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Simple Summary: Soybean meal is a widely utilized protein source in aquatic feeds; however, its
application in fish diets may be restricted due to elevated prices; market fluctuations; and heightened
human, poultry, and livestock consumption. Therefore, utilizing unused agro-industrial by-products
as alternative protein sources can reduce dependence on soybean meal, promote economic viability
in tilapia farming, and address sustainability issues in aquaculture. This research examined the
effects of substituting soybean meal with pumpkin seed cake in Nile tilapia diets concerning growth,
water quality, antioxidant capacity, immune status, and body composition. The findings indicate
that replacing 40% of dietary soybean meal protein with pumpkin seed cake can lead to significant
improvements in growth, antioxidant capacity, and immune status in Nile tilapia fish.

Abstract: A 10-week feeding experiment was performed to determine the impacts of partial substi-
tution of soybean meal (SB) with pumpkin seed cake (PSC) in Oreochromis niloticus diets on water
quality, growth rate, antioxidant capacity, immunity, and carcass composition. One hundred and fifty
tilapia fish (average weight, 11.93 ± 0.17 g) were randomly allocated to five diets. The first diet (the
basal diet) contained 420 g of SB per kg of feed. The remaining four diets, namely, D1, D2, D3, and
D4, had SB partially replaced by PSC at 10%, 20%, 30%, and 40%, respectively. The results revealed
that D4 and D1 significantly improved dissolved oxygen levels, while water temperature, pH, total
ammonia, and nitrate levels were not significantly affected. Replacing SB with PSC significantly
improved specific growth performance indicators and feed conversion compared to the control, with
the D4 group showing the best values. Increasing PSC levels decreased serum glucose, aspartate
aminotransferase, alanine aminotransferase, cholesterol, and triglyceride levels. In contrast, the D4
group had higher globulin, albumin, total protein, and lysozyme serum levels. Moreover, fish-fed
PSC had significantly increased superoxide dismutase, glutathione peroxidase, and catalase activities
and significantly decreased malondialdehyde levels. Increasing PSC substitution levels in fish diets
increased the ash and crude lipid contents in the bodies of the fish, while crude protein and moisture
decreased. In conclusion, replacing SB with PSC in fish diets significantly enhances growth perfor-
mance, feed conversion, and fish health. Moreover, the findings suggest that PSC can be a promising
alternative protein source for sustainable aquaculture practices.
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1. Introduction

Aquaculture is an important industry that provides a significant source of protein
for human consumption [1]. Nile tilapia (Oreochromis niloticus) is the world’s third-most
commonly farmed fish species. It played a significant role, contributing approximately
5% to the total production of fish aquaculture and surpassing a cumulative output of
4.41 million tons in 2020 [2]. It is considered one of the world’s most extensively farmed
fish species due to its rapid growth rate, adaptability to various environments, and high
meat quality [3,4]. After China and Indonesia, Egypt is the third-largest producer of Nile
tilapia globally [5]. However, the high cost of feed, especially protein sources such as
soybean meal, is a major constraint on the sustainable development of tilapia farming [6].
Soybean meal (SM) is a beneficial source of protein in animal nutrition due to its superior
amino acid profile and high crude protein content [7]. The increasing demand for SM and
market price increases have prompted the aquaculture sector to search for environmentally
friendly and cost-effective substitute feed ingredients [8–10]. Therefore, using unutilized
agro-industrial by-products as alternative protein sources can reduce dependence on SM,
ensure the economic viability of tilapia farming, and address sustainability challenges in
aquaculture [6,11].

Pumpkin seed cake (PSC), produced when pumpkin seed oil is extracted, is rich in
protein, fiber, and minerals [12]. Pumpkin seeds are pressed on a continuous screw press
to produce PSC without affecting their nutrient contents [13]. Pumpkin seeds are known
for various biological activities, including antioxidant, antimicrobial, anti-inflammatory,
and antiparasitic effects [14]. In an earlier study, the nutritional composition of PSC was
compared to that of SM [15]. The authors demonstrated that the gross energy, crude protein,
and ether extract contents of PSC (59.8%, 12.46%, and 21.9 MJ/kg DM, respectively) were
greater than those of SM (47.42%, 2.83%, and MJ/kg DM, respectively). Proteins isolated
from PSC exhibited significantly higher concentrations of total sulfur amino acids than
SM. Furthermore, PSC contains an abundant concentration of unsaturated fatty acids,
including linoleic acid (50.9%), stearic acid (6.7%), palmitic acid (14.8%), and oleic acid
(25.8%) [16,17]. Moreover, PSC has a low moisture content of about 7%, which makes it
a suitable feed constituent for long-term storage and transport. In addition to being a
source of protein, PSC is a prospective nutraceutical containing bioactive substances with
beneficial health advantages, such as squalene, tocopherols, and phytosterols [12,16,18].
Utilizing by-products such as PSC in animal feeds can provide an economic benefit due to
their reduced market price and provide feed producers with alternative feed ingredients.
Nevertheless, limited studies have investigated the potential of PSC as a feed ingredient in
practical fish feeds [17,19,20]. Furthermore, the results of these reports are inconsistent and
require further investigation.

It has been hypothesized that replacing SB with PSC in tilapia diets would decrease
SB usage without significantly impacting fish health or performance. The present study
evaluated whether replacing SM with PSC would affect water quality, growth indicators,
diet utilization, carcass composition, blood biochemical, immunity, or antioxidant status.
Our research provides essential information on the prospective utilization of PSC as a
sustainable protein alternative in tilapia feeds.

2. Materials and Methods
2.1. Diet Preparation

The PSC used in the present study consisted of 88.10% dry matter, 10.78% crude lipid,
55.20% crude protein, and 10.72% ash. PSC and the rest of the feed ingredients in this study
were obtained from a local market in Sharkia Governorate, Egypt. Five iso-nitrogenous
(crude protein, 315 g kg−1) and isolipidic (crude lipid, 65 g kg −1) diets were formulated.
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The basal diet consisted of 420 g of SB per kg of diet, while in the remaining four diets, PSC
replaced SB at 10%, 20%, 30%, and 40% (D1, D2, D3, and D4, respectively). All ingredients
were ground into a fine powder, passed through a 200 µm mesh, and mixed thoroughly
with vegetable and fish oils and water. The mixture was then pelletized with a feed mill
(California Pellet Mill, San Francisco, CA, USA), dried for around a day in an oven until
the dry matter levels reached about 90%, packed in sealed bags, and kept in a refrigerator
at −20 ◦C until needed. All trial diets were prepared to meet the nutrient needs of tilapia,
according to the recommendations of NRC [21]. Table 1 displays the nutrient composition
and formulation of the diets.

Table 1. Ingredients and proximate composition of the experimental diets (g kg−1) on a dry matter basis.

Experimental Diets 1

Control D1 D2 D3 D4

Ingredients
Soybean meal 420 378 336 294 252

Pumpkin seed cake 2 0 33.5 67 100.4 133.9
Yellow corn 375 375 375 375 375
Fish meal 100 100 100 100 100

Wheat bran 70 70 70 70 70
Cellulose 0 11.2 22.4 33.7 44.9
Fish oil 10 10 10 10 10

Sunflower oil 20 17.3 14.6 11.9 9.2
Premix 3 5 5 5 5 5

Proximate composition
Dry matter 914.0 915.0 912.0 921.0 925.0

Crude protein (N × 6.25) 315.0 316.5 314.5 315.5 314.5
Crude lipid 65.5 65.7 65.4 65.1 65.9

Ash 75.5 79.5 76.5 74.5 76.0
1 Control, D1, D2, D3, and D4 indicate that 0%, 10%, 20%, 30%, and 40% of soybean meal were replaced by
pumpkin seed cake, respectively. 2 Pumpkin seed cake: 55.20% crude protein, 10.78% crude lipid, and 10.72%
ash. 3 Provides the following per kg of diet: vitamin A 4000 IU, vitamin D3 600 IU, vitamin E 20 mg, vitamin K3
5 mg, vitamin B1 3.6 mg, vitamin B2 6 mg, vitamin B5 12 mg, vitamin B6 3.5 mg, vitamin B12 0.02 mg, vitamin B3
14.4 mg, biotin 0.07 mg, folic acid 0.9 mg, inositol 300 mg, vitamin C 50 mg, Mg 15 mg, Fe 30 mg, Zn 42 mg, Cu
4 mg, K 75 mg, Co 0.11 mg, Mn 1.6 mg, Se 0.04 mg, Mo 0.005 mg, and I 0.4 mg.

2.2. Fish and Rearing Conditions

Before the experiment’s initiation, fiberglass tanks were cleaned and filled with dechlo-
rinated tap water from the storage tank. Healthy Nile sex-reversed tilapia fingerlings were
acquired from a commercial farm in Sharkia Governorate, Egypt. Fish were acclimated
for ten days prior to the start of the experiment, during which they were fed the control
diet three times a day, at 9:00, 13:30, and 17:00, until they reached apparent satiety. After
acclimation, 150 juvenile (average weight, 11.93 ± 0.17 g) fish were randomly allocated
to five groups, and each group had three fiberglass aquaria (water volume: 72 L; 10 fish
per aquarium). The experimental diets (control, D1, D2, D3, and D4) were fed to the fish
for 70 days, with the same schedule and procedures as during the acclimatization phase.
The study was conducted with a photoperiod of 12 h light/12 h darkness. Every two days,
50% of the tank’s water was siphoned to eliminate suspended and dissolved wastes in the
tanks, and a 0.5 Hp air blower continuously aerated the experimental tanks. Throughout
the experiment, fish were hand-fed thrice daily (9:00, 13:30, and 17:00) at a feeding rate of
3% body weight to apparent satiation. Feed intake was adjusted per the new body mass
every two weeks throughout the trial.

2.3. Water Quality Parameters

Every two weeks, physicochemical parameters were evaluated. At a depth of 20 cm,
water samples from each aquarium were collected. pH was measured on-site using a digital
pH meter (Fisher Scientific, Waltham, MA, USA). Dissolved oxygen and water temperature
were determined using an oxygen and temperature meter (Jenway, London, UK). The
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ammonia concentration in the water samples was estimated by a multi-parameter analyzer
(HANNA Instruments, Smithfield, RI, USA). According to APHA [22], the nitrate concen-
tration was measured with a spectrophotometer (model Milton Roy 21D) at wavelengths of
410 nm.

2.4. Growth, Feed Utilization, and Body Indices

On the 70th day, fish were harvested, counted, and weighed in each aquarium. Livers
and viscera were removed (3 fish/aquarium; n = 9 fish/treatment) and weighed to compute
the viscerosomatic index (VSI) and hepatosomatic index (HSI). Growth and body indices
such as feed conversion ratio (FCR), body weight gain (BWG), specific growth rate (SGR),
VSI, and HSI were calculated using the following standard formula:

BWG
(

g fish−1
)
=

final wet weight − initial wet weight
fish number per aquarium

(1)

SGR (%/day) =
Ln of final wet weight − Ln of initial wet weight

period(day)
× 100 (2)

FCR =
total feed intake(g)

total BWG(g)
(3)

VSI (%) =
wet weight of viscera

fish wet weight
× 100 (4)

HSI (%) =
wet weight of hepatopancreas

fish wet weight
× 100 (5)

2.5. Chemical Composition of the Diets and the Whole Carcass of Tilapia

Following the 10-week feeding experiment, three fish from each aquarium were
sampled and frozen at −20 ◦C for chemical composition analysis of the carcass. The crude
lipid, ash, moisture, and crude protein contents of the fish carcasses and experimental diets
were estimated using AOAC [23] procedures. The moisture content was determined after
three hours of dehydrating at 105 ◦C and a constant weight in an electric oven (JSON-100,
Gongju, Republic of Korea). Five hours of combustion at 550 ◦C in a muffle furnace (Type
47900, Thermo Scientific, Waltham, MA, USA) were used to evaluate the ash content. The
total lipid content was measured using a Soxhlet apparatus (El-Gomhouria Co., Zagazig,
Egypt) and an ether extraction. After sulfuric acid digestion, the Kjeldal method was
utilized to determine the crude protein level (N × 6.25).

2.6. Serum Biochemical, Immunity, and Antioxidant Parameters

At the end of the feeding trial, the fish were fasted for 24 h. Then, three fish per
aquarium were anesthetized with MS-222 (100 mg/L) for blood sample collection from the
caudal veins using non-heparinized syringes. The samples were centrifuged at 5000× g
for 15 min at 4 ◦C to separate the serum, which was then stored at −20 ◦C for further
examinations. The enzymatic activity of glutathione peroxidase (GPx), catalase (CAT),
and superoxide dismutase (SOD), as well as the malondialdehyde (MDA) content, were
measured by commercial kits from BioSource Inc., San Diego, CA, USA (Catalog number
MBS480417, MBS2540413, MBS9718960, and MBS2540409, respectively). Lysozyme (LZM)
activity was determined in line with the procedures of Ghareghanipoora et al. [24]. Serum
total lipids, glucose, total protein (TP), albumin (ALB), creatinine, and uric acid concentra-
tions were assessed colorimetrically using commercial kits (Bio-Diagnostics, Cairo, Egypt)
with the catalog numbers TL 20 10, GL 13 20, TP 20 20, AB 10 10, CR 12 50, and UA 21 20,
respectively. Globulin content was computed by subtracting ALB levels from TP levels.
Serum alanine (ALT) and aspartate aminotransferase (AST) activities were quantified using
Bio-diagnostics (Cairo, Egypt) colorimetric kits (AL 10 31 (45) and AS 10 61 (45), respectively).
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2.7. Statistical Analysis

The significance of growth, feed utilization, body indices, water quality, carcass com-
position, and blood contents was discovered via one-way ANOVA using SAS software
(Version 9.00) [25]. Then, Tukey’s post hoc test was used. The optimal level of substitution
using PSC was determined through the use of polynomial regression analysis, as explained
by Yossa and Verdegem [26]. The third-order polynomial regression (cubic) provided a
better fit to the observed patterns in our dataset compared to linear or quadratic models.
Statistical significance was set at p < 0.05. In addition, correlations among growth per-
formance indicators, the carcass composition, and serum biochemical parameters were
examined by the Pearson coefficient of pairwise comparison between samples. They were
recognized from the correlation matrix heatmap produced via GraphPad Prism version 8
(GraphPad Software, San Diego, CA, USA) [27].

3. Results
3.1. Water Quality

Figure 1A–E displays the estimated water quality parameters determined every second
week throughout the experimental period. The values of temperature, pH, dissolved oxy-
gen, ammonia, and nitrate were in the ranges of 28.67–29.13 ◦C, 8.29–8.42, 5.26–6.85 mg/L,
0.52–0.84 mg/L, and 0.08–0.16 mg/L, respectively, during the trial.
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Figure 1. Average values of water quality parameters, determined every second week during the
trial, including: (A) temperature, (B) pH, (C) dissolved oxygen, (D) total ammonia, and (E) nitrate.
Control, D1, D2, D3, and D4 indicate that 0%, 10%, 20%, 30%, and 40% of soybean meal were replaced
by pumpkin seed cake (PSC), respectively. Values are expressed as means ± standard error.

3.2. Growth Performance and Body Indices

Table 2 illustrates the growth indicators of O. niloticus fed the different experimental
diets after 70 days of the experiment. The growth and feed efficiency parameters of Nile
tilapia were enhanced by PSC-based diets compared to the control diet. The D4 group
exhibited the greatest improvements in final weight, BWG, SGR, and FCR when PSC was
substituted for SB. Feed intake was significantly (p < 0.05) increased in the fish fed on the
D1 and D2 diets. The relationships between SGR, final weight, and FCR, as well as the
different substitution levels using PSC, were best expressed by third-order polynomial
regression (cubic) equations, where final weights were as follows: y = 17.35 + 25.46x −
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10.07x2 + 1.183x3, R2 = 0.8132 (Figure 2A); SGR: y = 0.856 + 0.9868x −0.3935x2 + 0.04639x3,
R2 = 0.5692 (Figure 2B); and FCR: y = 2.361 + 0.06212x + 1011x2 − 0.02473x3, R2 = 0.7474
(Figure 2C). Based on the polynomial regression analysis, the optimal substitution level
using PSC for the maximum final weight and SGR and the best FCR were found in the fish
fed on the D4 diet. As displayed in Figure 3, VSI and HSI showed significant differences
in favor of PSC treatments compared to the control treatment. The lowest VSI value was
detected in the D2 group, while the highest was found in the control treatment group. The
highest HSI record was found in the control treatment, while the lowest was recorded in
the D1 group.

Table 2. Growth performance and nutrient utilization as affected by substituting soybean meal (SBM)
with pumpkin seed cake (PSC) in Nile tilapia diets.

Items
Experimental Diets 1

SDM 2
Control D1 D2 D3 D4

Initial weight (g fish−1) 11.86 NS 11.87 12.08 11.92 11.94 0.17
Final weight (g fish−1) 33.83 c 37.74 b 34.51 c 34.02 c 40.60 a 3.01

Body weight gain (g fish−1) 21.97 c 25.87 b 22.43 c 22.10 c 28.66 a 2.98
Specific growth rate (%) 1.51 b 1.65 ab 1.51 b 1.51 b 1.75 a 0.20

Feed intake (g fish−1) 55.36 b 67.26 a 65.40 a 56.41 b 61.90 ab 5.38
Feed conversion ratio (g feed/g gain) 2.52 ab 2.60 ab 2.93 a 2.55 ab 2.16 b 0.29

Survival rate (%) 100 NS 100 100 100 100 0.00
1 Control, D1, D2, D3, and D4 indicate that 0%, 10%, 20%, 30%, and 40% of SM were replaced by PSC, respectively.
2 SDM stands for the standard deviation of the mean. a–c Means in rows with different superscripts differ
significantly (p < 0.05). NS = no significant differences between groups (p > 0.05).
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Figure 2. Relationship between final fish weight (A), specific growth rate (B), and feed conversion
ratio (C) of Nile tilapia (Oreochromis niloticus) and different levels of pumpkin seed cake (PSC).
Control, D1, D2, D3, and D4 indicate that 0%, 10%, 20%, 30%, and 40% of SM were replaced by
PSC, respectively.
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soybean meal (SM) with pumpkin seed cake (PSC) in Nile tilapia diets. Control, D1, D2, D3, and
D4 indicate that 0%, 10%, 20%, 30%, and 40% of SM were replaced by PSC, respectively. a–c Means
in bars with different superscripts differ significantly. Different letters above the error bar indicate
significant differences at p < 0.05, as determined by one-way ANOVA followed by Tukey’s multiple
comparisons test. Values are expressed as means ± standard deviation (3 fish/aquarium; n = 9
fish/treatment).

3.3. Carcass Composition

Table 3 displays the whole-body composition of O. niloticus fed the experimental diets
which substituted SB with PSC for 70 days. Increasing PSC substitution levels in fish diets
increased the ash (except the D4 group) and crude lipid contents in the bodies of the fish. In
contrast, the crude protein and moisture contents in the fish decreased as PSC substitution
increased in their diets.

Table 3. Carcass composition as affected by substituting soybean meal (SBM) with pumpkin seed
cake (PSC) in Nile tilapia diets (% on a dry matter basis, except for moisture on a wet basis).

Items
Experimental Diets 1

SDM 2
Control D1 D2 D3 D4

Moisture 76.9 a 72.4 cd 74.9 b 73.0 c 71.8 d 1.9
Crude lipids 14.4 d 18.0 c 16.8 c 20.3 b 23.7 a 3.4

Crude protein 64.8 a 58.7 c 60.0 b 57.4 d 57.5 d 2.8
Ash 20.0 b 22.5 a 22.5 a 21.8 a 18.3 c 1.9

1 Control, D1, D2, D3, and D4 indicate that 0%, 10%, 20%, 30%, and 40% of SM were replaced by PSC, respectively.
2 SDM stands for the standard deviation of the mean. a–d Means in rows with different superscripts differ
significantly (p < 0.05).
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3.4. Blood Biochemical Biomarkers

The results concerning blood biochemical biomarkers, as affected by SB’s replacement
with PSC, are presented in Table 4. Reduced total cholesterol and triglyceride concentrations
were observed as a dose–response with increasing PSC levels in the diets, and the D4 group
had the lowest values (p < 0.05). Following the same trend, the serum contents of ALT,
AST, creatinine, and urea were significantly decreased with all dietary inclusion levels of
PSC. Significantly (p < 0.05) lower glucose was detected in the D4-fed fish compared to
the control group. Total protein and globulin levels in the blood of fish fed the D1 and D4
diets were significantly (p < 0.05) higher than those of fish fed other experimental diets. In
contrast, albumin levels in the blood of fish fed the D1, D3, and D4 diets were significantly
(p < 0.05) higher than those of fish fed the control diet (Table 4).

Table 4. Blood biochemical parameters, as affected by substituting soybean meal (SBM) with pumpkin
seed cake (PSC) in Nile tilapia diets.

Items
Experimental Diets 1

SDM 2
Control D1 D2 D3 D4

Total cholesterol (mg/dL) 178.0 a 126.25 c 139.25 b 130.0 bc 123.05 c 6.39
Triglycerides (mg/dL) 280.81 a 188.25 d 235.0 b 208.92 c 173.25 d 6.37

Glucose (mg/dL) 122.83 a 112.05 ab 122.25 a 116.05 ab 105.36 b 7.48
ALT (U/L) 73.12 a 62.18 c 65.48 c 67.01 bc 69.09 b 3.24
AST (U/L) 111.25 a 87.5 b 76.25 c 78.5 c 85.91 b 3.78

Creatinine (mg/dL) 0.60 a 0.40 bc 0.47 b 0.41 bc 0.33 c 0.23
Urea (mg/dL) 16.2 a 10.15 b 12.1 b 11.75 bc 12.0 b 4.75

Total protein (g/dL) 1.38 b 3.29 a 1.33 b 1.54 b 3.09 a 0.31
Albumin (g/dL) 0.80 c 1.35 ab 0.84 c 1.08 b 1.54 a 0.28
Globulin (g/dL) 0.58 b 1.94 a 0.49 b 0.46 b 1.55 a 0.35

1 Control, D1, D2, D3, and D4 indicate that 0%, 10%, 20%, 30%, and 40% of SM were replaced by PSC, respectively.
2 SDM stands for the standard deviation of the mean. a–d Means in rows with different superscripts differ
significantly (p < 0.05). Alanine aminotransferase (ALT), aspartate aminotransferase (AST).

3.5. Antioxidant Activity and Immune Status

SOD, GPx, and CAT activities were markedly higher (p < 0.05) in all dietary incorpora-
tion levels of PSC relative to the control group (Figure 4). Notably, their highest values were
detected in the D4 group. Conversely, reduced MDA levels were detected with all PSC substi-
tution levels in diets, and the D1 and D4 groups had the lowest values (p < 0.05). Regarding
lysozyme activity, fish fed PSC diets exhibited significantly (p < 0.05) higher activity than
those fed the control diet (Figure 4). Fish fed the D1 diet had the most increased lysozyme
activity in their serum compared with those fed the other diets (Figure 5).

3.6. Pearson Correlation between the Estimated Parameters

As revealed in the correlation matrix heatmap in Figure 6, a significant (p < 0.01)
positive correlation was detected between the growth performance indices, including FBW
and WG, and the serum levels of antioxidant enzymes (SOD, CAT, and GPx), proteins
(TP, ALB, and GLOB), and the lysozyme activity. On the contrary, FBW and WG were
negatively correlated with TG, GLU, HSI, and carcass moisture content. Furthermore, FCR
was negatively correlated with SOD, CAT, GPx, and ALB.
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(C) catalase (CAT), and (D) glutathione peroxidase (GPx) as affected by substituting soybean meal
(SBM) with pumpkin seed cake (PSC) in Nile tilapia diets. Control, D1, D2, D3, and D4 indicate
that 0%, 10%, 20%, 30%, and 40% of SM were replaced by PSC, respectively. Different letters
above the error bar indicate significant differences at p < 0.05, as determined by one-way ANOVA
followed by Tukey’s multiple comparisons test. Values are expressed as means ± standard deviation
(n = 9/treatment).
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Figure 5. Lysozyme activity as affected by substituting soybean meal (SBM) with pumpkin seed cake
(PSC) in Nile tilapia diets. Control, D1, D2, D3, and D4 indicate that 0%, 10%, 20%, 30%, and 40%
of SM were replaced by PSC, respectively. Different letters above the error bar indicate significant
differences at p < 0.05, as determined by one-way ANOVA followed by Tukey’s multiple comparisons
test. Values are expressed as means ± standard deviation (n = 9/treatment).
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Figure 6. The correlation matrix heatmap shows the values of the Pearson correlation coefficient
among growth performance indicators, carcass composition, and serum biochemical parameters.
The positive values are in red, and the negative values are in green. The values range from −1
to 1, whereby 1 indicates a perfect negative linear relationship between variables, 1 indicates a
perfect positive linear relationship between variables, and 0 indicates no relationship between
studied variables. FBW: final body weight; WG: weight gain; SGR: specific growth rate; FCR: feed
conversion ratio; and FI: feed intake; CHO: cholesterol; TG: triglycerides; GLU: glucose; ALT: alanine
transaminase; AST: aspartate aminotransferase; BUN: blood urea nitrogen; TP: total protein; ALB:
albumin; GLOB: globulin; LZM: lysozyme; MDA: malondialdehyde; SOD: superoxide dismutase;
CAT: catalase; GPx: glutathione peroxidase, HIS: hepatosomatic index; and VSI: viscerosomatic index.

4. Discussion

Our findings showed that all water quality parameters, including water temperature,
pH, total ammonia, dissolved oxygen, and nitrate, as estimated in all experimental groups,
were within the recommended limits for warm-water fish [28,29].

Recent research has focused on the viability of incorporating agro-industrial and plant-
based feed ingredients into fish feeds to gain financial advantages while enhancing the
sustainability of aquaculture [30]. Several research investigations have found that replacing
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SB with non-traditional feed constituents had no detrimental impact on the growth of
rainbow trout [31,32], grass carp [33,34], Nile tilapia [6], or common carp [35]. In the
current experiment, fish fed the D4 diet showed better FW, WG, SGR, and FCR. Recently,
Musthafa et al. [36] stated that the Mucuna pruriens seed meal substantially enhanced the
immune status and growth of the freshwater fish O. niloticus. Furthermore, Bai et al. [37]
found that a diet containing 30% cottonseed meal improved the growth indicators of the
red-bellied Pacu. The enhanced growth observed in fish fed with PSC could be attributed
to this alternative feed ingredient’s nutritional and bioactive properties. PSC is rich in
protein, essential amino acids, and minerals [12], all of which are essential nutrients for
the growth and development of fish. In addition, PSC contains bioactive compounds
such as phytosterols and phenolic compounds [38] that have been shown to promote fish
health and growth. Another important perspective is that the feed intake has significantly
improved in most fish groups fed PSC-containing diets, which could be responsible for the
recorded growth. Additionally, Greiling et al. [20] have demonstrated that increased intake
of the PSC-containing diet by African catfish could be related to increased feed palatability.

VSI and HSI showed significant differences in favor of PSC inclusion compared to the
control. Our findings contradicted those of Sezgin and Aydın [17], who concluded that
PSC had no significant influence on HSI or VSI. However, our result could be explained
by several studies, including those of Caili et al. [39], Nkosi et al. [40], Bardaa et al. [16],
Musthafa et al. [41], and Salehi et al. [14], which suggest that the observed improvements in
VSI and HSI in tilapia fed with diets containing PSC are likely due to a complex interplay of
metabolic processes influenced by the nutritional composition of the feed. As a result, this
could positively impact various metabolic processes, including those involved in growth.

Fish carcass composition can be influenced by changes in the composition of their
diets [4]. In the present study, increasing PSC substitution levels in fish diets increased
the ash and crude lipid contents, but reduced the crude protein and moisture contents.
Likewise, substitution with other plant protein sources resulted in a comparable change
in the carcass composition of Nile tilapia [4,6]. The increase in crude lipid content could
be related to the increased feed intake, which has been shown to increase whole-body
energy retention in the form of increased whole-body lipid deposition. In this regard,
Greiling et al. [20] reported that the higher energy content of the PSC-containing diets
could increase the weights of different sites of lipid deposition in fish carcasses. Meanwhile,
the reduction in protein content could be related to the presence of some anti-nutritional
factors or the deficiency of some amino acids, such as lysine [15].

Blood biochemical parameters are a conventional technique used regularly to evaluate
the physiological, pathological, and immunological statuses of fish [42]. Herein, glucose,
total cholesterol, and triglyceride concentrations were significantly reduced in O. niloticus
fed with PSC diets, and the D4 group had the lowest values. The results of this study
corroborate those of Caili et al. [39], who found that pumpkin seeds could efficiently reduce
serum triglyceride levels and cholesterol. Similarly, Sezgin and Aydın [17] found that
increasing the inclusion level of PSC in mirror carp (Cyprinus carpio) diets led to a decrease in
both cholesterol and triglyceride levels, with a continued effect on cholesterol until reaching
100% inclusion. This notable reduction could be attributed to PSC’s phytosterol bioactive
components, which might affect both the expression levels of genes related to cholesterol
and lipid metabolism and the activity of hepatic enzymes [17,43]. Our observation on serum
glucose levels was similar to the findings of Sezgin and Aydın [17], who noted a decrease
in serum glucose levels in groups fed on diets containing 66% and 100% PSC. In addition,
the serum contents of ALT, AST, creatinine, and urea were significantly decreased with
all dietary inclusion levels of PSC. The antioxidant activity of PSC may be responsible for
its hepatoprotective and nephroprotective effects [44]. Major functions of serum proteins
include sustaining pH, osmotic pressure, and transporting metabolites. TP is crucial to
the innate immune response and humoral immunity of fish [45]. In this study, the TP and
globulin levels in the blood of fish fed the D1 and D4 diets were significantly higher than
in those fed other experimental diets. In contrast, the ALB levels of fish fed the D1, D3,
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and D4 diets were significantly higher than those fed the control diet. Our dataset is in
contrast with the findings of Sezgin and Aydın [17], who found that the serum TP, ALB,
ALT, and AST levels underwent only numerical changes in those parameters’ values, with
no statistically significant effect of PSC inclusion in the diets of mirror carp.

The antioxidant activity of enzymes, such as GPx, CAT, and SOD, is an essential
biomarker for monitoring fish health and reactivity to external stimuli [30], and it can
be used to assess fish antioxidant capability. Furthermore, Al-Sagheer et al. [46] stated
that MDA, a marker of lipid peroxidation, can be utilized to assess the level of oxidative
stress and antioxidant status. In this investigation, the activity of SOD, CAT, and GPx
significantly increased while MDA decreased in fish fed formulated feeds with PSC. The
addition of PSC, which contains active ingredients like proteins, minerals, phytosterols,
triterpenes, carotenoids, lignans, polyunsaturated fatty acids, tocopherol, and phenolic and
antioxidative compounds, may have triggered antioxidant defense and decreased MDA
lipid oxidation in all treated groups [14,16,39,40]. Previous studies have found that PSC
has potent antioxidative properties, as shown by its free radical scavenging activity and
augmentation of antioxidase activity [47,48]. Furthermore, these effects could be attributed
to the essential fatty acids found in pumpkin seeds, which play a critical role in maintaining
cell membrane integrity and regulating gene expression, as well as the antioxidants found
in pumpkin seeds, which could help to protect fish from oxidative stress by scavenging
free radicals and reducing inflammation [20].

Lysozyme is a positively charged protein found in various bodily fluids, such as
mucus, lymphoid tissue, and plasma, and is synthesized in multiple fish tissues [49]. It is
essential to multiple defense mechanisms, including the immune response, opsonization,
bacteriolysis, and antimicrobial activity [36]. Our dataset showed that lysozyme activity
was boosted by incorporating PSC into feed compared to control groups. The findings of
Musthafa et al. [41] on O. mossambicus fed diets including C. mixta seed meal corroborate
these findings, since they showed an enhanced immune response to A. hydrophila and the
Gram-negative bacterium. There is a strong link between oxidative stress and immune
function in fish [50], and the liver plays an important role in synthesizing immune pro-
teins [51]. The improved hepatic function and the antioxidant capacity of fish fed diets
containing PSC in the current experiment could also have partly contributed to the recorded
enhancement of the immune status. Notably, the positive relationship detected by the
Pearson correlation analysis between growth indices and the antioxidant enzymes and
lysozyme activity indicates that the enhancement of these parameters could be collectively
responsible for the recorded enhanced growth performance and nutrient utilization of fish
fed diets containing PSC.

5. Conclusions

Based on the study’s findings, partial SB substitution (particularly 40% replacement)
with PSC in the diets of Nile tilapia significantly enhanced growth performance, feed
conversion, water quality, antioxidant capacity, and immunity. This study concludes that
PSC could be a promising, sustainable, and cost-effective alternative protein source for Nile
tilapia diets. Additional research is required in order to investigate the long-term effects of
PSC on fish health and the environment.
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