/s1. Table S1: Sources of information (automated
monitoring system and rotary milking system) and traits measured using variables at different
measurement intervals, summed up to the daily values.
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