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Simple Summary: Two subspecies of largemouth bass (Micropterus salmoides, LMB) with different
thermal tolerance, northern largemouth bass (NLMB) and Florida largemouth bass (FLMB), were
subjected to acute and chronic thermal stress at 33 ◦C. Then, variations of 12 candidate biomarkers
between NLMB and FLMB were analyzed. Compared to NLMB, FLMB exhibited a lower plasma
cortisol level and a higher expression of hsp90 under acute thermal stress. Additionally, lower
expression of hsp70 in FLMB was observed under chronic thermal stress. The differences in plasma
cortisol levels and hsp expression represent variations in thermal tolerance between the two subspecies
of LMB, providing valuable information for the identification and breeding of LMB varieties with
better thermal tolerance in the future.

Abstract: Affected by the continuously rising temperature, thermal stress leads to a delinked growth
rate and resistance to stress in cultured largemouth bass (Micropterus salmoides, LMB) in China.
Identification of LMB with better thermal resistance will benefit the breeding of new varieties.
However, there has been limited reporting on the evaluation to identify LMB with better thermal
resistance. LMB consists of the northern LMB (Micropterus salmoides salmoides, NLMB) and the Florida
LMB (Micropterus salmoides floridanus, FLMB). Due to their different geographical distributions, it has
been suggested that FLMB exhibit better thermal resistance compared to NLMB. In this study, NLMB
and FLMB were subjected to thermal stress for 3 h (acute) and 60 d (chronic) at 33 ◦C, respectively.
Subsequently, the variations of 12 candidate biomarkers between NLMB and FLMB were analyzed.
Exposure to acute thermal stress significantly increased plasma cortisol, blood glucose, and lactate
levels; activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT),
glucose kinase (GK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and glucose 6 phosphatase
(G6Pase); and the expressions of hsp70 and hsp90 in both NLMB and FLMB (p < 0.05). Compared to
NLMB, FLMB exhibited a lower plasma cortisol level and a higher expression of hsp90 under acute
thermal stress (p < 0.05). Exposure to chronic thermal stress significantly increased plasma cortisol
and blood glucose levels, as well as activities of GK, PK, LDH, and G6Pase, as well as expressions of
hsp70 and hsp90 in both NLMB and FLMB (p < 0.05). Additionally, FLMB showed a lower expression
of hsp70 compared to NLMB (p < 0.05). In conclusion, our results showed that LMB with lower
plasma cortisol level and higher expression of hsp90 under acute thermal stress, as well as lower
expression of hsp70 under chronic thermal stress were suggested to have better thermal resistance.
Our study provides valuable information for identifying and breeding LMB varieties with better
thermal resistance in the future.

Keywords: thermal stress; cortisol; antioxidant enzymes; glucose metabolism-related enzymes;
hsp70/90
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1. Introduction

The largemouth bass (Micropterus salmoides, LMB) is native to North America and was
introduced from Taiwan to mainland China in 1983. In recent decades, it has become an
important cultured fish in China, with production of 802,486 tons in 2022. The survival
and growth of LMB are impacted by various biological and abiotic stresses, such as water
temperature, quality, and density [1–3]. One of the key factors influencing the growth,
feeding, energy consumption, respiration, and mobility of LMB is water temperature [2,4].
According to the 2022 China Fishery Statistical Yearbook, Guangdong, Zhejiang, and
Jiangsu Provinces accounted for 80% of LMB production. However, high temperatures
have been occurring frequently in these regions in recent years. For instance, it has been
reported that the maximum surface water temperature in LMB culture ponds in Sichuan
Province reached 34.4 ◦C during the summer seasons from 2017 to 2019 [5]. Under thermal
stress, LMB experienced problems such as decreased food intake, declined growth rate,
and reduced stress resistance. Identifying LMB with better thermal resistance will benefit
the breeding of LMB varieties with improved stress tolerance.

LMB have originally been considered to comprise two subspecies, the northern LMB
(Micropterus salmoides salmoides, NLMB), distributed in most central and eastern parts
of America, northeast Mexico, and southeast areas of Canada; and the Florida LMB
(Micropterus salmoides floridanus, FLMB), found on the Florida peninsula [6,7]. Due to
their geographical distribution differences, it has been reported that FLMB are more resis-
tant to thermal stress than NLMB. For instance, the chronic caloric maximum of FLMB was
39.2 ± 0.64 ◦C, which was 37.3 ± 0.60 ◦C in NLMB [8]. Median lethal 24 h temperatures
for 0–3 d hatched larvae averaged 32.1 ◦C for NLMB and 32.6 ◦C for FLMB [9]. Through
morphological traits, microsatellite molecular markers [10], DNA fingerprinting [11], SNP,
and InDel markers [12], we confirmed that the cultured LMB in China belong to the NLMB
classification. However, the mechanism underlying thermal resistance differences between
the two subspecies remains unknown.

Stress responses of fish can be roughly divided into primary, secondary, and tertiary
stages [13,14]. Primary responses include initial neuroendocrine reactions that activate
brain regions and cause a large-scale release of corticosteroids and catecholamines. How-
ever, unlike the rapid release of catecholamines from chromaffin cells, cortisol synthesis
and release from interrenal cells have a lag time of several minutes. Therefore, circulating
levels of cortisol are commonly used as a stress indicator of fish [15]. Secondary responses
are typically described as the manyfold immediate actions and effects of these hormones
at the blood and tissue level, resulting in various hematological and biochemical parame-
ters, including blood glucose, lactate, antioxidant enzymes, glucose metabolism-related
enzymes, and heat-shock stress protein expression. Tertiary responses extend to the welfare
of fish, encompassing their survival, growth, reproductive capabilities, and behavior [14,16].
Therefore, assessment of the hematological and biochemical parameters will be a useful tool
for investigating the ability of fish to adapt to the environment [17,18]. In LMB, it has been
reported that blood glucose levels significantly increased after acute thermal stress at 33 ◦C
for 6 h [19]. Similar variations have been observed in activities of superoxide dismutase
(SOD), glutathione peroxidase (GPX), and catalase (CAT) [20], as well as expression of hsc70
and hsp70 in the liver and gill tissues [21]. However, whether these candidate biomarkers
are suitable for the evaluation of thermal resistance in LMB remains to be further explored.

As a warm-water fish, the LMB is suggested to have an optimal growth temperature of
20–25 ◦C [22]. Water temperatures exceeding 32 ◦C inhibit LMB growth, while temperatures
exceeding 34 ◦C cause death [9,20]. Therefore, the experimental treatment temperature
in this study was set at 33 ◦C. After being treated with acute (3 h) and chronic (60 d)
thermal stress, we analyzed variations in blood parameters (cortisol, blood glucose, and
lactate), antioxidant enzymes activities (SOD, GPX, and CAT), glucose metabolism-related
enzymes activities (glucose kinase (GK), pyruvate kinase (PK), lactate dehydrogenase
(LDH), and glucose 6 phosphatase (G6Pase)), as well as expressions of hsp70 and hsp90
between NLMB and FLMB. Through these experiments, the biomarkers which revealed
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significant differences between NLMB and FLMB under thermal stress will be used to
identify the LMB with better thermal tolerance abilities. Our study provides valuable
information for the breeding of new varieties of LMB in the future.

2. Materials and Methods
2.1. Experimental Materials and Experimental Design

NLMB and FLMB were obtained from Guangdong Liangshi Aquatic Seed Industry
Co., Ltd. (Foshan, China), with an average body weight of 20.64 ± 2.13 g and 20.20 ± 1.35 g,
respectively. A total of 180 NLMB and 180 FLMB were randomly divided into 6 replicates,
with 30 fish in each replicate. Before the thermal stress treatments, these fish were held in
12 circular 125 L glass tanks with a filtration system (equipped with a heating system and a
water flow rate of 5 L/min; 14 h light: 10 h darkness) for temporary rearing at 25 ◦C for
1 week. Two groups were involved in the acute thermal stress treatments: the short-term
25 ◦C group (S25) and the short-term 33 ◦C group (S33). To achieve the experimental
treatment temperature, the water temperatures in the acute thermal stress treatments
were adjusted at a rate of 0.1 ◦C/min. The chronic thermal stress treatments included
two groups: the long-term 25 ◦C group (L25) and the long-term 33 ◦C group (L33). The
water temperature in the chronic thermal stress treatments was adjusted at the rate of
1 ◦C/d until the experimental treatment temperature was reached. Additionally, the NLMB
and FLMB were maintained at 33 ◦C for 60 days. During this period, the LMB were fed a
commercial artificial diet (50% crude protein, Tianma Technology Group Co., Ltd., Fuqing,
China) to apparent satiation twice daily (8:00–9:00 and 17:00–18:00) The water was cleaned
once per week.

2.2. Sample Collection

After being kept at the experimental treatment temperatures for 3 h, the samples
were collected from the groups that received acute thermal stress treatment. After being
maintained at the experimental treatment temperatures for 60 d, the samples were collected
from the groups that received chronic thermal stress treatment. Five fish were randomly
selected in each replicate and anesthetized with MS-222 (Tianjin, China). Blood samples
were immediately collected from the tail vein using a syringe, stored in 1.5 mL centrifuge
tubes at 4 ◦C for 2 h, and then centrifuged at 4000 rpm/min for 10 min. The supernatant
was collected and transferred to a 1.5 mL centrifuge tube, which was stored at −80 ◦C.
Liver samples were excised and stored at −80 ◦C.

2.3. Determination of Cortisol, Blood Glucose, Lactate, and Activities of Enzymes

Serum cortisol and lactate were determined using commercial kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) according to the manufacturer’s instructions.
Blood glucose was measured using a blood glucose meter (ACCU-CHEK Performa, Roche,
Shanghai, China). Activities of antioxidant enzymes (SOD, GPX, CAT), and glucose
metabolism-related enzymes (GK, PK, LDH, G6Pase) were determined using commer-
cial kits (Shanghai Preferred Bioscience Being Co., Ltd., Shanghai, China) according to the
manufacturer’s instructions.

2.4. Expression Analysis of Hepatic hsp Genes

Sequences of hsp70 (MN121693.1) and hsp90 (XM_038705070.1) were obtained ac-
cording to the reference genome of LMB (GenBank: GCA_019677235.1). Total RNA was
extracted using TRIzol Reagent (Invitrogen, Shanghai, China) according to the manufac-
turer’s instructions. RNA integrity and quantity were determined using an Agilent 2100
Bioanalyzer (Agilent, Shanghai, China). The synthesis of cDNA was performed with a
ToloScript All-in-one RT Easy Mix for qPCR kit (Shanghai, China) following the manufac-
turer’s instructions. qRT-PCR was conducted using SYBR Green Premix ExTaq (Takara,
Dalian, China) in a CFX96 real-time PCR system (Bio-Rad, Hercules, CA, USA). qRT-PCR
was performed in a 20 µL reaction mixture including 10 µL SYBR Premix ExTaq™ II (2×),
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0.5 µL of each primer (10 µM), 1 µL of cDNA, and 8.0 µL of ddH2O. The PCR procedure
was as follows: 95 ◦C for 2 min, followed by 40 cycles of 95 ◦C for 10 s and 60 ◦C for 10 s,
a 0.5 ◦C/5-s incremental increase from 58 to 95 ◦C, and 30 s elapse time for each cycle.
The expression level was estimated using the 2−∆∆Ct method [23]. β-actin was used as the
internal reference gene to normalize the gene expression level (Table 1). Five biological and
three technical replicates were used for each gene.

Table 1. Primer sequences of hsp70 and hsp90.

Gene Game
Primer Sequence (5′→3′)

Forward Primer Reverse Primer

hsp70 (MN121693.1) GCAGACGCAGACCTTCACCA GGGAACACCACGAGGAGCAG
hsp90 (XM_038705070.1) TGCGCTTCCAGACCTCCAAC TCAGCCTCCTTCCTGCTGGT

β-actin AAAGGGAAATCGTGCGTGAC AAGGAAGGCTGGAAGAGGG

2.5. Data Analysis

Experimental data were expressed as mean ± standard deviation (Mean ± SD). Since
there was only one factor (i.e., temperature or subspecies) in our experimental designs,
an independent sample t-test was performed to examine the effects of physiological and
molecular parameters. The experimental data were processed using the software SPSS.26,
and a significance level of p < 0.05 was used as the criterion for statistical significance.

3. Results
3.1. Effects of Acute and Chronic Thermal Stress on the Plasma Cortisol, Blood Glucose, and
Lactate Levels

The variations in plasma cortisol, glucose, and lactate levels of NLMB and FLMB
under acute thermal stress are shown in Figure 1A–C. There were no significant differences
in plasma cortisol, blood glucose, and lactate levels between NLMB and FLMB in the
S25 group. Compared to the S25 group, plasma cortisol, blood glucose, and lactate levels
in the S33 group were significantly increased in both NLMB and FLMB (p < 0.05). The
plasma cortisol level of NLMB was significantly higher than that of FLMB in the S33 group
(p < 0.05). However, there were no significant differences in blood glucose and lactate levels
between NLMB and FLMB in the S33 group.

The variations in plasma cortisol, blood glucose, and lactate levels of NLMB and
FLMB under chronic thermal stress are shown in Figure 1D–F. There were no significant
differences in levels of plasma cortisol, blood glucose, or lactate between NLMB and
FLMB in the L25 group. Compared to the L25 group, plasma cortisol and blood glucose
levels in the L33 group were significantly increased in both NLMB and FLMB (p < 0.05).
However, there was no significant difference in lactate levels between the L25 and L33
groups. Additionally, there were no significant differences in plasma cortisol, blood glucose,
or lactate levels between NLMB and FLMB in the L33 group.

3.2. Effects of Acute and Chronic Thermal Stress on the Activities of Antioxidant Enzymes in
Liver Tissues

The activity variations of SOD, GPX, and CAT enzymes in the livers of NLMB and
FLMB under acute thermal stress are shown in Figure 2A–C. There were no significant
differences in the activities of SOD, CAT, or GPX between NLMB and FLMB in the S25
group. Compared to the S25 group, the activities of SOD, CAT, and GPX enzymes in the
S33 group were significantly increased in both NLMB and FLMB (p < 0.05). However, there
were no significant differences in the activities of SOD, CAT, and GPX between NLMB and
FLMB in the S33 group.
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Figure 1. Effects of acute and chronic thermal stress on the variations of plasma cortisol, blood glucose,
and lactate levels in NLMB and FLMB (n = 15). Note: (A–C) were the variations in plasma cortisol,
blood glucose, and lactate levels under acute thermal stress, respectively. (D–F) were variations in
plasma cortisol, blood glucose, and lactate levels under chronic thermal stress, respectively. Different
lowercase letters above the bars show significant differences in the same groups, and different
uppercase letters above the bars show significant differences in the same subspecies (p < 0.05).
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Figure 2. Effects of acute and chronic thermal stress on the activity variations of antioxidant enzymes
in liver tissues of NLMB and FLMB (n = 15). Note: (A–C) were the activity variations of SOD, GPX,
and CAT enzymes under acute thermal stress, respectively. (D–F) were the activity variations of SOD,
GPX, and CAT enzymes under chronic thermal stress, respectively. Different lowercase letters above
the bars show significant differences in the same groups, and different uppercase letters above the
bars show significant differences in the same subspecies (p < 0.05).



Animals 2024, 14, 1435 6 of 11

The activity variations of SOD, GPX, and CAT enzymes in the livers of NLMB and
FLMB under chronic thermal stress are shown in Figure 2D–F. There were no significant
differences in the activities of SOD, GPX, or CAT enzymes between NLMB and FLMB in
the L25 group. Compared to the L25 group, there were no significant differences in the
activities of SOD, GPX, or CAT enzymes in the L33 group. Additionally, there were no
significant differences in the activities of SOD, CAT, or GPX between NLMB and FLMB in
the L33 group.

3.3. Effects of Acute and Chronic Thermal Stress on the Activities of Glucose Metabolism-Related
Enzymes in Liver Tissues

The activity variations of GK, PK, LDH, and G6Pase enzymes in the liver of NLMB
and FLMB under acute thermal stress are shown in Figure 3A–D. There were no significant
differences in the activities of GK, PK, LDH, or G6Pase enzymes between NLMB and FLMB
in the S25 group. Compared to the S25 group, the activities of GK, PK, LDH, and G6Pase
enzymes in the S33 group were significantly increased in both NLMB and FLMB (p < 0.05).
However, there were no significant differences in the activities of GK, PK, LDH, or G6Pase
enzymes between NLMB and FLMB in the S33 group.
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The activity variations of GK, PK, LDH, and G6Pase enzymes in the liver of NLMB and
FLMB under chronic thermal stress are shown in Figure 3E–H. There were no significant
differences in the activities of GK, PK, LDH, or G6Pase enzymes between NLMB and FLMB
in the L25 group. Compared to the L25 group, activities of GK, PK, LDH, and G6Pase
enzymes in the L33 group were significantly increased in both NLMB and FLMB (p < 0.05).
However, there were no significant differences in activities of GK, PK, LDH, or G6Pase
enzymes between NLMB and FLMB in the L33 group.

3.4. Effects of Acute and Chronic Thermal Stress on the Expressions of hsp70 and hsp90 in
Liver Tissues

The expression variations of hsp70 and hsp90 in the livers of NLMB and FLMB under
acute thermal stress are shown in Figure 4A,B. There were no significant differences in
expression of hsp70 or hsp90 between NLMB and FLMB in the S25 group. Compared
to the S25 group, the expression of hsp70 and hsp90 in the S33 group were significantly
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upregulated in both NLMB and FLMB (p < 0.05). There was no significant difference in
expression of hsp70 between NLMB and FLMB in the S33 group. However, FLMB showed
a significantly higher expression of hsp90 than NLMB did in the S33 group (p < 0.05).
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The expression variations of hsp70 and hsp90 in the livers of NLMB and FLMB under
chronic thermal stress are shown in Figure 4C,D. There were no significant differences
in expression of hsp70 or hsp90 between NLMB and FLMB in the L25 group. Compared
to the L25 group, the expressions of hsp70 and hsp90 in the L33 group were significantly
upregulated in both NLMB and FLMB (p < 0.05). NLMB had a significantly upregulated
expression of hsp70 than FLMB in the L33 group (p < 0.05). However, there was no
significant difference in the expression of hsp90 between NLMB and FLMB in the L33 group.

4. Discussion

Under stressors, cortisol is synthesized in the interrenal cells and released into the
blood [24], which contributes to protecting organisms and avoiding oxidative stress. Mean-
while, cortisol elevates metabolic levels and mobilizes reserve energy by increasing gluco-
neogenesis in the liver [25], which raises blood glucose level to provide sufficient energy
for coping with temperature variation [26]. Additionally, acute stress enhances anaerobic
respiration processes that metabolize glucose into lactate, resulting in increased energy
production. Previous studies have suggested that thermal stress treatments increased the
cortisol, blood glucose, and lactate levels in large yellow crocea (Larimichthys crocea) [27],
Korean rockfish (Sebastes schlegelii) [28], gemstone bass (Scortum barcoo) [29], Chinese stur-
geon (Acipenser sinensis) [30], and Eleginops maclovinus [31]. In this study, both cortisol and
blood glucose levels were significantly higher in the S33 group and L33 group compared to
the control group. These results indicate that corticosteroids and gluconeogenesis processes
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are key for LMB to cope with thermal stress. Lactate levels were significantly higher in
the S33 group compared to the S25 group, while no significant difference was observed
between the L25 group and the L33 group. These results may be related to differences in the
duration of thermal stress treatment. Under chronic thermal stress, LMB gradually adapted
to the variation temperatures, leading to a dynamic balance between lactate synthesis
and decomposition. Moreover, FLMB had lower cortisol levels compared to NLMB in
the S33 group, which was consistent with its better thermal resistance [8,9]. This result
suggests that LMB with lower plasma cortisol level under acute thermal stress have better
thermal resistance.

Production of excessive reactive oxygen species (ROS) causes oxidative stress in fish
after exposure to stressors. To maintain homeostasis, organisms increase the activities of
antioxidant enzymes, such as SOD, GPX, CAT, etc., to scavenge the excessive ROS [32,33].
For instance, acute thermal stress increased the activities of SOD, GPX, and CAT enzymes
in rainbow trout (Oncorhynchus mykiss) [34] and Scapharca subcrenata [35]. In this study, the
activities of SOD, GPX, and CAT enzymes were increased after exposure to acute thermal
stress for 3h, which was similar to the findings by Lu et al. in LMB [20]. However, the
activities of SOD, GPX, and CAT enzymes had no significant differences after chronic
thermal stress. These variations may be related to the duration of treatment. Under
acute thermal stress, the activities of SOD, GPX, and CAT enzymes evidenced a trend of
first increasing and then decreasing in pikeperch (Sander lucioperca) [36] and Onychostoma
macrolepi [37], suggesting an adaptation process of fish under thermal stress. In comparison
to acute thermal treatments, fish have more time to adapt to chronic thermal treatments.
In pikeperch [38] and Stichopus japonicus (Apostichopus japonicus) [39], it was observed
that the activities of antioxidant enzymes decreased to normal levels after 48 h and 12 h
of chronic thermal stress, respectively. In addition, there were no significant differences
regarding the activities of SOD, GPX, or CAT enzymes between NLMB and FLMB under
acute or chronic thermal stress. These results suggest that variations in SOD, GPX, and
CAT activities cannot be applied to evaluate the thermal resistance of LMB.

Both acute and chronic thermal stress caused an increase in the blood glucose levels of
LMB. To better understand the mechanism of glucose metabolism in thermal stress, one
rate-limiting enzyme (G6Pase) in the gluconeogenesis process and three main rate-limiting
enzymes (GK, PK, and LDH) in the glycolysis process were selected. G6Pase hydrolyzes
glucose 6-phosphate into free glucose and releases it into the bloodstream. Glucose is
decomposed into pyruvate under the action of GK and PK. Pyruvate is fully oxidized under
aerobic conditions, releasing carbon dioxide, but is fermented by LDH under anaerobic
conditions to lactate or ethanol [40]. In this study, both acute and chronic thermal stress
significantly increased the activities of G6Pase, GK, PK, and LDH enzymes. Similar findings
have also been reported in other fish species. For instance, exposure to acute thermal stress
significantly increased the activities of GK and PK in Gilthead Sea bream (Sparus aurata) [41]
and European sea bass (Dicentrarchus labrax) [42], while chronic thermal stress increased
the activity of LDH in pearl oysters (Pinctada fucata) [43]. The increased activity of G6Pase
was consistent with the increased blood glucose level. The increased activities of GK, PK,
and LDH indicated that glycolysis was the primary process for energy supplementation
under thermal stress. However, there were no significant differences in the four-glucose
metabolism-related enzymes between the NLMB and FLMB under acute or chronic thermal
stress. These results suggest that the variations of glucose metabolism-related activities
cannot be used to evaluate the thermal resistance of LMB.

Hsp are highly conserved proteins and play important roles in thermal tolerance
and acclimation and assist cells in recovering from stress [44,45]. The various types of
hsp are differentiated into five families based on their molecular weights. Among these
families, hsp70 translocases proteins across cellular membranes and protects neurons from
apoptosis [46,47], while hsp90 assists cortisol by transmitting signals from glucocorticoid
receptors [48]. In this study, the expressions of hsp70 and hsp90 were significantly upreg-
ulated in the acute and chronic thermal-treated groups compared to the control groups.
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Similarly, many investigators have also reported that thermal stress induces upregulation
of the expression of hsp70 and hsp90 in the liver of Siberian sturgeon (Acipenser baeri) [49],
Mandarin fish [50], Catla catla [51], and white sturgeon larvae (Acipenser transmontanus) [52].
The upregulated expression of hsp70 is likely a result of the apoptotic defense mechanism
triggered by increased water temperature [53]. The upregulated expression of hsp90 is
likely due to an increase in cortisol secretion, which helps maintain cellular homeostasis
and leads to increased expression of hsp90 [54]. In the S33 group, the expression of hsp90 in
FLMB was significantly higher than that in NLMB. This difference in expression may have
resulted from higher cortisol levels in NLMB, which inhibited hsp90 expression [55]. The
expression of hsp70 was significantly lower in FLMB than in NLMB under chronic thermal
stress, probably because FLMB is more thermally resistant, and the microvariation of hsp70
would be able to resist thermal stress. In summary, the detection results of hsp expressions
suggest that LMB with higher expression of hsp90 under acute thermal stress and a lower
expression of hsp70 under chronic thermal stress have better thermal resistance.

5. Conclusions

In this study, two subspecies of LMB with different thermal resistance were used
to screen for candidate biomarkers related to thermal stress response. Based on their
variations under thermal stress, our results indicated that the FLMB, which exhibits better
thermal resistance, had a lower plasma cortisol level and a higher expression of hsp90 under
acute thermal stress, as well as a lower expression of hsp70 under chronic thermal stress
compared to NLMB. These findings suggest that LMB with lower plasma cortisol level
and higher expression of hsp90 under acute thermal stress, as well as lower expression
of hsp70 under chronic thermal stress, are likely to have better thermal resistance. Our
study provides valuable information for identifying and breeding LMB varieties with better
thermal resistance in the future.
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