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Simple Summary: The tundra vole’s (Alexandromys oeconomus) distribution in Lithuania has been
documented for 70 years, yet its genetic diversity remains unexplored. We analyzed vole samples
from northern and western sites in Lithuania, using mtDNA sequence analysis. Despite landscape
barriers, our phylogenetic analyses placed Lithuanian voles in the Central European phylogroup,
suggesting an origin from northeastern Poland. Genetic diversity in Lithuanian A. oeconomus at the
mtDNA loci was low compared to other European samples, revealing distinctions from Poland and
Northern Europe. Genetic divergence among western and northern Lithuanian samples, coupled
with low variability, provides novel insights into species phylogeography and the influence of barriers
on colonization dynamics.

Abstract: The distribution and spread of the tundra vole (Alexandromys oeconomus) in Lithuania
have been documented over the last 70 years, but the genetic diversity of the species has not been
studied. In this study, we examined A. oeconomus trapped in three sites in northern and western
Lithuania using mtDNA sequence analysis of the cytb and control region. The western and northern
sites are separated by anthropogenic landscape barriers. The western site is subject to regular spring
flooding. Phylogenetic analyses of the studied individuals placed them in the Central European
phylogroup, suggesting that Lithuanian A. oeconomus originated from northeastern Poland. In
Lithuania, the genetic diversity of A. oeconomus at both mtDNA loci was relatively low (Hd < 0.6,
π < 0.002) compared to that found in other European samples (Hd = 0.833–0.958; π = 0.00402–0.01552).
Individuals analyzed in Lithuania were genetically different from samples collected in Poland and
Northern Europe (ΦST > 0.15, p < 0.05). The genetic divergence between the western and northern
samples of A. oeconomus in Lithuania, together with the low genetic variability among the voles
studied, provides new insights into the phylogeography of the species and the influence of barriers
on the colonization of the country.

Keywords: Alexandromys oeconomus; cytb; control region; genetic variability; natural and anthropogenic
barriers; phylogeography

1. Introduction

Recent studies have shown that genetic diversity is currently declining in many
mammalian populations, with lower heterozygosity in populations under demographic
threat [1]. Different perspectives on the genetic diversity of European vole species are
related to their phylogeographic history—recolonization after the last glacial period [2].
In the common vole (Microtus arvalis (Pallas, 1778)), multiple glacial refugia have led to
different genetic lineages [3], a similar characteristic pattern to the bank vole (Clethrionomys
glareolus (Schreber, 1780)), and widespread forest habitation [4]. In the field vole (Microtus
agrestis (Linnaeus, 1761)), three main genetic groups were found [5], with two of these
being present in Lithuania [6].

Voles of the genus Microtus represent one of the most speciose mammalian genera in
the Holarctic [7]. Over the last two million years, the genus has rapidly evolved into a group
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of 65 species, spread over a wide range of latitudes [8,9]. The most widespread species is
the tundra vole (Alexandromys oeconomus (Pallas, 1776)). However, not all investigations
recognize the validity of the subgenus Alexandromys [7], so this species is also recognized
as Microtus oeconomus (Pallas, 1776) [9–11]. Here, we use A. oeconomus, following the
nomenclature proposed by the American Society of Mammalogists and IUCN [12,13].

Alexandromys oeconomus survived glaciation in the northern refugia in Norway [14];
therefore, the species recolonization pattern could be somewhat different from other Micro-
tus voles [3,5]. The species is shown to be absent in southern parts of Finland and Sweden,
and in the St. Petersburg region, nearly absent in Estonia and, has been mistakenly reported
to be absent in Latvia [12,15].

The presence of two isolated A. oeconomus subspecies, namely A. o. mehelyi (Èhik, 1928)
from the Pannonial lowland, and A. o. arenicola (de Sélys-Longchamps, 1841) from the
Netherlands [12,16–18], sparked scientific and conservationist interest on the genetics of
this species.

Following phylogeographical study of the species based on the 1140 base pairs (bp)
of the mitochondrial cytochrome b (cytb) gene, C. Brunhoff et al. [19] identified four main
mitochondrial DNA (mtDNA) phylogenetic lineages: the Beringian, the Central Asian, the
North European, and the Central European. Lithuania, in this study, was represented by
only one individual, related to the Central European mtDNA phylogroup. The authors
additionally implied that during the last glacial period, A. oeconomus also survived in
areas north of the classical refugial areas in southern Europe. This study was a frame for
our investigation to obtain more information on the genetic diversity of this species in
Lithuania. No such investigations have been carried out in the country after 2003. Initially,
low genetic differentiation was found not only in northwestern Europe but also in other
populations. As an explanation for this, multiple events of population decrease during
and after glaciation, based on a severe reduction in the suitable habitat, were assumed [20].
Later, lower genetic diversity was also confirmed for A. o. mehelyi [17], differing from the
most widely distributed A. o. stimmingi (Nehring, 1899).

Another reason for the low genetic diversity of A. oeconomus is the isolation of current
populations, especially in the Netherlands [16] and Hungary [18]. Isolation due to distance
has not been found to affect the genetic differentiation of isolated populations in the Danube
Delta [21], so these authors attribute the low genetic diversity to the isolated location of the
whole area in an agricultural landscape. Long-term habitat changes in the Kis Balaton area
in Hungary have resulted in the isolation and low genetic variability of A. oeconomus, which
differs from other Hungarian, Austrian, and Slovak populations [18]. However, data on the
genetic structure of A. oeconomus in Poland were different [10]. The Polish authors found
that isolation due to distance is a major factor in genetic differentiation. While natural
barriers can be overcome due to the migratory capacity of the species, anthropogenic
barriers can have a much stronger effect [10].

The genetic diversity of any population under study can be related to the history of
the population. In the Bialowieza Primeval Forest, A. oeconomus has been continuously
present for a long period of time in the undisturbed marshes, so a high genetic diversity
should be expected. Indeed, eight mtDNA cytb haplotypes, with four of these being new
to the species, were identified [22]. According to the haplotype network analysis, two of
these haplotypes were very important: PLB5 confirmed the link between the indigenous
Bialowieza population and the Northern European populations, while PLB8 was linked to a
number of Central European haplotypes. Genetically, the population of A. oeconomus in the
Bialowieza Forest is stable, although the number of voles has changed fourfold in a short
period of time [23]. The genetic stability of many populations that maintain abundance
over long periods has also been confirmed in Northeast Asia and Alaska [24].

In Lithuania, A. oeconomus (M. oeconomus in all publications mentioned below) was first
recorded in 1949–1950 in the Nemunas delta, in the western part of the country, and less
than 100 km along the Nemunas River to the east [25]. In the 1950s, the species appeared
in two strict nature reserves located in the southern and southwestern parts of Lithuania,
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which are relatively close to eastern and northeastern Poland [26]. Therefore, migration
from the Polish population to Lithuania was presumed. This part of Poland has strong
populations of the species [27] as a result of postglacial dispersal and configuration of
hydrogenic habitats [28]. In the 1990s, the largest number of registrations was in southern
and southwestern Lithuania. Over 50 years, a further spread of the species towards the
northeast has been documented [29]. By contrast, there is only one record of this species
being present in Latvia so far [15]; therefore, the Lithuanian population is at the edge of the
species’ continuous range.

The main habitats of the species in Lithuania include flooded meadows and wetlands,
often tending toward reedbeds. The numbers of trapped animals have also been high
in wet forests [30]. In smaller numbers, A. oeconomus has been trapped in various other
habitats, such as farmsteads, fruit gardens, and ecotones of agricultural fields. In northern
Lithuania, A. oeconomus was exceptionally trapped in natural meadows [31]. During natural
or human-induced succession when meadows were overgrown with forest, A. oeconomus
disappeared [32].

While knowledge of A. oeconomus distribution, reproduction, and ecology in Lithuania
is relatively well known [29,30,33], no investigations have been conducted into its genetics
so far. Therefore, the genetic diversity of A. oeconomus in Lithuania, a species on the edge
of a continuous distribution range, is of interest. The aim of the study was to assess the
genetic variability and the population structure of A. oeconomus using mtDNA cytb and
control region sequence analysis in Lithuania and compare these with the populations in
other European countries. Taking into account the history of the species, its distribution
in the country, and its affinity to wet habitats, we expected that the genetic diversity of
A. oeconomus in Lithuania would be low. We also aimed to confirm whether the Lithuanian
population of A. oeconomus originated from northeastern Poland.

2. Materials and Methods
2.1. Small Mammal Sampling

Samples of A. oeconomus were collected from three sites in Lithuania (Figure 1). Small
mammals in Site 1, in the western part of the country near the Rusnė settlement (55.324◦ N,
21.339◦ E), were trapped in October 2011 and September 2012, yielding 24 individuals.
Sites 2 and 3 were located in the northern part of the country. Site 2, near the Linksmučiai
settlement in the Pakruojis district (55.978◦ N, 23.806◦ E), was sampled in October 2011
(8 individuals), and site 3, in the Žagarė Regional Park, Joniškis district (55.286◦ N, 23.207◦ E),
was sampled in September 2014 (29 individuals). A total of 61 individuals were randomly
selected for genetic analysis from all A. oeconomus captures.

As the captures of A. oeconomus in Lithuania were rather accidental, three sites with
the highest trapping rates were selected for the study period to represent established
populations. Habitats in the investigated sites were as follows: flooded meadows in Site 1,
a natural mowed meadow in Site 2, and wet forests, forest wetlands, and shrubby meadows
in Site 3 (Figure 1). As is shown by the maps, habitats in all three sites of small mammal
trappings were fragmented and separated by natural (rivers, forests) and anthropogenic
(roads, settlements, agricultural areas) barriers.

The trapped small mammals were kept in a refrigerator. At dissection, the hearts of
the individuals were placed in vials and refrigerated in 70% ethanol until analysis.

The study was conducted in accordance with Lithuanian and European legislation on
the protection of animals and approved by the Animal Welfare Committee of the Nature
Research Centre, protocols No. GGT-7 and GGT-8. Further details are presented in the
back matter.
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2.2. DNA Isolation, PCR, and Sequencing

Genomic DNA from A. oeconomus hearts was isolated using the universal salt extrac-
tion method [34] and diluted in 400 µL of nuclease-free water. The DNA concentration
was determined using a NanoPhotometer® P-300 spectrophotometer (Implen, Munich,
Germany) and the samples were diluted to a final DNA concentration of 50 ng/µL. Par-
tial fragments of the mtDNA cytb gene and the control region were used for the genetic
characterization of A. oeconomus samples. The amplification of these two fragments was
carried out by PCR using Micr-2L/Micr-2R and Pro+/MicrF primer pairs as described
previously [6]. The quality of amplified fragments was evaluated using 1.5% agarose gel
electrophoresis. To eliminate unincorporated nucleotides and primers, the PCR-obtained
products were purified with the help of ExoI and FastAP enzymes (Thermo Fisher Scientific
Baltics, Vilnius, Lithuania). The bidirectional sequencing was performed with the Big-Dye®

Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific Baltics, Vilnius, Lithuania)
and the 3500 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) according to
the manufacturer’s recommendations. The resultant DNA sequences were manually edited
to replace ambiguously placed nucleotides. The 697 bp cytb and 420 bp control region
sequences of all sampled animals (61) were deposited in GenBank under accession numbers
OR806886–OR806889 and OR806890–OR806894, respectively. All of the above sequences
obtained in our study were used in each of the data analyses described in Section 2.3.

2.3. Phylogenetic Analyses

The phylogenetic analyses were carried out to identify which populations are closest
to A. oeconomus collected in Lithuania. We also aimed to determine whether the partial
cytb and control region sequences could be used to distinguish phylogenetic lineages of
A. oeconomus. All sequences of analyzed genetic markers available in GenBank were used
for phylogenetic investigations.

For cytb analysis, 341 sequences were retrieved from GenBank (AB372193–AB372207 [35],
AY219981–AY220045 [19], DQ452134–DQ452142 [14], FJ986325–FJ986326 [36], GU954319,
GU987116 [37], KP190236–KP190237, KP326574 [38], KP684101–KP684121 [27], MF099520–MF099521,
MF099544–MF099546, MF099577, MF099579–MF099581 [39], and AY305050–AY305263 [40]).
Some of the sequences obtained from GenBank, namely AY219983, AY219986, AY219987,
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AY219989–90, AY219995, AY220007, AY220010, AY220014, AY220025, AY220027–9, AY220032,
AY220036–7 [19], DQ452135, DQ452137, DQ452142 [14], KP684101–9, KP684111–4, KP684116,
and KP684118 [27], were identified in 2–122 voles, and all remaining sequences were de-
tected once. It should be noted that one of the sequences, AY220011, was previously
obtained from A. oeconomus collected in the southern part of Lithuania (Žuvintas Strict
Nature reserve) [19]. Most of the sequences studied originated from A. oeconomus captured
in Finland, Sweeden, Norway, Poland, Canada, the USA, central Asia, and the Beringia
of the Russian Federation. In addition, some of examined sequences were from Belarus,
Hungary, Slovakia, the Netherlands, Mongolia, and China. The length of the cytb fragment
being compared was 697 bp.

Overall, 267 control region sequences [11,40] were retrieved from GenBank (AY305050–
AY305263, HM135795–HM135812, HM135907–HM135943) and compared with those deter-
mined in the present study. A major part of sequences was determined for A. oeconomus
collected in Beringia, covering eastern Siberia and northwestern North America. Further-
more, some sequences were identified in individuals from Central Asia, Finland, Norway,
the Tver region of the Russian Federation (not far from Moscow), and Austria. It should
be noted that A. oeconomus from Poland were not characterized with the control region.
Since the compared sequences were of different lengths, and started and ended at differ-
ent nucleotide positions, the 378 bp overlapping control region fragments were used for
data analysis.

Apart from the current study, only in one study [40] were cytb and control region
sequences of the same individuals determined (AY305050–AY305263). With the exception
of three sequences (AY305161–3), all other sequences originated from A. oeconomus collected
in Asia and North America. Therefore, phylogenetic analysis based on pooled cytb and
control region data was not performed.

Haplotypes of cytb and the control region were ascertained with a help of FaBox
v. 1.5 [41]. Multiple sequence alignments were generated using the ClustalW algorithm
incorporated in the MEGA7.0.26 software [42]. The nucleotide substitution models with
the best fit to the analyzed data were selected in MEGA7 on the basis on the calculated min-
imum values of the Bayesian Information Criterion. The initial phylogenetic analyses were
performed using the neighbor joining (NJ) method [43] and the Tamura–Nei substitutions
model [44] to establish the haplotypes that are most closely related to those identified in the
present study. All sequences of examined mtDNA fragments available in GenBank were
used for NJ phylogeny. Subsequently, the phylogeny of haplotypes selected by NJ analysis
was reconstructed using a maximum likelihood (ML) method [45]. The bootstrap method
with 10,000 replicates was used to evaluate the robustness of the suggested phylogeny.
The NJ and ML phylogenetic tree were constructed with a help of MEGA7. The haplotype
network was calculated using the median joining (MJ) method [46] implemented in NET-
WORK 10.2.0.0 software (https://www.fluxus-engineering.com/sharenet.htm, accessed
on 2 October 2023).

2.4. Population Genetic Analysis

To assess genetic variability and the population structure of A. oeconomus sampled in
the present study, inter-population genetic analyses were carried out. For this purpose, we
also compared the genetic diversity and divergence of A. oeconomus from Lithuania with
the most closely related populations of this species.

The parameters of intraspecific genetic variability, i.e., the number of segregating sites
(S), the number of haplotypes (h), the average number of nucleotide differences (K), the
haplotype diversity (Hd), the nucleotide diversity (π), and the standard deviation (SD) for
the last two indexes were assessed with a help of DnaSP v. 6 software [47].

Values of Tajima’s D neutrality test [48] were determined using DnaSP v. 6. Pairwise
ΦST values indicating the level of genetic differentiation were evaluated using Arlequin v.
3.5.2.2 [49]. The statistical significance of ΦST values was tested by 10,000 permutations at
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the 95% confidence level. GenAlEx v. 6.502 [50] was employed to perform the principal
coordinate analysis (PCoA) using Nei’s genetic distance [51].

The phylogenetic and population genetic data analyses described above were applied
separately for both genetic markers: the cytb and the control region. Moreover, for the
analysis of the intraspecific genetic variability, the neutrality statistics, and the PCoA
calculations, pooled cytb and control region data were also used.

3. Results
3.1. The Origin of Lithuanian Alexandromys oeconomus

The analysis of 61 partial 697-base-pair cytb sequences of A. oeconomus from Lithuania
showed the existence of four haplotypes. However, based on the 420 bp control region
comparison, five individual haplotypes were ascertained from the 61 sequences analyzed.
The identified haplotypes differed by up to two single nucleotide polymorphisms (SNPs)
within the control region and up to three SNPs within cytb. Five control region haplotypes
defined in the present study were newly identified for A. oeconomus, and they differed by as
many as three SNPs compared to other control region sequences detected in other countries
for this vole species.

Overall, 119 haplotypes were defined for the studied control region sequences. In
the preliminary NJ tree, all 15 control region haplotypes determined in Europe (Finland,
Norway, Austria, the Tver region of the Russian Federation, and Lithuania from the current
study) were placed into one cluster with a low (53) bootstrap support value (Figure A1).
These haplotypes were named D1–D15. The GenBank accession numbers, country of origin,
and frequencies of these haplotypes are listed in Table A1. Notably, the resolution power of
the control region NJ tree was too low to discriminate between haplotypes identified in
Central Asia and Beringia. The ML analysis showed that A. oeconomus haplotypes from
Lithuania did not mix with haplotypes found in other countries (Figure 2a). The grouping
of haplotypes from Finland and the Tver region of Russia was supported by a high and
significant bootstrap value (91). In addition, four haplotypes detected in Norway were
placed into one cluster with a low support value (53), while haplotype found in Austria
formed a separate branch.

The phylogenetic NJ analysis showed that 154 identified cytb haplotypes were grouped
into four lineages: Beringian, Central Asian, North European, and Central European
(Figure A2), as classified by C. Brunhoff et al. [19]. The classification of haplotypes into the
four phylogenetic groups was supported by significant bootstrap values. Furthermore, the
grouping of the European haplotypes of A. oeconomus was strongly supported (bootstrap
value of 96). The four haplotypes identified in this study were placed into the Central
Asian phylogenetic group together with 23 haplotypes identified in Poland, Hungary,
Slovakia, the Netherlands, Norway, and Sweden. The following haplotypes were named
C1–C27 (Table A1). Notably, all 21 haplotypes detected in Poland, all of those detected
in Hungary, Slovakia, and the Netherlands, 2 out of 25 from Norway, and 1 of four from
Sweeden were placed together with those from Lithuania. The other cytb sequences from
Norway, Sweden, Finland, Belarus, and Russia were placed into the Northern European
clade. In the current study, we identified C1, C5, C9, and C11 haplotypes. The first three
haplotypes were also observed in Poland (Table A1), while the C11 haplotype was identical
to that previously found in southern Lithuania [19]. Thus, all four cytb haplotypes defined
in the present study were previously detected at other sites. Based on ML analysis, the
clustering of C1–C27 haplotypes was not well defined, as clustering of only four clades
was supported by 50–67 bootstrap values (Figure 2b). In summary, the studied animals
captured in Lithuania were genetically closest to A. oeconomus collected in Poland.
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Figure 2. The ML trees of A. oeconomus based on control region (a) and cytb (b) sequences and rooted
in other closely related Alexandromys species. Haplotypes detected in this work are shown in blue.
Only haplotypes most closely related to those identified in Lithuania were compared. The selection
of haplotypes for ML trees was based on the results of NJ analyses (Figures A1 and A2). The HKY +
G evolutionary nucleotide substitution model [42] was selected for both analyses (control region and
cytb). The figures next to branches show bootstrap values higher than 50. The haplotypes identified in
this study are indicated in blue. AT—Austria, FI—Finland, HU—Hungary, LT—Lithuania, NL—The
Netherlands, NO—Norway, PL—Poland, RU—The Russian Federation, SE—Sweeden, SL—Slovakia.

Of the five control region haplotypes found in Lithuania, the most common D1 hap-
lotype was found in 78.7% of the samples, present in all three sampling sites. Other
haplotypes differed from D1 haplotype by only one mutational step (Figure 3a). Based on
the cytb haplotype network, the two most common haplotypes in Lithuania, C1 and C5,
were found in 88.5% of individuals. Both haplotypes were detected in all three sampling
sites examined (Figure 3b); C1 and C5 were identified in 35 and 19 animals, respectively.
However, the ratio of haplotypes clearly differed in terms of sampling sites. The C1 haplo-
type prevailed in the western part of Lithuania (Site 1), while C5 dominated in the northern
part of the country (Site 3). The frequency of C11 was four, and this haplotype was observed
only in Lithuania (Site 2, Site 3, and the southern part of Lithuania). Both C5 and C11
differed from the most common haplotype by a single mutational step, whereas C9 differed
from C1 by two mutational steps. C9 was identified in four individuals trapped in Site 3,
located in northern Lithuania. From the mutational viewpoint, intermediate haplotypes
between C1 and C9, i.e., C3 and C6, were common in Poland.
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Figure 3. Haplotype network of A. oeconomus based on control region (a) and cytb (b) haplotypes.
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cations in Lithuania displayed in Figure 1. AT—Austria, FI—Finland, HU—Hungary, LT—Lithuania,
NL—The Netherlands, NO—Norway, PL—Poland, RU—The Russian Federation, SE—Sweeden,
SL—Slovakia.

3.2. The Genetic Variability of A. oeconomus from Lithuania

Based on cytb, relatively low genetic variability (K = 0.80011, Hd = 0.589 ± 0.047, and
π = 0.00115 ± 0.00017) was determined for Lithuanian samples of A. oeconomus in compari-
son to those established for animals collected in Poland (K = 2.80442, Hd = 0.833 ± 0.008,
and π = 0.00402 ± 0.00009) (Table 1). Significantly higher values of genetic variability were
estimated in animals sampled in the Northern European phylogenetic group (K = 5.68499,
Hd = 0.958 ± 0.014, and π = 0.00816 ± 0.00071) than in animals collected in Lithuania and
Poland. The low genetic variability of A. oeconomus from Lithuania, as compared to the
Northern European samples, was also confirmed by the data of the control region. In the
present study, cytb and the control region fragments analyzed showed similar nucleotide
diversity, while greater haplotype diversity was found in the cytb gene. The Tajima’s D
values obtained were insignificant for all samples, indicating the neutral evolution of the
vole species examined.
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Table 1. The intraspecific genetic variability and neutrality test of A. oeconomus.

Sample n S h K Hd ± SD π ± SD Tajima D

cytb
Lithuania 62 4 4 0.80011 0.589 ± 0.047 0.00115 ± 0.00017 −0.13146

Lithuania, present study 61 4 4 0.78033 0.577 ± 0.047 0.00112 ± 0.00017 −0.18937
Lithuania, Site 1 24 1 2 0.15942 0.159 ± 0.094 0.00023 ± 0.00014 −0.68111
Lithuania, Site 2 8 2 3 0.67857 0.607 ± 0.164 0.00097 ± 0.00032 −0.44794
Lithuania, Site 3 29 4 4 1.14286 0.655 ± 0.065 0.00164 ± 0.00029 0.31626

Poland 448 19 21 2.80442 0.833 ± 0.008 0.00402 ± 0.00009 −0.03417
Central Europe 1 518 26 27 2.72261 0.842 ± 0.008 0.00391 ± 0.00008 −0.80183

Northern Europe 2 44 38 24 5.68499 0.958 ± 0.014 0.00816 ± 0.00071 −1.20614
Overall 562 60 51 4.64387 0.865 ± 0.007 0.00666 ± 0.00006 −1.32441

control region
Lithuania 61 4 5 0.40328 0.372 ± 0.076 0.00107 ± 0.00024 −1.14912

Lithuania, Site 1 24 3 4 0.63406 0.562 ± 0.092 0.00168 ± 0.00035 −0.53008
Lithuania, Site 2 8 0 1 – – 0 –
Lithuania, Site 3 29 2 3 0.26108 0.254 ± 0.100 0.00069 ± 0.00028 −1.00859

Northern Europe 3 14 19 10 5.86813 0.890 ± 0.081 0.01552 ± 0.00252 −0.07419
Overall 75 22 15 2.52252 0.582 ± 0.007 0.00667 ± 0.00126 −1.33757

cytb + control region
Lithuania 61 8 8 1.18361 0.754 ± 0.039 0.00106 ± 0.00012 −0.80927

Lithuania, Site 1 24 4 5 0.79348 0.656 ± 0.083 0.00071 ± 0.00013 −0.70896
Lithuania, Site 2 8 2 3 0.67857 0.607 ± 0.164 0.00061 ± 0.00020 −0.44794
Lithuania, Site 3 29 6 6 1.40394 0.761 ± 0.054 0.00126 ± 0.00019 −0.23334

1 Central Europe corresponded to A. oeconomus samples presented in Figures 2b and 3b; 2 Northern European
phylogenetic clade was determined using NJ analysis and it represents 23 individuals from Norway, 13 from
Finland, 5 from European Russia, 2 From Sweeden, and 1 from Belarus; 3 the sample represent 8 animals from
Finland, 4 from Norway, 1 from Austria and 1 from Tver region of Russia.

Of the three Lithuanian samples of A. oeconomus studied, the highest intraspecific
genetic variability in terms of K, Hd, and π was found at Site 3, when the data from both
genetic loci were combined (Table 1). At the control region, no genetic variation was
observed in Site 2, as all eight individuals had the most common haplotype D1 (Figure 3a).
Very low genetic variability (Hd = 0.159 ± 0.094, π = 0.00023 ± 0.00014) was estimated in
Site 1 within cytb.

3.3. The Inter-Population Genetic Comparison of A. oeconomus from Lithuania

Lithuanian samples of A. oeconomus were genetically differentiated from samples
collected in Poland (ΦST = 0.16660–0.20425; p < 0.05) and Northern Europe (ΦST ≥ 0.52409;
p < 0.001) (Table 2). Average (ΦST = 0.12513, p < 0.001) and high (ΦST = 0.22077, p < 0.001)
genetic differentiation was determined between Lithuanian Site 1 and Site 3 in the control
region and cytb, respectively. The genetic divergence between the Lithuanian and Polish
populations of A. oeconomus was also confirmed by PCoA analysis (Figure 4a). Comparing
the Lithuanian samples, the largest genetic differences at both mtDNA loci were observed
between Sites 1 and Site 3 (Figure 4b–d).

Table 2. Genetic differentiation of A. oeconomus samples. Pairwise ΦST values obtained based on cytb
and control region sequences are presented below and above the diagonal, respectively. Statistically
significant values are in bold.

Site 1 (LT) Site 2 (LT) Site 3 (LT) Poland Northern Europe

Site1 (LT) 0.05900 0.12513 ** – 0.63653 **
Site 2 (LT) 0.06606 –0.02346 – 0.52409 **
Site 3 (LT) 0.22077 ** 0.02509 – 0.68879 **

Poland 0.18365 ** 0.16660 * 0.20425 ** -
Northern Europe 0.77818 ** 0.72406 ** 0.77798 ** 0.82620 **

LT—Lithuania, * p < 0.05, ** p < 0.001.
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4. Discussion
4.1. Distribution of Alexandromys oeconomus

Regardless of whether Northern Europe was colonized by the Mediterranean popula-
tions [2] or from other refugia [9], the phylogeography of A. oeconomus in higher latitudes
was strongly influenced by late Quaternary geological and climatic events [19]. Dispersal
is thought to occur through hydrogenic habitats, so landscape origin may influence the
genetic diversity of populations [52].

Why is A. oeconomus currently so widespread? The species primarily inhabits a variety
of habitats, such as floodplain meadows and reedbeds [29,53], wet forests, and swamps [52].
However, the species is able to survive (or adapt) to anthropogenic habitats such as fruit
orchards [54] and agricultural land [18,21], using the remaining areas of marshland as
a refuge [55]. They reproduce intensively, producing several litters [53], and litter size
increases from south to north across their range [33]. In Lithuania, the litter size and the
number of litters per year of A. oeconomus is small and therefore similar to other populations
in the southern part of its geographical range [33].

The herbivorous diet allows species to use a wide range of food resources [56], which
contributes to survival in different habitats. Alexandromys oeconomus, especially males, are
able to disperse over long distances, but survival is low [57].

4.2. Low Genetic Variability of the Lithuanian Alexandromys oeconomus Population

We found that the genetic diversity of A. oeconomus in Lithuania is quite low, with
only five cytb haplotypes, all of which have previously been detected in Poland or southern
Lithuania (Table A1).

We have identified five new control region haplotypes. The non-detection of these hap-
lotypes in the past is most likely due to the fact that A. oeconomus from Poland has not been
tested using the D loop. In Lithuania, low haplotype diversity (in cytb Hd = 0.577 ± 0.047; in
the control region Hd = 0.372 ± 0.076) and nucleotide diversity (in cytb π = 0.00112 ± 0.00017,
in the control region π = 0.00107 ± 0.00024) was observed at both mtDNA loci (Table 1), com-
pared to A. oeconomus from Poland and Northern Europe (Hd = 0.833 ± 0.008–0.958 ± 0.014;
π = 0.00402 ± 0.00009–0.01552 ± 0.00252). The relatively low genetic variability of Lithua-
nian populations of A. oeconomus found in this study should be considered an exception
in the European part of the species’ range. Notably, high genetic diversity in mtDNA has
been found in A. oeconomus collected in different regions of Europe [19,22,27], including
modern populations on the Norwegian islands, living in harsh climatic conditions [14].
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High mtDNA genetic variability is also characteristic of A. oeconomus accessions from
Central Asia, Northeast Asia, and Alaska [19,23,34].

Furthermore, microsatellite markers have revealed relatively high genetic variability
in central and northern European samples of A. oeconomus [16,17,23]. For instance, an
analysis of 20 microsatellite loci conducted over a brief period in the Polish Bialowieza
population of A. oeconomus revealed a high expected heterozygosity, a crucial indicator
of genetic diversity, ranging from 0.72 to 0.78 [23]. Additionally, microsatellite analyses
demonstrated similarly elevated genetic diversity in populations from Austria, Finland,
Germany, Hungary, the Netherlands, Norway, and Slovakia [16–18].

In Lithuania, the genetic variability among vole species, besides A. oeconomus, has
also been assessed in M. agrestis [6]. Using the same PCR primer pairs as in this study,
considerably higher genetic variability values were estimated in M. agrestis within cytb
(Hd = 0.841 ± 0.038, π = 0.00694 ± 0.00039) and the control region (Hd = 0.890 ± 0.021,
π = 0.01147 ± 0.00070). Therefore, the diminished genetic variability observed in A. oecono-
mus from Lithuania is likely associated with the ecological characteristics of the studied
species. Populations of A. oeconomus have formed over the last 70 years [9,23], and the
decline in genetic variability can be attributed to the founder effect. It should be highlighted
that within the control region, only a single haplotype was observed in Site 2 (Table 2). How-
ever, very low genetic variability was estimated in Site 1 within cytb (Hd = 0.159 ± 0.094,
π = 0.00023 ± 0.00014). The reduced genetic variability in Site 1 can be explained by genetic
drift due to the huge fluctuations in population size in this sample. The local population of
A. oeconomus in southwest Lithuania (Site 1) has suitable habitats, including the preferred
habitat of reedbeds [58], but they experience regular spring floods [30]. These floods con-
tribute to the habitat’s suitability for voles by altering microtopography, enhancing food
quality through increased plant biomass, and providing cover through taller vegetation. A
similar positive impact is observed in the tundra ecosystem due to fires [59].

4.3. The Isolation, Spread, and Genetic Diversity of Alexandromys oeconomus

The absence of A. oeconomus in most of Latvia and Estonia has been attributed to the
species spreading through Lithuania [29]. Currently, there is no alternative explanation for
the absence of this species in two of the Baltic States. In Lithuania, the species initiated its
spread from the southwest, likely originating from northeastern Poland [25,29]. Over the
past 70 years, the species has expanded to northeastern Lithuania and reached Latvia [15].

The phylogenetic and haplotype network results of this study (Figures 2 and 3) confirm
that Lithuanian A. oeconomus originates from northeastern Poland. Three cytb haplotypes
(C1, C5, and C9) were shared by A. oeconomus sampled in Poland and Lithuania. These
haplotypes were detected in northeastern Poland, see locations 1–14, 16, 18, 20, and 21 in
Figure 1 from Janczewicz et al. [27]. In more detail, C1, the most commonly identified
haplotype in Lithuania, was detected at 15 different sites in Poland. Meanwhile, C5, with
a detection rate of 51.7% at Site 3, was also detected at three sites in Poland—marked as
locations 2, 11, and 16 in Figure 1 from Janczewicz et al. [27].

The different proportions of haplotypes observed in the three Lithuanian sites studied
resulted in significant genetic differentiation between Lithuanian sites 1 and 3 (Table 2).
The genetic divergence of these two sites was also confirmed by PCoA analysis (Figure 4).
Importantly, despite the short period of separation from the Polish population, genetic
differentiation (ΦST = 0.16660–0.20425; p < 0.001) was observed between Lithuanian and
Polish samples of A. oeconomus.

Being associated with wetlands and humid habitats [52,53,55], A. oeconomus is expected
to lack the most favorable habitats within agricultural landscapes. The remaining fragments
of preserved wetlands function as refugia [55], sustaining relatively small populations.
Such small populations are susceptible to genetic drift [60], leading to a reduction in genetic
variability over time. The isolation of these small populations further restricts gene flow,
fostering the development of populations with distinctive genetic variations [61]. The
situation is further complicated by the fragmentation of hydrogenic habitats [52].



Animals 2024, 14, 270 12 of 17

Genetic isolation also operates at a local scale [15], accentuating the impacts of climate-
change-related alterations to wetland ecosystems and the desiccation of wet grasslands.
Lopucki et al. demonstrated that gene exchange between local populations of A. oeconomus
is possible even when separated by several kilometers of unfavorable habitat, but anthro-
pogenic barriers may exert a stronger isolating effect [10]. Population fragmentation is also
prevalent in other countries, such as Hungary [18] and Austria [62]. In our study, the two
northern sites are situated in an anthropogenized landscape characterized by intensive
agriculture and fragmented wet habitats. The dispersal potential of A. oeconomus may not
be sufficient to counteract the genetic effects of isolation [10,57].

Hence, we concur with Domínguez et al. [63] that short-distance dispersals extend a
species’ range but often lead to a loss of genetic diversity. This likely occurred during the
spread of A. oeconomus in Lithuania. While water barriers showed no significant impact on
the species, anthropogenic barriers might have had genetic effects, as suggested by García
et al. [64].

5. Conclusions

Using mtDNA cytb and control region sequences, we observed a relatively low genetic
variability in A. oeconomus specimens sampled in Lithuania compared to other European
populations. The analysis of sample animals from three distinct sites in the country revealed
the existence of four cytb and five control region haplotypes. These findings validate a prior
ecological hypothesis suggesting the migration of A. oeconomus to Lithuania from north-
eastern Poland. Additionally, the A. oeconomus samples obtained in Lithuania exhibited
genetic differentiation from populations in Poland and Northern Europe.
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Appendix A

Table A1. Haplotypes, and their frequency, origin, and GenBank accession numbers. Sequences
obtained in the present study are in bold.

Haplotype Country GenBank Acc. No. Frequency

Control region
D1 Lithuania OR806890 48
D2 Lithuania OR806891 6
D3 Finland AY305161–63, HM135801–02 5
D4 Lithuania OR806892 3
D5 Lithuania OR806893 3
D6 Finland HM135799 1
D7 Finland HM135798 1
D8 Finland HM135800 1
D9 Norway HM135796 1
D10 Norway HM135797 1
D11 Norway HM135795 1
D12 Lithuania OR806894 1
D13 Norway HM135929 1
D14 Austria HM135930 1
D15 Russia HM135928 1

cytb
C1 Poland AY220010, KP684103, KP684111, KP684120 96
C1 Lithuania OR806886 35
C2 Poland KP684109 122
C3 Poland AY220012, KP684101 68
C3 Hungary AY220014 1
C3 Slovakia AY220014 1
C4 Poland GU987116, KP684104 60
C5 Lithuania OR806887 19
C5 Poland KP684105 10
C6 Poland KP684112 26
C7 Poland KP684107 22
C8 Poland AY220013, KP684113 13
C9 Poland KP684102 8
C9 Lithuania OR806888 4

C10 Poland KP684116 7
C11 Lithuania AY220011, OR806889 4
C12 Poland KP684114, KP684117 3
C13 Netherlands AY220007 2
C14 Poland KP684106 2
C15 Poland KP684118 2
C16 Poland KP684108 2
C17 Norway AY220005 1
C18 Sweden AY220003 1
C19 Poland AY220008 1
C20 Poland KP684119 1
C21 Poland GU954319 1
C22 Poland KP684121 1
C23 Norway AY220004 1
C24 Poland KP684110 1
C25 Poland KP684115 1
C26 Poland AY220009 1
C27 Netherlands AY220006 1
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Figure A2. The NJ tree of A. oeconomus based on cytb sequences. All sequences of the cytb fragment
analyzed from A. oeconomus available in GenBank were used. The figures below branches demon-
strate bootstrap values higher than 50%. A total of 27 haplotypes (C1–C27), including C1, C5, C9, and
C11, identified in the current study were placed into Central European phylogenetic group. Overall,
185 sequences (AB372197–207, AY220021–45, AY305050–160, AY305164–200, MF099546) that were as-
signed to 62 haplotypes established in A. oeconomus from North America and the Russia Far East were
clustered in the Beringian lineage. Thirty-nine haplotypes (AB372193–6, AY220015–20, AY305201–63,
FJ986326, KP190236–7, KP326574, MF099520–1, MF099544–5, MF099577, MF099579–81) defined in
A. oeconomus from Russia, Mongolia, and China were combined in the Central Asian phylogenetic
group. Finally, 26 haplotypes representing AY219981–AY220002, AY305161–3, DQ452134–42, and
FJ986325 sequences originating from Belarus, Finland, Norway, Russia, and Sweden were assigned to
the North European group.
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