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Simple Summary: The aim of this study was to explore the regulatory effects of miR-10a-5b on
the proliferation and differentiation of porcine preadipocytes. Our results showed that miR-10a-5b
targets KLF11, suppresses proliferation, and promotes differentiation in preadipocytes. Therefore, we
concluded that miR-10a-5b plays a significant role in regulating the proliferation and differentiation
of preadipocytes.

Abstract: In the swine industry, meat quality, color, and texture are influenced by the excessive
differentiation of fat cells. miRNAs have emerged as integral regulators of adipose development.
This study delves into the influence of miR-10a-5b on the proliferation and differentiation of pig
preadipocytes. Our findings reveal that miR-10a-5b is prevalent across various tissues. It hinders
preadipocyte proliferation, amplifies the expression of adipogenic genes, promotes lipid accumulation,
and, as a result, advances preadipocyte differentiation. We predict that KLF11 is the target gene of
miRNA. A dual-fluorescence reporter assay was conducted to validate the binding sites of miR-10a-5b
on the 3′UTR of the KLF11 mRNA. Results showed that miR-10a-5b targeted KLF11 3′UTR and
reduced the fluorescence activity of the dual-fluorescent reporter vector. Our research also indicates
that miR-10a-5b targets and downregulates the expression of both mRNA and the protein levels
of KLF11. During the differentiation of the preadipocytes, KLF11 inhibited adipose differentiation
and was able to suppress the promotion of adipose differentiation by miR-10a-5b. This underscores
miR-10a-5b’s potential as a significant regulator of preadipocyte behavior by modulating KLF11
expression, offering insights into the role of functional miRNAs in fat deposition.
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1. Introduction

Adipose tissue, the primary reservoir of the body’s energy, is pivotal in regulating
energy, metabolism, and equilibrium. The differentiation of adipose tissue not only impacts
the quality of livestock meat and carcasses but also has implications for human health,
contributing to conditions such as obesity. Traits related to fat deposition exhibit genetic
variations, qualifying them as quantitative traits. Identifying molecular markers that
influence porcine fat deposition can expedite genetic advancements. Therefore, over the
past decade, local and international research has intensely focused on adipose tissues and
adipocytes, marking them as prominent areas of study [1,2].

In recent years, non-coding RNAs, encompassing miRNAs, lncRNAs, and circRNAs,
have emerged as major players in governing the proliferation and differentiation of porcine
preadipocytes. Specifically, miRNAs are endogenous non-coded small RNA molecules, typi-
cally 18~24 nt in length, and display conservation across species with distinct tissue-specific

Animals 2024, 14, 337. https://doi.org/10.3390/ani14020337 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani14020337
https://doi.org/10.3390/ani14020337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-3844-3726
https://doi.org/10.3390/ani14020337
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani14020337?type=check_update&version=3


Animals 2024, 14, 337 2 of 14

temporal and spatial patterns [3]. Recent research has illuminated the role of miRNAs
in regulating various physiological functions, such as lipid and glucose metabolism [4].
These miRNAs can directly or indirectly influence adipose differentiation. For instance,
miR-148a has been identified as an obesity biomarker that facilitates fat differentiation by
inhibiting Wnt1 [5]. In contrast, miR-146b augments adipose differentiation by adjusting
KLF7 [6]. Research indicates that miR-370 limits adipogenic differentiation in porcine
preadipocytes [7], while miR-26b and miR-1908 have been found to suppress adipogenic
differentiation [8,9]. miR-23b promotes the differentiation of porcine preadipocytes by
targeting SESN3 and promoting the expression of ACSL4 [10]. miR-503 directly targets the
musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) in proliferating and differ-
entiating preadipocytes to repress adipogenesis [11]. Studies have shown that miR-196b-3p
and miR-450b-3p are novel key regulators with opposite roles in porcine adipogenesis [12].
However, the functions of many miRNAs in adipogenesis have not been reported yet.

Numerous studies have shown that miR-10a-5p is crucial for the development of
illnesses related to fat metabolism [13]. Increasing miR-10a-5p levels inhibited proinflam-
matory gene expression in macrophages and promoted the differentiation of C3H10T1/2
cells into brown adipocytes. The treatment of mice with a miR-10a-5p mimic suppressed
pro-inflammatory responses, promoted the appearance of new white adipocytes in gWAT,
and improved systemic glucose tolerance [14]. miR-10a-5p is involved in oxidative stress,
inflammation, and insulin signaling. miR-10a-5p also has a strong association with ab-
dominal adipocyte differentiation [15]. In addition, MiR-10a-5p regulates adipogenesis in
mice [16]. However, the effects of miR-10a-5p on porcine preadipocyte differentiation are
currently unknown.

Krüppel-like factors (KLFs) belong to the expansive zinc finger protein superfamily
and are central to various cellular processes, including cell proliferation, apoptosis, differ-
entiation, and embryonic development. They can either promote or inhibit pre-adipocyte
differentiation during adipogenesis [17]. The KLF11 gene, a part of the KLF family, exhibits
remarkable conservation across species, from flies to humans [18]. In mammals, KLF11
has also been recognized as a key component in the transcriptional network governing
adipose differentiation, adipogenesis, and the onset of obesity [19]. Functionally, KLF11
can activate the PPARα signaling pathway, enhancing fatty acid oxidation [20]. Moreover,
it has the ability to suppress the expression of SREBP-1c and FASN in the mouse liver, there-
fore inhibiting lipid synthesis [21]. While the KLF11 gene has an established role in lipid
metabolism, its influence on pig fat proliferation and differentiation remains uncharted.

The primary aim of our investigation is to elucidate the modulatory role of miR-10a-5p
in the differentiation of pig preadipocytes. Bioinformatics technology prediction results
showed that KLF11 is the target gene of miR-10a-5p. In the present study, a dual-luciferase
reporter gene assay was conducted to explore the mechanism of miR-10a-5p in regulating
the differentiation of porcine precursor adipocytes through KLF11. It provides a theoretical
basis for studying the molecular mechanism of fat metabolism in pigs. The insights gained
from our study provide a novel perspective and a foundational framework for refining
meat quality through basic research.

2. Materials and Methods
2.1. Ethical Approval Declarations and Sample Collection

All animal-related procedures adhered to the Code of Ethics at the World Medical As-
sociation (Declaration of Helsinki) and were conducted in alignment with the standards set
by the American Physiological and World Medical Association General. The methodologies
employed were grounded in the guidelines of the College of Animal Science and Veterinary
Medicine at Shanxi Agricultural University (Taigu, China). The experimental protocols
underwent review and received approval from this institution. The Ethics Committee’s
approval reference is SXAU-EAW-P002003.

Jinfen White pigs (castrated boars) were used as experimental animals in the present
study, provided by Datong Pig Farm (Shanxi, China). Three 90-day-old Jinfen White pigs
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(castrated boars) were killed by electric shock and bloodletting. After that, the longissimus
dorsi muscle, heart, spleen, kidney, liver, lung, stomach, and subcutaneous fat were col-
lected. In addition, nine Jinfen White pigs (castrated boars) at 1, 90, and 180 days of age
were selected, with 3 pigs per age. Their tissues were instantly frozen in liquid nitrogen
and afterward kept in a −80 ◦C refrigerator.

2.2. Cell Culture and Differentiation Induction

Subcutaneous adipose tissue from the back and neck of 7-day-old piglets was har-
vested and transferred to sterile Petri dishes. This tissue underwent digestion with an
equal volume of collagenase type I at 37 ◦C for 30 min on a shaking platform. To isolate
the digested cells, steel mesh filters with pore sizes of 200 µm and 70 µm were utilized.
The filtrated cells, after being washed with DMEM/F12 medium, were subjected to cen-
trifugation at 1000 r/min for 10 min, repeated twice. Following this, the supernatant was
discarded, and the resulting pellet was re-suspended in DMEM/F12 supplemented with
10% fetal bovine serum (FBS). These cells were then cultured in Petri dishes at 37 ◦C in a
5% CO2 environment. All procedures adhered to appropriate guidelines and regulations.

For adipogenesis, preadipocytes were cultured in 12-well plates using an induc-
tion medium [0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 1 µM dexamethasone (DEX),
10 mg/L insulin (MDI)]. After 48 h, this differentiation medium was replaced with a mat-
uration medium (MM) that consisted solely of 10 mg/mL insulin. From the fourth day
onwards and at every subsequent two-day interval, the cells received nourishment from a
medium enriched with 10% FBS (Thermo Fisher Scientific, Waltham, MA, USA).

Separately, 293T cells were cultured in complete medium. Upon achieving a 70% conflu-
ence, these cells underwent transfection using the Lipofectamine 3000 reagent (Thermo Fisher
Scientific, Waltham, MA, USA). Six hours post-transfection, the medium was refreshed.

2.3. Oil Red O Staining

Oil Red O staining (ORO) staining was employed to assess preadipocyte differentiation.
After 8 days of differentiation, the cells were rinsed twice with phosphate-buffered saline
(PBS). Subsequently, they were fixed using formaldehyde for a duration of 10 minutes.
Following another set of washes with PBS, the cells were treated with freshly prepared ORO
for 15 min. Post-staining, the cells received another PBS wash and were then visualized
and captured using a microscope (Leica, Hessen, Germany).

2.4. Quantitative Real-Time Polymerase Chain Reaction

Total RNA was isolated from the cells using the TRIzol reagent (Takara, Dalian, China).
The PrimeScript RT Reagent Kit (Takara, Japan) was used to synthesize the cDNA of
mRNA, while the miRNA 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China) was
used to synthesize the cDNA of miRNA. The amplification reactions were set up using the
corresponding amplification primers in conjunction with the SYBR Green PCR Master Mix
(Takara, Dalian, China), with each reaction having a total volume of 20 µL. The mRNA
expression levels were normalized against the reference genes 18S or U6. Details regarding
the primers utilized for qRT-PCR can be found in Table 1. The genome referenced for
primer design was Sus scrofa (taxid:9823).

Table 1. Primer sequences used for qRT-PCR.

Primer Name Primer Sequence

18S-F CCCACGGAATCGAGAAAGAG
18S-R TTGACGGAAGGGCACCA

PCNA-F GTGATTCCACCACCATGTTC
PCNA-R TGAGACGAGTCCATGCTCG

ki67-F AGCCCGTATCGTGTGCAAAA
ki67-R CCTGCATCTGTGTAAGGGCA
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Table 1. Cont.

Primer Name Primer Sequence

Cyclin D1-F GCGAGGAACAGAAGTGCG
Cyclin D1-R TGGAGTTGTCGGTGTAGATGC
Cyclin B-F TGGCTAGTGCAGGTTCAG
Cyclin B-R CAGTCACAAAGGCAAAGT

CDK1-F CCCTCCTGGTCAGTTCAT
CDK1-R TAGGCTTCCTGGTTTCC
CDK4-F GCATCCCAATGTTGTCCG
CDK4-R GGGGTGCCTTGTCCAGATA
PPARγ-F AGAGTATGCCAAGAACATCC
PPARγ-R AGGTCGCTGTCATCTAATTC
C/EBPα-F AGCCAAGAAGTCGGTAGA
C/EBPα-R CGGTCATTGTCACTGGTC

aP2-F AAGTCAAGAGCACCATAACC
aP2-R GATACATTCCACCACCAACT

KLF11-F AAGCGGCATGACAGTGAGAG
KLF11-R

miR-10a-5p-F
U6

GAGGAGTCATGCACAGAGTTG
TACCCTGTAGATCCGAATTTGT
AACGCTTCACGAATTTGCGT

2.5. Transfection

For the miR-10a-5p studies, cells were transfected with either miR-10a-5p mimics,
inhibitors, or the appropriate negative controls. GenePharma (Shanghai, China) synthesized
the small-interfering RNA (siRNA) targeting KLF11. The KLF11 expression plasmid was
constructed by integrating the amplified KLF11 cDNA fragments into an empty vector. The
KLF11 interference (designated as si-KLF11) or negative-control (si-NC) preadipocytes were
generated using siRNA. For KLF11 overexpression, the preadipocytes were constructed
using the expression plasmid and named KLF11-overexpressing cells, with the control cells
labeled as the vector. For transfection, cells were initially incubated in a serum-free medium
for 2 h. Subsequently, either the plasmid or siRNA was introduced into the cells using
Lipofectamine 3000 transfection reagent, in accordance with the manufacturer’s guidelines
(Thermo Fisher Scientific, Waltham, MA, USA).

2.6. Cell Proliferation Assay

For the 5-ethynyl-2′-deoxyuridine (EdU) assay, the preadipocytes were seeded in
12-well plates. After being transfected for 48 h, the preadipocytes’ proliferation was
assessed using the Cell Proliferation EdU Image Kit (Abbkine, China). Subsequently,
images were captured with a fluorescence microscope (Leica, Hessen, Germany).

The preadipocytes were also uniformly seeded in a 96-well plate and incubated
at 37 ◦C with 5% CO2 until they reached the appropriate confluency for transfection.
The 96-well plates were then removed at intervals of 12 h, 24 h, 36 h, 48 h, and 60 h
post-transfection. Following the manufacturer’s protocol, 100 µL of the original medium
was carefully removed from each well and replaced with 100 µL of complete medium
supplemented with 10% CCK-8 reagent (Dojindo, Kyushu Island, Japan). The plates were
then returned to the incubator for an additional 3 h. After post-incubation, the samples
were read on an enzyme-linked immunoassay instrument (BioTek, Winooski, VT, USA),
measuring absorbance (OD value) at a 450 nm wavelength.

2.7. Flow Cytometric Analysis

The preadipocytes were collected 48 h post-transfection and subsequently washed
twice with PBS. Then, the cells’ DNA was stained with propidium iodide (PI) solution
(Solarbio, Beijing, China) and incubated at 4◦C for 30 min. Flow cytometric analysis of the
preadipocytes was performed using a flow cytometer (Becton, Dickinson and Company,
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Franklin Lakes, NJ, USA), which was set to an excitation wavelength of 488 nm and an
emission wavelength of 530 nm.

2.8. Dual-luciferase reporter assay

The luciferase reporter assay was conducted using the 3′UTR of KLF11, which en-
compassed the wild-type or mutant miR-10a-5p target sequences. Subsequently, the con-
structed vectors were co-transfected into 293T cells, along with miR-10a-5p mimics or
inhibitors. Following a 48-hour transfection period, cells were collected. The luciferase
activity was quantified using the Dual-Luciferase Reporter Assay System Kit (Promega,
Madison, WI, USA).

2.9. Western Blotting Analysis

Total proteins were extracted from the cells in the knockout and overexpression groups,
as well as their respective control groups. For gel electrophoresis, 20 µg of protein from
each group was loaded onto a sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE).
After electrophoresis, the proteins were transferred onto a membrane. This membrane
was then blocked and incubated successively with primary and secondary antibodies. The
primary antibodies against KLF11, PPARγ, and aP2 were sourced from ABclonal (Wuhan,
China), while the secondary antibody was acquired from LICOR. The final step involved
analyzing the optical density values of the target band using the Odyssey FC NIR Protein
Processing System (LI-COR, Lincoln, NE, USA).

2.10. Bioinformatics Analysis

The sequences for miR-10a-5p and the 3′UTR of the target gene were obtained from
the NCBI database. Potential target genes for miR-10a-5p were predicted using three online
tools: miRDB, Targetscan, and TangetMiner. An intersectional analysis of the results from
these tools was conducted to identify consensus target genes.

2.11. Statistical Analysis

All data were analyzed using SPSS version 22.0 and are presented as means ± SEMs.
The statistical significance was determined at a p value of < 0.05. Data visualization was
performed using GraphPad Prism 7.0 software (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. miR-10a-5p Expression Pattern in Pigs

In this study, the expression profile of miR-10a-5p was analyzed across different pig
tissues. The results showed that miR-10a-5p was ubiquitously expressed in a variety of
pig tissues. Interestingly, a pronounced expression of miR-10a-5p was observed in the
lung and kidney. The adipose tissue also showed notable levels of miR-10a-5p expression
(Figure 1A). The study aimed to further discern the temporal expression trend of miR-10a-
5p during the developmental stages of subcutaneous adipose tissue in pigs. By extracting
the total RNA at different growth and developmental time points, it was discerned that
the expression of the miR-10a-5p gene peaked on day 180, while it was the least on day
0 in the subcutaneous adipose tissue of pigs (Figure 1B). In addition, the expression of
miR-10a-5p varied throughout the adipogenic differentiation process of porcine precursor
adipocytes, with the highest expression on day 0 of differentiation (Figure 1C). These
observations suggest a potential regulatory role for miR-10a-5p in the early stages of
adipogenic differentiation in pig preadipocytes.
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3.2. miR-10a-5p Inhibition of Porcine Preadipocyte Proliferation

To elucidate the impact of miR-10a-5p on porcine preadipocyte proliferation, we
utilized a range of assays, including qRT-PCR, CCK-8, EdU, and flow cytometry. Our data
showed an approximately 15-fold increase in the transfection efficiency of miR-10a-5p when
preadipocytes were treated with miR-10a-5p mimics (p < 0.01, Figure 2A). Conversely, the
miR-10a-5p inhibitor significantly reduced its expression (p < 0.01, Figure 2D). Subsequent
qRT-PCR increases revealed that the proliferation-associated genes, including Cyclin B,
Cyclin D1, cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 1 (CDK1), antigen-
identified by monoclonal antibody Ki 67 (ki67), and proliferating cell nuclear antigen
(PCNA), exhibited reduced mRNA expression upon miR-10a-5p mimic treatment (p < 0.01,
Figure 2B). In contrast, their expressions increased upon miR-10a-5p inhibition, specifically
Cyclin B, Cyclin D1, CDK4, CDK1, and ki67 (p < 0.01 and p < 0.05, Figure 2E). The CCK-8
analysis demonstrated temporal changes in preadipocyte viability post-transfection at the
time points of 12, 24, 36, 48, and 60 h. The miR-10a-5p mimics hampered proliferation,
while its inhibitor bolsters the same (p < 0.01, Figure 2C,F). Furthermore, EdU incorporation
assays provided insights into the proliferation status post-transfection. Overexpression
of miR-10a-5p led to a pronounced decline in EdU-positive cells, whereas its inhibitor
showed an inverse effect, enhancing the ratio of EdU-positive cells (Figure 2G,H). Flow
cytometric data echoed these findings. The miR-10a-5p mimics induced an increase in cell
proportions at the G1 and G2 phases, as well as a concomitant decrease in the S phase. In
contrast, the miR-10a-5p inhibitor exhibited the reverse effect (Figure 2I,J). Our findings
underscore the potential of miR-10a-5p as a pivotal regulator in the proliferation dynamics
of porcine preadipocytes.

3.3. miR-10a-5p Enhancement of Porcine Preadipocyte Differentiation

To determine the role of miR-10a-5p on the differentiation of porcine preadipocytes,
we used qRT-PCR, western blotting, and ORO techniques. Following an 8-day transfection
with either miR-10a-5p mimics or inhibitors, qRT-PCR was utilized to detect the expression
levels of adipogenic markers such as peroxisome proliferator-activated receptor gamma
(PPARγ), CCAAT enhancer-binding protein alpha (CEBP/α), and fatty acid-binding pro-
tein 4 (aP2). We found that miR-10a-5p mimics significantly enhanced the expression of
PPARγ, CEBP/α, and aP2, while their levels were notably reduced by the miR-10a-5p
inhibitor (p < 0.01 and p < 0.05, Figure 3A,B). Using western blotting, we observed that
overexpression of miR-10a-5p significantly increased the protein levels of PPARγ and
aP2, while miR-10a-5p inhibition notably reduced these proteins (Figures 3C,D and S1).
Furthermore, the lipid accumulation in the cells, a key indicator of adipogenesis, was
assessed through ORO staining. The results demonstrated enhanced lipid deposition upon
miR-10a-5p overexpression on the eighth day of differentiation. In contrast, the inhibition
of miR-10a-5p significantly diminished the accumulation of lipid droplets (Figure 3E,F).
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These results highlight the integral role of miR-10a-5p in promoting the differentiation of
porcine preadipocytes.

Figure 2. The role of miR-10a-5p in modulating porcine preadipocyte proliferation. (A,D) Transfection
efficiency of miR-10a-5p mimics or inhibitors; (B,E) mRNA expression profiling of key proliferation-
associated genes post-miR-10a-5p mimic or inhibitor-transfection; (C,F) temporal cell proliferation
trajectories post-miR-10a-5p mimic or inhibitor-transfection, assessed via the CCK-8 assay; (G,H) EdU
assays illustrating the proliferation rate of porcine preadipocytes post-transfection with either miR-
10a-5p mimics or inhibitors; (I,J) flow cytometric representation of cell cycle dynamics in porcine
preadipocytes following the miR-10a-5p mimic or inhibitor transfection. Significance markers: ** and
* denote p < 0.01 and p < 0.05, respectively.
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Figure 3. Role of miR-10a-5p in porcine preadipocyte differentiation. (A,B) mRNA expression
levels of adipogenic markers in preadipocytes post-transfection with miR-10a-5p mimics or inhibitors;
(C,D) protein levels of adipogenic markers in preadipocytes following miR-10a-5p mimics or inhibitor
transfection; (E,F) Oil Red O staining after miR-10a-5p mimics or inhibitor treatment. Significance
markers: ** and * denote p < 0.01 and p < 0.05, respectively.

3.4. KLF11: A Target of miR-10a-5p in Modulating Preadipocyte Proliferation and Differentiation

To identify the downstream targets of miR-10a-5p, we utilized online prediction tools
such as miRDB, Targetscan, and TangetMiner. As a result, KLF11 emerged as a potential
target gene of miR-10a-5p (Figure 4A). Notably, the seed sequence of miR-10a-5p exhibited
considerable conservation across several species, including humans, mice, rats, and other
mammals (Figure 4B). To ascertain the direct interaction between miR-10a-5p and KLF11
3′UTR, we introduced mutations at the miR-10a-5p binding sites within the KLF11 3′UTR
(Figure 4C). We also tracked the expression dynamics of KLF11 during differentiation
and observed an inverse relationship with miR-10a-5p, with KLF11 expression rising as
differentiation proceeded (Figure 4D). Dual-luciferase reporter assays, using both the wild-
type KLF11 3′UTR (KLF11 3′UTR Wt) and its mutated counterpart (KLF11 3′UTR Mut),
were established. The miR-10a-5p mimics substantially reduced the luciferase activity of the
wild-type KLF11 3′UTR, an effect absent from the mutated 3′UTR (Figure 4E). Furthermore,
the miR-10a-5p mimics led to a significant downregulation in KLF11 mRNA levels, whereas
their inhibitors upregulated the mRNA and protein expression of KLF11 compared to their
respective controls (Figures 4F,G and S2). Overall, our data strongly suggests that KLF11 is
a direct downstream target of miR-10a-5p.
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3.5. KLF11: A Negative Regulator in Preadipocyte Differentiation

Overexpression of KLF11 led to distinct reductions in both the mRNA and protein
levels of the adipogenic markers PPARγ and aP2 (Figures 5A,C and S3A). Additionally,
there was a significant decrease in lipid droplet formation (Figure 5E). Conversely, when
KLF11 was silenced, there was a notable increase in the mRNA and protein expression
of PPARγ and aP2, yet the number of lipid droplets significantly decreased (Figures
5B,D,F and S3B). These findings collectively suggest that KLF11 acts as an inhibitor of
preadipocyte adipogenic differentiation. To further verify the relationship between miR-
10a-5p and KLF11, we conducted rescue experiments. In cells overexpressing KLF11 and
transfected with miR-10a-5p mimic controls (OE-KLF11+ mimics NC group), the expression
levels of adipogenic markers and lipid droplet formation in the OE-KLF11+miR-10a-5p
mimics group were significantly increased (Figures 5A,C,E and S3A). Meanwhile, in cells
with silenced KLF11 and treated with miR-10a-5p inhibitor controls (si-KLF11+inhibitor
NC group), the expression of adipogenic markers and lipid droplet formation in the si-
KLF11+miR-10a-5p inhibitor group was significantly decreased (Figures 5B,D,F and S3B).
This suggests that miR-10a-5p can counteract KLF11′s inhibitory effect on adipogenic
differentiation of preadipocytes.



Animals 2024, 14, 337 10 of 14
Animals 2024, 14, x  10 of 13 
 

 
Figure 5. KLF11 modulates preadipocyte differentiation. (A,B) qRT-PCR analysis showing relative 
expression levels of adipocyte markers PPARγ, C/EBPα, and aP2; (C,D) western blot analysis re-
vealing relative protein expression levels of PPARγ, C/EBPα, and aP2; (E,F) visualization of lipid 
droplet accumulation via Oil Red O staining. 

4. Discussion 
Fat deposition significantly influences pig growth, affecting pork quality, production 

efficiency, and reproductive traits [22]. These fatty traits have genetic variations. Identify-
ing molecular markers influencing fat deposition can accelerate genetic progress. Pigs, 
with genetics and physiology resembling humans, are ideal models for human obesity 
and metabolic syndrome studies [23]. Aside from genes, non-coding RNAs such as miR-
NAs, lncRNAs, and circRNAs regulate preadipocyte proliferation and differentiation. 

MiRNAs are pivotal in adipocyte differentiation and maturation [24,25]. PPARγ is 
considered the master regulator of adipocyte differentiation and is directly targeted by 
miR-27a, miR-27b, and miR-130 [26]. In addition, miR-27a and miR-27b have also been 
demonstrated to be important negative regulators of both mouse and human adipogene-
sis [27,28]. Recently, it was reported that the treatment of porcine pre-adipocytes with 
microvesicles produced from cells overexpressing miR-130b caused impaired adipocyte 
differentiation and repression of PPARγ [29]. Furthermore, miR-155 has been shown to 
directly target CREB and C/EBPβ. C/EBPβ was a critical transcription factor induced early 
in the process of adipogenesis [30]. Similarly, miR-138 impaired adipocyte differentiation 
by disrupting the activation of PPARγ by targeting EID-1 [31]. miRNAs play a critical role 
in regulating fat deposition and adipocyte differentiation, but many miRNA functions 
have not yet been studied and reported. 

Thus, we delved into the molecular mechanism of miR-10a-5p in porcine fat metab-
olism, revealing the role of miR-10a-5p in preadipocyte differentiation by targeting the 

Figure 5. KLF11 modulates preadipocyte differentiation. (A,B) qRT-PCR analysis showing relative
expression levels of adipocyte markers PPARγ, C/EBPα, and aP2; (C,D) western blot analysis
revealing relative protein expression levels of PPARγ, C/EBPα, and aP2; (E,F) visualization of lipid
droplet accumulation via Oil Red O staining. ** p < 0.01.

4. Discussion

Fat deposition significantly influences pig growth, affecting pork quality, production
efficiency, and reproductive traits [22]. These fatty traits have genetic variations. Identifying
molecular markers influencing fat deposition can accelerate genetic progress. Pigs, with
genetics and physiology resembling humans, are ideal models for human obesity and
metabolic syndrome studies [23]. Aside from genes, non-coding RNAs such as miRNAs,
lncRNAs, and circRNAs regulate preadipocyte proliferation and differentiation.

MiRNAs are pivotal in adipocyte differentiation and maturation [24,25]. PPARγ is
considered the master regulator of adipocyte differentiation and is directly targeted by
miR-27a, miR-27b, and miR-130 [26]. In addition, miR-27a and miR-27b have also been
demonstrated to be important negative regulators of both mouse and human adipogen-
esis [27,28]. Recently, it was reported that the treatment of porcine pre-adipocytes with
microvesicles produced from cells overexpressing miR-130b caused impaired adipocyte
differentiation and repression of PPARγ [29]. Furthermore, miR-155 has been shown to
directly target CREB and C/EBPβ. C/EBPβ was a critical transcription factor induced early
in the process of adipogenesis [30]. Similarly, miR-138 impaired adipocyte differentiation
by disrupting the activation of PPARγ by targeting EID-1 [31]. miRNAs play a critical role
in regulating fat deposition and adipocyte differentiation, but many miRNA functions have
not yet been studied and reported.

Thus, we delved into the molecular mechanism of miR-10a-5p in porcine fat metabolism,
revealing the role of miR-10a-5p in preadipocyte differentiation by targeting the KLF11 gene.
Previous research has shown miR-10a-5p’s involvement in inhibiting chicken granulosa cell
proliferation by targeting MAPRE1 to suppress CDK2, as well as suppressing melanoma cell
proliferation and migration [32,33]. It also impacts keratinocyte proliferation and directly
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targets hyaluronan synthase 3 [34]. These findings emphasize miR-10a-5p’s significant role
in cell regulation. Our study further investigated its function in preadipocyte proliferation
using various experiments. The results showed that miR-10a-5p mimics inhibited, while
miR-10a-5p inhibitors promoted cell proliferation.

miR-10a-5p has been linked to adipocyte differentiation. RNA analysis in mice sug-
gests its role in inflammation and differentiation in adipose macrophages and adipocyte
stem cells, promoting new white adipocyte formation [15]. Previous research indicates its
ability to attenuate adipogenic differentiation by targeting the 3’UTR region of Map2k6
and Fasn [16]. Map2k6 influences adipokine expression in precursor adipocytes [35], and
miR-10a-5p is known to regulate genes such as Nr4a3 and Dll4 related to adipogenesis
suppression [36,37]. In this study, miR-10a-5p enhanced adipogenic differentiation in
porcine precursor adipocytes. However, within goat intramuscular preadipocytes, it inhib-
ited differentiation by targeting KLF8 [38]. This discrepancy might be due to interspecies
differences. Notably, our study confirmed miR-10a-5p’s binding to KLF11, affecting porcine
preadipocyte differentiation.

The KLF11 gene, part of the KLFs family, was first identified in human pancreatic cells
(CFPAC-1) in 1998 by the Raul Urrutia laboratory [19]. KLF11 is an important transcription
factor involved in physiological processes such as cell growth, differentiation, glycolipid
metabolism, and oxidative stress [39]. It is essential for modulating the genomic program
in white adipocytes to induce browning [40]. Studies have shown that KLF11 is involved in
sterol-responsive element-binding proteins (SREBP), mediated cholesterol production, and
transport in mouse endothelial cells [41]. In mice, liver overexpression of KLF11 activates
the PPARα signaling pathway, subsequently influencing lipid metabolism [21]. KLF11
can also down-regulate the expression of SREBP-1c and FAS in the mouse liver, inhibiting
lipid synthesis. Furthermore, the study finds that KLF11 inhibits the differentiation of
ovine SVF [17]. miR-10b-5p, which shares a seed sequence with miR-10a-5p, targets KLF11
and aids in glucose homeostasis, offering potential diabetes treatment [42]. In summary,
KLF11 plays an important role in the differentiation of preadipocytes. Therefore, this study
explored the effects of KLF11 on the differentiation of precursor adipocytes. The results
showed that overexpression of KLF11 inhibited the differentiation of preadipocytes, while
interference with KLF11 promoted the differentiation of preadipocytes. KLF11 could also
hinder the promotion of miR-10a-5p in preadipocyte differentiation. Therefore, KLF11 may
be necessary for the differentiation and formation of porcine preadipocytes.

5. Conclusions

This study demonstrates that miR-10a-5p suppresses proliferation and promotes the
adipogenic differentiation of porcine precursor adipocytes. Mechanistic studies have shown
that miR-10a-5p reduces KLF11 expression by binding to the 3‘UTR of KLF11, promoting
adipogenesis. Our results lay a theoretical foundation for understanding the role and
mechanism of miR-10a-5p in regulating adipogenic differentiation in pigs while offering
valuable insights into the role of miRNAs in regulating fat deposition and enhancing
meat quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani14020337/s1, Figure S1: Western blot gray value statistics.
(A) The full western blot images (B) Protein levels of PPARγ and ap2 of adipogenic markers in
preadipocytes following miR-10a-5p mimics. (C) Protein levels of PPARγ and ap2 of adipogenic
markers in preadipocytes following miR-10a-5p inhibitor. Figure S2: The KLF11 protein expression
in porcine preadipocytes following transfection with miR-10a-5p mimics or inhibitor. (A) The full
western blot images. (B) Western blot gray value statistics. Figure S3: Western blotting gray value
statistics. (A) Protein levels of PPARγ and ap2 of adipogenic markers in preadipocytes following
transfected with OE-KLF11 or miR-10a-5p mimic. (B) Protein levels of PPARγ and ap2 of adipogenic
markers in preadipocytes following transfected with si-KLF11 or miR-10a-5p inhibitor.
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