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Simple Summary: One key factor in the emergence of antimicrobial resistance (AMR) in microor-
ganisms is antimicrobial usage in veterinary and human medicine. In dairy cattle, the prevalence
of AMR E. coli is age-dependent, with a higher prevalence detected during the early stages of life.
In veal calf fattening herds, the high degree of commingling calves from different farms of origin
can lead to the rapid spread of infections within the farm. This can cause severe health issues,
necessitating greater use of antimicrobial agents. Antimicrobial use has been reported to be higher
in the veal calf fattening sector compared to the other production branches of livestock production.
This represents an unquantified risk to human health, as antimicrobial-resistant bacteria and the
genetic elements mediating resistance can potentially spread through foodborne transmission or
environmental dissemination. This surveillance study was conducted, using data available from
routine diagnostic activity, to: (i) determine the proportion of antimicrobial-resistant strains and
AMR profiles of E. coli isolated from the intestinal contents of veal and dairy calves in the Veneto
Region (Northeaster Italy); (ii) investigate potential variation in the AMR profiles of isolates between
the two categories of calves and, (iii) identify potential AMR variations over the period considered
(2017–2022).

Abstract: This surveillance study aimed to estimate the proportion of antimicrobial resistant strains
and antimicrobial resistance (AMR) profiles of E. coli isolates detected from the intestinal contents
of veal and dairy calves in the Veneto Region, Northeaster Italy. Additionally, we investigated
the differences in AMR profiles between dairy and veal calves over the period 2017–2022. Overall
1150 E. coli isolates were tested from calves exhibiting enteric disease, with 868 from dairy and 282
from veal calves. The percentage of resistant isolates to nine antimicrobials was notably higher
in veal calves compared to dairy calves, except for ampicillin. Throughout the study period, we
observed a significant increase in the proportion of resistant isolates to florfenicol, gentamycin,
paromomycin, tetracycline and trimethoprim/sulfamethoxazole in dairy calves, while we did not
detect any significant increase in the proportion of resistant isolates among veal calves. A substantial
proportion (75.9%) of the isolated E. coli exhibited multi-drug resistance (MDR). The proportion
of multi-drug resistant isolates was significantly higher in veal calves (91.7%) compared to dairy
calves (74.3%) all through the surveillance period (2017–2022), with no significant variation in MDR
proportion among veal calves between 2017 and 2022 but a significant increase among dairy calves.

Keywords: Escherichia coli; antimicrobial resistance; AMR; multidrug resistance; MDR; minimum
inhibitory concentration; MIC; veal calves; dairy calves; Italy
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1. Introduction

Antimicrobial resistance (AMR) is a naturally occurring phenomenon resulting from
the evolutionary adaptation of bacteria [1,2]. Nowadays, it is recognized as a global threat
to public health, necessitating a One Health approach to tackle its spread [3]. The propor-
tion of AMR in bacteria has increased dramatically over the past few decades, posing a
critical threat to both the global public and animal health [2]. Antimicrobial use (AMU) in
veterinary and human medicine is a key factor in the emergence, selection, and dissemina-
tion of antimicrobial-resistant microorganisms [1]. The use of antimicrobials in livestock
is recognized as a key driver behind the escalation of AMR, affecting not only pathogens
but also indicator bacteria [4], such as Escherichia coli, a ubiquitous microorganism that can
behave both commensally and as a pathogen [5].

In food-producing animals like veal calves, resistant microorganisms can be introduced
onto farms from outside sources, such as new livestock, vectors including rodents, birds,
and insects, or through contaminated feed and water [6]. Furthermore, antimicrobial-
resistant bacteria can disseminate resistance genes across diverse microbial communities
via mobile genetic elements, such as plasmids and transposons [6].

According to official data, antibiotic resistance in cattle is a serious issue in Italy.
This country has the lowest proportion of fully susceptible E. coli in bovines under one
year of age [7]. Moreover, the combined resistance to 3rd generation cephalosporins and
fluoroquinolones is also very frequent as Italy ranks second after North Macedonia among
European countries. No decreasing trend was observed for these resistance indicators in
cattle in Italy in the last years [7].

Despite a remarkable decrease in AMU in food animal production in Italy in recent
years [8], it remains uncertain whether this decline has affected the proportion of AMR
on farms. This research aims to fill this gap, providing crucial data for responsible AMU
practices and detecting resistance emergence [9], while supplying veterinarians with data
to optimize therapy.

Escherichia coli isolates are chosen for their suitability in measuring antimicrobial
resistance across various ecological niches, including both human and animal settings [9].
Moreover, E. coli serves as an excellent sentinel for AMR across a wide range of species and
is considered a potential reservoir of resistance genes that could transfer resistance to other
zoonotic or commensal organisms, posing risks to both animals and human health [10].

In dairy cattle, the prevalence of antimicrobial-resistant E. coli and antimicrobial
resistance genes (ARGs) is influenced by age, with a higher prevalence detected in early
life stages, especially among calves of 2–4 weeks old [11–13], compared to other categories
in cattle breeding [14]. Several studies examining the high prevalence of antimicrobial-
resistant E. coli in young dairy calves have yielded evidence of milk diet as a significant risk
factor [12,13,15,16]. Moreover, the supplementation of calf milk with antimicrobials, the
incidence of diarrhoea, the use of feed additives with biocides and heavy metals, as well as
vitamin supplements have also been suggested to contribute to the high AMR prevalence
in young calves [12,15,17]. Previous studies have suggested that maternal colostrum, as the
initial feed, might be a significant vehicle for antimicrobial-resistant E. coli transmission in
neonatal calves [15,18].

Given the potential negative impact on meat production and public health, investigat-
ing AMR trends in bovine production in Europe, particularly in countries like Italy with a
long and rich tradition of animal husbandry, is essential [19]. In 2019, the EU-27 produced
approximately 645,000 tons of veal meat from 4.4 million calves, with major production
countries including The Netherlands (36%), France (28%), Italy (13%), Belgium (9%), and
Germany (7%) [20].

Surplus dairy calves refer to those born on dairy farms that are either unsuitable or
unnecessary for replacing the milking herd. These calves are mostly male and are typically
sold for grain-fed veal production, during which they are raised primarily on a milk-based
diet until 6–8 weeks of age before transitioning to a grain-based diet and being marketed at
8 months of age [21].
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In Italy, veal calves usually enter the fattening unit around three weeks of age and are
fattened until they reach an average live body weight of kg 270 (around 7–8 months of age),
adhering to European Union welfare regulations [22].

The production stages in surplus calves involve frequently long-distance transporta-
tion to livestock markets, where they are purchased by calf raisers for rearing. Throughout
these stages, surplus calves experience many health challenges [23–25], increasing the
risk of infectious disease and subsequent AMU [26], especially in the first weeks after
housing. Due to the high degree of commingling of calves from different farms’ origin
at these markets, infected calves can lead to a rapid spread of disease on the veal calf
farm, causing severe health issues resulting in increased AMU, including preventive use
of antimicrobials [27], and economic losses [28]. Preventive antimicrobial treatment has
been restricted in the European Union by guidelines and regulations [29,30]. However, the
arrival of sick animals at fattening units is common, and antimicrobial group treatment of
healthy but potentially infected animals alongside sick calves is largely practiced [31,32].
AMU has been reported to be higher in the veal calf fattening sector rather than in other
production branch [33], posing an unquantified risk to human health due to the potential
transmission of antimicrobial-resistant bacteria and ARGs through foodborne pathways or
environmental dissemination [21]. Previous Italian studies investigating E. coli resistance
expression in calves have revealed a significant proportion of AMR strains, particularly
resistant to ampicillin, tetracycline, and sulfamethoxazole/trimethoprim [5,34]. This trend
seems to persist despite a substantial reduction in the usage of diverse antibiotic agents in
recent years [8].

Due to the great variability of production systems and producers among countries, stan-
dardized AMR data collection for timely and regional comparisons is recommended [35,36].

The rearing of beef and dairy calves has fundamental differences due to animal origin,
management, type of disease, feeding type, etc. These factors influence the nature and
prevalence of infections and, as a consequence, treatment choices. This survey aimed to
highlight any differences in the antimicrobial resistance profiles of E. coli strains isolated
from the intestinal contents of these two categories of calves. To the best of our knowledge,
there are no scientific papers available that use standardized methods for surveying AMR
data between calves belonging to the two different herd categories (dairy and veal calves)
within the same geographical area.

For these reasons, this surveillance study was conducted, using routinely available
data, with the following aims: (i) estimating the proportion of antimicrobial resistant strains
and AMR profiles of E. coli isolated from the intestinal contents of veal and dairy calves in
the Veneto Region (Northeaster Italy); (ii) investigating potential differences in the AMR
profiles of E. coli isolated from the two calf categories; (iii) identifying potential AMR
variations over the considered period (2017–2022).

2. Materials and Methods
2.1. Study Area and Samples Tested

The study was conducted using the data of the antimicrobial susceptibility test (AST)
performed between 2017 and 2022 by the Istituto Zooprofilattico Sperimentale delle Venezie
(IZSVe), an institution belonging to the Italian network of state veterinary laboratories.
Among the ASTs performed for the routine diagnostic, all those were selected executed
on E. coli isolates collected from dead calves (age 1–180 days) belonging to dairy or veal
beef farms, delivered to the laboratory for necroscopy, with a pathological diagnosis of
enteritis. The isolates were obtained by bacteriological culture performed on intestinal
contents collected during the necroscopy. Only one AST was performed by the E. coli
isolated from intestinal content for each calf included in the study. The overall amount of
E. coli isolates ASTs used for this study was 1150. The isolates were collected from 874 dairy
calves (76.0%) and 276 veal calves (24.0%), belonging to 429 herds, 333 dairy (77.6%), and
96 veal farms (22.4%) situated in the Veneto Region (Northeaster Italy). The breed of the
calves included in the study was pure Italian Holstein or crossbreed (Belgian Blue cross
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on Italian Holstein). The Veneto Region, spanning an area of 18,345 km2, is the third
Italian region in terms of cattle population, with approximately 750,000 cattle, of which
64% are dairy cows. This region is home to 2658 dairy herds and holds the second-highest
number of Italian farms (over 1000) engaged in rearing veal beef calves (approximately
125,000 calves) [37].

2.2. Isolation of E. coli

The isolation procedure remained consistent during the whole study period (2017–2022).
The samples were processed within 24 h after collection, cultured on both MacConkey agar
plates and blood agar plates, and incubated aerobically for 16 ± 2 h at 37 ± 2 ◦C. After
overnight incubation, suspicious E. coli colonies were identified by morphology and Gram
staining. For each sample, a single suspected colony with specific biochemical properties
(lactose and indole positivity; negativity for H2S, oxidase, and urease) were sub-cultured on
brain heart infusion (BHI) agar, while identities were confirmed using the API 20E biochem-
ical method (bioMérieux, Marcy l’Etoile, France) according to producer’s instructions [5].
All the media, except API 20E, were produced by the IZSVe internal service for reagents
production (IZSVE CSP) starting from lyophilized product of MacConkey (Biomedical
service, Scorzè, Italy) and Blood agar base 2 (Biolife Italiana, Milano, Italy) supplemented
with sheep defibrinated blood. Production and quality control were performed according
to ISO 9001:2015 [38].

2.3. Antimicrobial Susceptibility Testing

The Minimum Inhibitory Concentration (MIC) of the nine selected antimicrobials
(Table 1) was determined using the broth dilution test according to the procedure described
in the Clinical and Laboratory Standards Institute (CLSI) guidelines VET01-5th edition [39].

Table 1. Antimicrobials used with their clinical breakpoint and epidemiological cut-off.

Antimicrobial Abbreviation Antimicrobial
Class Clinical Breakpoint (µg/mL) References and

Specie
ECOFF d

(µg/mL)

S a≤ I b= R c≥ R c≥

Ampicillin AMP Aminopenicillins 0.25 0.5 1 [40], cattle 16
Colistin COL Polymyxins 2 - 4 [41], human 4

Enrofloxacin ENR Quinolones 0.5 1–2 4 [40], dog 0.25
Florfenicol FLO Amphenicols 4 8 16 [40], swine 32

Flumequine FLQ Quinolones 4 8 16 [42], all species 4
Gentamicin GEN Aminoglycosides 4 8 16 [40], human 4

Paromomycin PRM Aminoglycosides 8 16 32 [43], human n.a.
Tetracycline TET Tetracyclines 4 8 16 [40], human 16

Trimethoprim/
sulfamethoxazole SX-T Sulfonamides 2/38 - 4/76 [40], human 1

Note: a susceptible; b intermediate; c resistant; n.a.: not available; d ECOFF provided by EUCAST [44].

MIC was evaluated with a customized commercial microdilution MIC system. From
2017 until 2020, MIC plates and Cation Adjusted Mueller-Hinton Broth (CAM-HB) were
supplied by Merlin Diagnostika, GmbH (Bornheim, Germany), and from 2021 to 2022 by
TREK Diagnostic Systems (East Grinstead, UK).

Both the microdilution MIC systems were produced according to ISO 13485:2016 [45]
and each MIC plate batch underwent to quality control with E. coli ATCC 25922 and
Pseudomonas aeruginosa ATCC 27853 strains before releasing. According to CLSI guide-
lines [39], a pure colony from overnight growths of E. coli isolates was picked up with
a sterile loop and suspended in sterile saline (IZSVe CSP). The bacterial suspension was
adjusted using a nephelometer (Biosan, Riga, Latvia) until an optical density (OD) of
0.5 nephelometric turbidity units (NTU) on the McFarland scale was achieved. Then 50 µL
of the suspension were transferred in 11 mL of CAM-HB to provide an inoculum concen-
tration of approximately 105 CFU/mL, and 100 µL of the CAM-HB were transferred to
each well of the plate. After incubation at 34 ± 1 ◦C for 18–24 h, bacterial growth was
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assessed visually or using a Sensititre Vizion instrument (Thermo Scientific, Loughborough,
UK), and the last concentration of antimicrobial that did not show turbidity or a deposit of
cells at the bottom of the well was recorded. The MIC value of each isolate, expressed as
µg/mL, was defined as the lowest concentration of the antimicrobial agent that completely
inhibited the growth after the incubation period and interpreted using clinical breakpoints
(CBPs) reported in Table 1. Isolates were differentiated between resistant (R), intermediate
(I) and susceptible (S) based on the CBPs. The laboratory selected the antimicrobials based
on their activity against cattle enteric pathogens and on their registration by the Italian
Ministry of Health (IMH). Due to the change of MIC plates that occurred during the time
of observation, only the antimicrobials present in both the MIC plates were included. The
antimicrobials included in the study were: ampicillin (AMP), colistin (COL), enrofloxacin
(ENR), florfenicol (FLO), flumequine (FLQ), gentamicin (GEN), paramomycin (PAR), tetra-
cycline (TET), trimethoprim/sulfamethoxazole (SX-T). AMP, FLO, GEN, PAR, TET, and
SX-T are widely used for therapy in calves. The use of COL and ENR has been restricted
to specific cases by the IMH since 2017, so they were included to assess the situation of
AMR toward these specific antimicrobials during the time of the study. Eventually, FLQ
was included, despite the fact that this antimicrobial is not registered for cattle, because
this antimicrobial is a 1st generation quinolone and the results of AMTs can be compared
with those obtained by ENR, a 2nd generation quinolone.

Results were interpreted using available CLSI resistance CBPs according to VET08
4th edition guidelines [40], the European Committee on Antimicrobial Susceptibility Test-
ing (EUCAST) guidelines [41], the Comitè de l’Antibiogramme de la Sociètè Française de
Microbiologie (CASFM) guidelines [42] and the breakpoints reported in the literature [43]
when specific standards were not established by any international recognized guidelines.
The criteria used for the selections of the CBPs were cattle, when available, human, and
other animal species BPs. The BPs adopted by the laboratory have not been changed by
the new updated version of CLSI, CASFM, and EUCAST guidelines, except for ampicillin,
for which the resistance BP was lowered from 1 to 0.25 µg/mL by the 2023 CLSI VET 01S
edition [46]. Due to the dilution design of the plate (last dilution 0.25 µg/mL), and the
small number of misclassified isolates, it was decided to assess the ampicillin according
to the previous CBPs. Results were also assessed using the epidemiological cut-off values
(ECOFFs) provided by EUCAST [44], except for paramomycin, because ECOFF was not
available for this antimicrobial.

For each antimicrobial the median MIC (MIC50) and the 90th percentile (MIC90)
were calculated.

In subsequent analyses, multi-drug resistance (MDR) was assessed according to the
definition of resistance to three or more antimicrobial classes [47,48].

2.4. Statistical Analyses

Temporal trends in the percentages of antimicrobial and multidrug-resistant E. coli
were analysed using Linear-by-Linear Cochran-Armitage test [49,50]. A Chi-square test
was also applied to investigate the proportion of antimicrobial and multidrug-resistant E.
coli isolates between two different animal typologies (veal vs. dairy calves). Confidence
intervals (95%CI) were calculated using Wall’s method.

Correlation analysis between year of isolation and the mean MICs value for each
antimicrobial tested were performed using Spearman’s rho ranked coefficient test.

Statistical analyses were performed using the software SPSS 28.0 (IBM SPSS Statistics,
New York, NY, USA), and p < 0.05 was set as statistically significant.

3. Results

Over the six years surveillance period (2017–2022), the MIC values of 1150 E. coli
isolates from intestinal contents of dead veal and dairy calves with a pathological diagnosis
of enteritis in the Veneto Region (Italy) were investigated. Among these, 874 (76.0%)
originated from calves raised in 333 dairy herds and 276 (24.0%) from 96 veal herds.
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The number of isolates collected from the same herd in the six years ranged from 1 to
25 samples/herd (median = 2) in dairy and from 1 to 33 samples/herd (median = 2) in
veal farms.

3.1. Proportion of Antibiotic Resistant E. coli

A description of antimicrobials tested with their clinical breakpoints (CBPs) and
epidemiological cut-off (ECOFF) is reported in Table 1. Interestingly, the resistance CBP
values were greater than the resistance ECOFF values for ENR, FLQ, GEN, SX-T; for AMP
and FLO an opposite situation was found with resistance ECOFF values greater than the
CBP values. Equal cut-off values were reported for COL and TET. ECOFF value was not
available for PRM.

The proportions of E. coli isolates resistant to the tested antimicrobial, distinct by the
type of breeding, are reported in Table 2. The percentage of isolates resistant to each tested
antimicrobial was constantly higher in veal calves than in dairy calves. According to CBPs,
those differences were statistically significant (p < 0.001) for all the antimicrobials except
AMP. Regarding this latter antimicrobial, E. coli isolates collected from dairy calves showed
the highest resistance rate with only one susceptible and four intermediate isolates. Using
ECOFF, a highly significant difference (p < 0.001) was also found for ampicillin.

Table 2. Total number of resistant E. coli isolates and percentage of resistance for each tested antimi-
crobial according to Clinical Breakpoints and ECOFFs over the entire study duration. ampicillin
(AMP), colistin (COL), enrofloxacin (ENR), florfenicol (FLO), flumequine (FLQ), gentamicin (GEN),
paromomycin (PRM), tetracycline (TET), sulfamethoxazole/trimethoprim (SX-T).
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AMP
veal calves 276 276 (100.0) -

0.35
250 (90.6) 86.6–93.5

<0.001dairy calves 874 869 (99.4) 98.7–99.8 650 (74.4) 71.4–77.1
total 1150 1145 (99.6) 99.0–99.8 900 (78.3) 75.8–80.5

COL
veal calves 276 48 (17.4) 13.4–22.3

<0.001
48 (17.4) 13.4–22.3

<0.001dairy calves 874 55 (6.3) 4.9–8.1 55 (6.3) 4.9–8.1
total 1150 103 (9.0) 7.4–10.7 103 (9.0) 7.4–10.7

ENR
veal calves 276 155 (56.2) 50.3–61.9

<0.001
217 (78.6) 73.4–83.0

<0.001dairy calves 874 384 (43.9) 40.7–47.2 529 (60.5) 75.2–63.7
total 1150 539 (46.9) 44.0–49.8 746 (64.9) 62.1–67.6

FLO
veal calves 276 187 (67.8) 62.0–73.0

<0.001
158 (57.2) 51.3–62.9

<0.001dairy calves 874 328 (37.5) 34.4–40.8 275 (31.5) 28.5–34.6
total 1150 515 (44.8) 41.9–47.7 433 (37.7) 34.9–40.5

FLQ
veal calves 276 172 (62.3) 56.5–67.8

<0.001
217 (78.6) 73.4–83.0

<0.001dairy calves 874 414 (47.4) 44.1–50.7 541 (61.9) 58.6–65.1
total 1150 586 (51.0) 48.1–53.8 758 (65.9) 63.1–68.6

GEN
veal calves 276 120 (43.5) 37.8–49.4

<0.001
145 (52.5) 46.6–58.3

<0.001dairy calves 874 211 (24.1) 21.4–27.1 257 (29.4) 26.5–32.5
total 1150 331 (28.8) 26.2–31.5 402 (35.0) 32.2–37.8

PRM
veal calves 276 197 (71.4) 65.8–76.4

<0.001 - a - - -dairy calves 874 483 (55.3) 51.0–58.5
total 1150 680 (59.1) 56.3–61.9

TET
veal calves 276 261 (94.6) 91.2–96.7

<0.001
261 (94.6) 91.2–96.7

<0.001dairy calves 874 669 (76.5) 73.6–79.2 669 (76.5) 73.6–79.2
total 1150 930 (80.9) 78.5–83.0 930 (80.9) 78.5–83.0

SX-T
veal calves 276 234 (84.8) 80.1–88.5

<0.001
236 (85.5) 80.9–89.2

<0.001dairy calves 874 499 (57.1) 53.8–60.3 525 (60.1) 56.8–63.3
total 1150 733 (63.7) 60.9–66.5 761 (66.2) 63.4–68.8

a ECOFF not available for PRM.
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Examining all the results through the entire surveillance period (2017–2022) (Figure 1),
there was a significant increase in the proportion of resistance among isolates for FLO
(46.9% vs. 57.6%; p = 0.002), GEN (25.0% vs. 41.3%; p < 0.001), PRM (55.5% vs. 66.3%;
p = 0.001), TET (77.3% vs. 83.1%; p = 0.033) and SX-T (62.5% vs. 75.6%; p < 0.001). However,
assessing separately the two types of breeding, for veal calves there were no significant
(p > 0.05) variations in the proportion of resistance isolates along the time to any of the
tested antimicrobials. In contrast, a significant change in AMR was observed in dairy calves
for GEN (19.8% vs. 37.8%; p < 0.001), SX-T (47.7% vs. 72.0%; p < 0.001), PRM (45.3% vs.
61.5%; p < 0.001), FLO (33.7% vs. 53.1%; p < 0.001), and TET (66.3% vs. 81.1%; p < 0.001).
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significant differences are highlight in red. Ampicillin (AMP), colistin (COL), enrofloxacin (ENR),
florfenicol (FLO), flumequine (FLQ), gentamicin (GEN), paromomycin (PRM), tetracycline (TET),
sulfamethoxazole/trimethoprim (SX-T); multidrug resistant (MDR).

3.2. Intestinal Carriage of Multidrug-Resistant E. coli in Veal and Dairy Calves

Overall, 902 out of 1150 (78.4%) examined E. coli isolates exhibited MDR. Within the
MDR category, the median value of resistances was 6 and the maximum value was 8. Only
four isolates (0.35%) were sensible to all nine tested antimicrobials. Of the 902 multidrug-
resistant isolates, the most prevalent phenotype in both veal and dairy calves was resis-
tance to PRM-AMP-ENR-FLO-FLQ-GEN-PRM-TET-SX-T (66 and 78 isolates respectively),
Table 3.
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Table 3. Resistance patterns of multidrug-resistant E. coli isolates based on MIC Clinical Break-
points. Profiles are reported only if the number of isolates per profile was more than 10. Ampicillin
(AMP), colistin (COL), enrofloxacin (ENR), florfenicol (FLO), flumequine (FLQ), gentamicin (GEN),
paromomycin (PRM), tetracycline (TET), sulfamethoxazole/trimethoprim (SX-T).

Veal and Dairy Calves Veal Calves Dairy Calves
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AMP-ENR-FLO-FLQ-GEN-PRM-
TET-SX-T 144 16.0 16.0 66 26.1 26.1 78 12.0 12.0

AMP-ENR-FLO-FLQ-PRM-TET-
SX-T 73 8.1 24.1 26 10.3 36.4 47 7.2 19.3

AMP-ENR-FLQ-PRM-TET-SX-T 60 6.7 30.7 9 3.6 39.9 51 7.9 27.1

AMP-PRM-TET-SX-T 57 6.3 37.0 15 5.9 45.8 42 6.5 33.6

AMP-TET-SX-T 48 5.3 42.4 15 5.9 51.8 33 5.1 38.7

AMP-PRM-TET 46 5.1 47.5 2 0.8 52.6 44 6.8 45.5

AMP-ENR-FLQ-PRM-TET 38 4.2 51.7 0 0.0 52.6 38 5.9 51.3

AMP-COL-ENR-FLO-FLQ-GEN-
PRM-TET-SX-T 37 4.1 55.8 17 6.7 59.3 20 3.1 54.4

AMP-FLO-PRM-TET-SX-T 31 3.4 59.2 10 4.0 63.2 21 3.2 57.6

AMP-ENR-FLO-FLQ-TET-SX-T 29 3.2 62.4 10 4.0 67.2 19 2.9 60.6

AMP-FLO-GEN-PRM-TET-SX-T 28 3.1 65.5 7 2.8 70.0 21 3.2 63.8

AMP-ENR-FLQ-TET-SX-T 26 2.9 68.4 0 0.0 70.0 26 4.0 67.8

AMP-ENR-FLO-FLQ-GEN-TET-
SX-T 22 2.4 70.8 7 2.8 72.7 15 2.3 70.1

AMP-FLO-TET-SX-T 22 2.4 73.3 4 1.6 74.3 18 2.8 72.9

AMP-FLO-TET 15 1.7 74.9 6 2.4 76.7 9 1.4 74.3

AMP-ENR-FLQ-GEN-PRM-TET-
SX-T 15 1.7 76.6 3 1.2 77.9 12 1.8 76.1

AMP-FLO-FLQ-GEN-PRM-TET-
SX-T 15 1.7 78.3 3 1.2 79.1 12 1.8 78.0

AMP-COL-ENR-FLO-FLQ-PRM-
TET-SX-T 13 1.4 79.7 5 2.0 81.0 8 1.2 79.2

AMP-FLO-FLQ-PRM-TET-SX-T 12 1.3 81.0 6 2.4 83.4 6 0.9 80.1

AMP-ENR-FLQ-GEN-PRM-TET 11 1.2 82.3 2 0.8 84.2 9 1.4 81.5

AMP-GEN-PRM-TET-SX-T 11 1.2 83.5 4 1.6 85.8 7 1.1 82.6

Total isolates in reported profiles 753 217 536

Total isolates in other MDR profiles 149 16.5 36 14.2 113 17.4
Total MDR isolates 902 253 649

All through the surveillance period (2017–2022), the proportion of MDR isolates in veal
calves (91.7%) was significantly higher (p < 0.001) than in dairy calves (74.3%). A significant
increase in the proportion of all MDR isolates and in proportion of MDR isolates collected
from dairy calves was observed (all isolates: from 75.8% in 2017 to 83.7% in 2022, p = 0.002;
isolates from dairy calves: from 66.3% in 2017 to 81.1% in 2022, p < 0.001), Figure 1.

In contrast, no significant variation in the proportion of MDR E. coli collected from
veal calves was found between the 2017 and 2022 (from 95.2% in 2017 to 96.6% in 2022;
p = 0.640), Figure 1.
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3.3. MIC50 and MIC90 Values of E. coli Isolated Strains Detected in Dairy and Veal Calves

The MIC values of the nine antimicrobial agents obtained from the examinations of
E. coli isolates are reported in Table 4 and Figure 2.

Table 4. Antimicrobial susceptibility patterns for the 1150 tested Escherichia coli isolates. Ampicillin
(AMP), colistin (COL), enrofloxacin (ENR), florfenicol (FLO), flumequine (FLQ), gentamicin (GEN),
paromomycin (PRM), tetracycline (TET), sulfamethoxazole/trimethoprim (SX-T).

Antimicrobial Animal
Breeding

Dilution Range
(µg/mL)

Minimum MIC
Value (µg/mL)

Maximum MIC
Value (µg/mL) MIC50 (µg/mL) MIC90 (µg/mL)

AMP
veal calves

0.25–32
1 >32 >32 >32

dairy calves ≤0.25 >32 >32 >32
Total ≤0.25 >32 >32 >32

COL
veal calves

0.03125–8
≤0.03125 >8 1 8

dairy calves ≤0.03125 >8 0.50 1
Total ≤0.03125 >8 0.50 2

ENR
veal calves

0.015625–32
≤0.015625 >32 8 >32

dairy calves ≤0.015625 >32 0.50 32
Total ≤0.015625 >32 1 >32

FLO
veal calves

1–64
≤1 >64 >64 >64

dairy calves ≤1 >64 8 >64
Total ≤1 >64 8 >64

FLQ
veal calves

1–32
≤1 >32 32 >32

dairy calves ≤1 >32 8 >32
Total ≤1 >32 16 >32

GEN
veal calves

0.25–32
≤0.25 >32 4 >32

dairy calves ≤0.25 >32 0.50 32
Total ≤0.25 >32 1 >32

PRM
veal calves

1–32
≤1 >32 >32 >32

dairy calves ≤1 >32 >32 >32
Total ≤1 >32 >32 >32

TET
veal calves

0.50–16
≤0.50 >16 >16 >16

dairy calves ≤0.50 >16 >16 >16
Total ≤0.50 >16 >16 >16

SX-T
veal calves

0.0625–16
≤0.0625 >16 >16 >16

dairy calves ≤0.0625 >16 >16 >16
Total ≤0.0625 >16 >16 >16

A classical unimodal distribution of MIC values was observed for AMP. Specifically,
in isolates from dairy calves, 72.5% of the isolates exhibited MIC values surpassing the
highest antibiotic concentration on the plate (32 µg/mL), while this percentage soared to
90.6% for isolates from veal calves. AMP had MIC50 and MIC90 values that exceeded the
highest antimicrobial concentration available on the plate (32 µg/mL).

For COL, the majority of isolates (76.4% in veal calves and 86.3% in dairy calves)
showed MIC values within the middle range of the MIC values distribution (between 0.25
and 1 µg/mL). In isolates collected from veal calves, MIC50 and MIC90 values were notably
separated (1 and 8 µg/mL, respectively); in contrast, in dairy calves these two values were
closely aligned (0.5 and 1 µg/mL) and lower than those observed in veal calves.
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Figure 2. Minimum inhibitory concentration (MIC) distribution (µg/mL) of ampicillin (AMP), col-
istin (COL), enrofloxacin (ENR), florfenicol (FLO), flumequine (FLQ), gentamicin (GEN), paromo-
mycin (PRM), tetracycline (TET), and sulfamethoxazole/trimethoprim (SX-T). The percentage of iso-
lates is present on top of the bars and the antimicrobial concentrations in µg/mL are displayed on 
the horizontal axis of the abscissas. Green bars indicate the concentration that inhibits 50% of the 
isolates (MIC50 values). Black bars indicate the concentration that inhibits 90% of the isolates (MIC90 

Figure 2. Minimum inhibitory concentration (MIC) distribution (µg/mL) of ampicillin (AMP), colistin
(COL), enrofloxacin (ENR), florfenicol (FLO), flumequine (FLQ), gentamicin (GEN), paromomycin
(PRM), tetracycline (TET), and sulfamethoxazole/trimethoprim (SX-T). The percentage of isolates
is present on top of the bars and the antimicrobial concentrations in µg/mL are displayed on the
horizontal axis of the abscissas. Green bars indicate the concentration that inhibits 50% of the isolates
(MIC50 values). Black bars indicate the concentration that inhibits 90% of the isolates (MIC90 values).
White bars indicate the other MIC values. The red line displays the distribution according to CBPs:
isolates to the right of the red line are resistant.
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ENR MIC values displayed a bimodal distribution, particularly pronounced in isolates
from dairy calves, with 35.6% of isolates showing MIC values lower or equal to 0.03 µg/mL,
and 39.9% of isolates showing MIC values greater or equal to 8 µg/mL. The MIC50 and
MIC90 values were, respectively, 8 and >32 µg/mL for veal calves and 0.5 and 32 µg/mL
for dairy calves.

FLO MIC values tended to concentrate at medium-low concentration levels (ranging
from 4 to 16 µg/mL) and showed values exceeding the highest antimicrobial concentration
on the plate (64 µg/mL); this distribution was observed in 40.9% and 53.6% on veal calves
and 66.8% and 30.3% on dairy calves, respectively.

The MIC values of FLQ were characterized by a bimodal distribution, with 37.2% of
isolates from dairy calves showing MIC values ≤ 1 µg/mL and 31.8% with values greater
than 32 µg/mL. In veal calves, these percentages were 21.0% and 44.2%, respectively.

Regarding the GEN MIC values, the distribution was uniform for isolates from veal
calves, with slightly higher percentages of isolates at the two extremes of antimicrobial
concentration. Conversely, in dairy calves, 66.6% of strains had MIC values less than or
equal to 1 µg/mL, while 24.1% had values greater than or equal to 16 µg/mL, indicating
a bimodal distribution. In strains from both animal categories, MIC50 and MIC90 values
showed considerable separation (veal calves: MIC50 = 4 and MIC90 > 32 µg/mL; dairy
calves MIC50 = 0.5 µg/mL and MIC90 = 32 µg/mL).

Regarding PRM, about half of the isolates (61.6% in veal calves and 50.2% in dairy
calves) showed MIC values exceeding the highest antibiotic concentration on the plate
(32 µg/mL). Most of the other values were concentrated at lower dilutions (≤2 µg/mL)
(17.3% and 30.5% in veal and dairy calves, respectively).

TET and SX-T MIC values displayed a similar distribution, with the highest percent-
ages of isolates exhibiting MIC values exceeding the highest concentration of antibiotics
on the plate (16 µg/mL). Specifically, 93.5% of isolates from veal calves and 75.6% from
dairy calves showed TET MIC values exceeding 16 µg/mL. For SX-T, these percentages
were 81.5% and 55.8%, respectively. For both these antimicrobials, the MIC50 and MIC90
values coincided and were greater than 16 µg/mL.

The temporal distributions of mean and median MIC value for each antimicrobial
tested are reported in Figure S1. A significant (p < 0.05) positive correlation was observed
between MIC values and the year of sampling for all antimicrobials examined but COL
and FLQ, for which a significant (p < 0.05) negative correlation was detected.

4. Discussion

This surveillance study aims to estimate the proportion of antimicrobial-resistant
strains and AMR profiles of E. coli in veal and dairy calves in Northeaster Italy, identify po-
tential differences in AMR profiles between the two categories, and assess AMR variations
over time (2017–2022).

To assess AMR, two categorization methods were employed in this research: CBPs
and ECOFFs. CBPs classify MIC values into distinct classes of bacterial susceptibility
based on clinical outcomes of antimicrobial treatment, while ECOFFs are based on the
mathematical analyses of observed MIC distributions to differentiate wild type and non-
wild type isolates. It is important to note that classifications based on ECOFFs are not
immediately related to classifications based on CBPs, because an isolate identified as
non-wild type may still be clinically susceptible [51]. The use of this double assessment
could prove highly beneficial in veterinary medicine for cattle due to the lack of CBPs
for each combination of specie—microorganism—disease, often necessitating laboratories
to adapt CBPs from human or other species. The comparison among CBPs and ECOFFs
highlights that for two antimicrobials, ampicillin and florfenicol, the ECOFFs are greater
than the resistance CBP. This event could induce the misclassification of several wild type
isolates as resistant to these antimicrobials if only the CBP was applied to detect AMR
isolates. It should be underlined that, while an isolate identified as a non-wild type may
still be clinically susceptible, a wild-type isolate should not be classified as resistant because
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it lacks phenotypically detectable acquired resistance mechanisms. Interestingly, while
the CBP for florfenicol has been adapted from Salmonella enterica serotype Cholerasuis
in swine, the one for ampicillin is specific for E. coli in cattle but referred to metritis.
Moreover, only for two antimicrobials, tetracycline and colistin, the resistance BP matched
between CBPs and ECOFFs. These findings underscore that, for AMR assessment in
food-producing animals, the use of ECOFFs is more reliable and should be preferred
over CBPs. Moreover, when assessing the therapeutic outcome of antimicrobial treatment,
antimicrobial susceptibility testing (AST) results using CBPs not specifically designed for
the animal species—microorganism—disease combination should be carefully evaluated
due to possible bias in the interpretation, and compared with the result obtained using
ECOFFs, when available.

This surveillance study examines the relationship between the proportion of resistant
and multidrug-resistant E. coli isolates among the population of calves (dairy or veal) in
a region of Italy with a high density of herds. Appling ECOFFs, the lower percentage of
antimicrobial-resistant E. coli detected was for COL (9.0%), while the three antimicrobials
with the highest proportion of antimicrobial-resistant isolates were TET (80.9%), AMP
(78.3%), and SX-T (66.2%). The use of the harmonized ECOFFs allow for comparison with
data from the European Union (EU) report on AMR in the year 2020–2021 [52]. The average
resistance reported by EU survey in calves for Italy is lower than the one observed in this
study for ampicillin (60.6 vs. 78.3%), gentamicin (11.2 vs. 29.4%), colistin (0 vs. 9%), while
it is nearly comparable for tetracycline (74.7 vs. 80.9%). A possible explanation for this
difference could be attributed to the source of samples: diseased animals in this study
versus healthy animals and meat products in the EU survey. Calves affected by enteritis
show a higher level of resistance compared to healthy ones [53], likely due to the increased
AMU in those herds. The resistance levels observed for ampicillin and tetracycline align
with the results of other studies conducted on diseased cattle in different European Union
countries [53,54]. Furthermore, similar resistance levels were observed in previous surveys
conducted in Italy, suggesting that these antimicrobials have the greatest use in the cattle
sector [34]. This is also confirmed by the data reported in the Italian national recording
system for antimicrobial consumption (ClassyFarm) [55]: in the Veneto region in 2022
aminopenicillins were the second most used antimicrobial in dairy farms, and tetracycline
the most used in veal calves. Although the resistance pattern may vary among countries,
the high resistance to penicillin, tetracycline and sulphonamides was reported in many
different countries both in pathogenic and non-pathogenic isolates of E. coli in the EU and all
over the world [54,56,57]. Our data, along with earlier studies, support the hypothesis that
bacteria of animal origin are commonly resistant to these three antimicrobial classes [50,58].
These results are consistent with the drug consumption reported in the latest ESVAC report
by EMA on sales of veterinary antibiotics between 2010 and 2022. Here, it can be observed
that penicillin, tetracyclines, and sulfonamides were the most commonly used molecules in
Italy in 2022 [8], with a sale for food-producing animals in mg/PCU of 35.6 for tetracyclines,
54.6 for penicillin and 21.8 for sulfonamides.

In a survey on antibiotic usage conducted among farmers and veterinarians for treat-
ing neonatal calf diarrhea in Austria, Belgium, Portugal, and Scotland in 2018, the most
commonly utilized molecules were quinolones, sulfonamides, and penicillin [59]. An
analysis of antibiotic consumption in beef cattle farms in the Veneto region between 2016
and 2019 revealed that the most frequently administered molecules were penicillin (84.4%),
followed by quinolones (66.1%), amphenicols (64.0%), macrolides (57.6%), and tetracyclines
(40.8%) [60]. Moreover, the ClassyFarm data for the Veneto region in 2022, highlighted that
the most used antimicrobials in veal calves were, respectively, tetracyclines, sulfonamides
and aminopenicillins. We can, therefore, find some correspondence, at least regarding
tetracyclines, penicillin and sulfonamides, between the consumption data reported and the
high percentages of resistance expressed by the E. coli isolates detected in this study.

The comparison of ECOFFs with the MIC50 results allows for assessing the level
of E. coli resistances detected in the investigated population concerning the average one
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recorded by the EUCAST ECOFFs. The great differences found between ECOFFs and MIC50
for AMP, TET and SXT are consistent with the other outcomes of the study, underling their
high usage in calves along the time. In veal calves, the MIC50 of ENR was remarkably
higher than the ECOFF (8 µg/mL vs. 0.125 µg/mL), while in dairy calves the difference
was much lower (0.5 µg/mL vs. 0.125 µg/mL). These outcomes highlight the misuse of this
antimicrobial in previous years in veal calves herds and the need to keep strict monitoring
on this antimicrobial by the assessment of the consumption and of the dynamic of the AMR.
For this purpose, the use of routine AST by MIC method could be a useful tool providing
information not only on the percentage of resistant isolates but also on the dynamic of AMR,
by monitoring the distribution of MIC values and testing the temporal trends [51]. COL
MIC50 value showed a completely different scenario compared to the other antimicrobials
tested. The overall MIC50 and those of veal and dairy calves were lower than the ECOFFs.
This outcome is not surprising because acquired resistance by Gram-negative bacteria is
rare for COL [61], as confirmed by the low incidence of AMR recorded for this antimicrobial
in EU [52]. Moreover, the COL ECOFF is obtained by including human and animal isolates,
while ENR ECOFF arises only from animal isolates, because ENR is used only in animals.

In the examination of AMR among various animal types, we observed that veal calves
had a higher proportion of resistant E. coli compared to dairy calves, with consistently
higher proportions of antimicrobial-resistant isolates, except for AMP. This disparity may
be attributed to the transportation process, where young veal calves from different sources
are mixed during transit to fattening farms [62,63]. Although, the use of antimicrobial
drugs is considered the likely source of AMR, the frequent introductions into groups of
young animals from a persistent source as long as the mixing of animal groups that can
expose immunologically naïve individuals to AMR have been indicated among the factors
implicated in the persistence of AMR on farms [6].

The stressful transportation conditions and intensive rearing environments could
heighten veal calves’ susceptibility to infectious diseases, often necessitating antibiotic treat-
ment [35,64]. Notably, common infectious diseases among these animals include neonatal
diarrhea and respiratory syndromes, typically treated with antibiotics, like ampicillin,
amoxicillin, tetracycline, and sulfamethoxazole/trimethoprim, all antibiotics for which
the E. coli isolates detected in this study have demonstrated multi-resistance profiles. In
these situations, a widespread preventive treatment regimen is often administered to all
animals and, as reported in the literature, strains isolated from treated animals exhibit a
greater number of resistances and multi-resistances compared to those from untreated coun-
terparts [5,12]. Moreover, the observed increase in resistance among dairy calves during
our study period (2017–2022) to antibiotics such as gentamicin (GEN), tetracycline (TET),
paromomycin (PRM), and sulfamethoxazole/trimethoprim (SX-T) could be attributed to
their high usage in food-producing animals. These antibiotics are often recommended
as first or second-line treatments for neonatal diarrhea and calf respiratory diseases, as
outlined in the Italian national guidelines for the prudent use of antibiotics in dairy cattle
farming [65]. Regarding the critically important antibiotics (CIAs) analyzed in our study,
colistin (from the polymyxin class) and enrofloxacin (from the fluoroquinolone class), we
did not observe increases in resistance over time, but instead an opposite trend. This
observation is further supported by sales data, which indicate a decline in the use of these
two antibiotic classes from 5.8 mg/PCU in 2017 to 1.3 mg/PCU in 2022 for quinolones and
from 5.2 mg/PCU in 2017 to 0.58 mg/PCU in 2022 for polymyxins [52]. This decline can
be attributed to the policies implemented by the Italian National Plan on Antimicrobial
Resistance (PNCAR 2017–2021), aimed at reducing the use of CIAs in veterinary medicine.

Regarding MDR, the average number of molecules to which the isolates were multi-
resistant was six, and the most prevalent phenotype in both veal and dairy calves was
resistant to AMP-ENR-FLO-FLQ-GEN-PRM-TET-SX-T. These values did not deviate from
the results reported in the literature, showing four as the mean number of drugs for
multidrug resistance, with a median value of five [5]. Comparing the two production
types, the percentage of multidrug-resistant isolates was higher in veal calves compared
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to dairy calves, in all years considered in the study (2017–2022), confirming that E. coli
isolated in beef farms present higher level of AMR. The isolation of a greater number of
multidrug-resistant E. coli in veal calves is most probably because these animals receive
greater antimicrobial treatments than dairy calves. The comparison of the data on antimi-
crobial consumption of the Veneto region in 2022 confirms this hypothesis: in veal calves
farms the average consumption of antimicrobials, expressed as Defined Daily Doses per
Animal (DDDA), was disproportionally higher than that in dairy herds (respectively 35.56
vs. 1.92) [55].

Assessing the temporal trend of multidrug resistance in the Veneto region cattle farms,
a significant increase in the percentage of isolated multidrug-resistant E. coli in dairy calves
was detected: from 66.3% in 2017 to 81.1% in 2022, while in veal calves resistance percentage
was high but remained stable throughout the considered years (from 95.2% in 2017 to 96.6%
in 2022). This could be related to the fitness advantage of resistant strains in young calves
due to their considerable resistance in the external environment and wide adaptation to the
calf gut, which allows their persistence for a long time after withdrawal of antimicrobial
treatment [11]. Moreover, the administration of milk containing antibiotic residues to the
young calves in dairy herds may affect the increase in AMR observed [66]. In a study by
Maynou et al. [67], feeding waste milk was associated with beta-lactam and florfenicol
resistance but not tetracycline or aminoglycoside resistance. Waste milk has also been
identified as a risk factor for ESBL/AmpC-producing E. coli positive calves [68]. Although
quantitative data was and is still lacking on the impact of feeding waste milk to calves, the
European Food Safety Authority carried out a qualitative risk assessment and found that
there was an increased risk that the feeding of waste milk to calves would lead to increased
fecal shedding of antimicrobial-resistant bacteria [69]. Certainly, further investigations are
needed to assess whether this increase of MDR in E. coli could be associated with the use of
waste milk or other farm management practices.

Eventually, we analyzed the main limitations of this study to allow a critical assessment
of the outcomes. The study was performed on a single Italian region over a relatively short
period, so specific conditions, such as the type of breeding, cannot mirror other situations.
For example, the intensive farming system of veal calves is barely comparable to different
kinds of beef breeding, which could affect the AMR level present. Despite the relatively
high number of herds included in the study, a potential bias could arise from adopting
routine diagnostic ASTs because necroscopy service is required mainly by farms facing
mortality problems in calves, which could affect the representativeness. Moreover, the
antimicrobials tested were limited to drugs used for cattle therapy without including
antimicrobial markers for detection of specific resistance patterns, such as, for example,
cefotaxime, which detect the production of Extended Spectrum Beta-Lactamase (ESBL).

5. Conclusions

This study highlighted the value of routine ASTs as a tool for the surveillance of AMR
in farm animals. The assessment of these data could provide a useful basis for implement-
ing guidelines or establishing recommendations for the responsible and prudent use of
antimicrobials at the farm level. Our findings showed a high proportion of antimicrobial-
resistant strains for many antimicrobials, including some CIAs, such as quinolones. The
study demonstrated a higher level of AMR in veal than dairy calves, probably due to
greater antimicrobial treatments in this farming system. Despite the reduction of AMU
that occurred in the last five years in Italy, the increase of AMR over time in dairy calves,
highlights the need to maintain long-term programs of AMU reduction to task the goal of
reducing the AMR level in cattle farms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani14101429/s1, Figure S1: Temporal distribution of the minimum
inhibitory concentration values (MIC, µg/mL) of ampicillin (AMP), colistin (COL), enrofloxacin
(ENR), florfenicol (FLO), flumequine (FLQ), gentamicin (GEN), paromomycin (PRM), tetracycline
(TET), and sulfamethoxazole/trimethoprim (SX-T).
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