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Simple Summary: In this paper, a three-round nested PCR assay with high specificity and sensitivity
(2.62 copies/reaction), employing the Pseudomonas plecoglossicida sctU gene, was established. The
detection system was used to detect large yellow croaker samples in the Zhejiang and Fujian areas.
It was found that March and April were the peak times of visceral white nodules disease, which
was inversely related to temperature. Using this detection method, early detection of visceral white
nodules disease in large yellow croakers could be realized.

Abstract: The visceral white nodules disease in the internal organs of Larimichthys crocea has caused
significant harm in the aquaculture of this species, with Pseudomonas plecoglossicida considered
one of the core pathogens causing this disease. In this study, we designed three pairs of specific
nested PCR primers targeting the sctU gene of P. plecoglossicida, a crucial component of the Type III
secretion system (T3SS), which is instrumental in bacterial pathogenesis and virulence. Through
the optimization of PCR reaction conditions, specificity testing, and sensitivity determination, a
method was established for the accurate detection of P. plecoglossicida. This method yielded single
amplification products, exhibited a false positive rate of zero for reference bacteria, and achieved
a detection sensitivity of a minimum of 2.62 copies/reaction for the target sequence. Using the
detection method, we conducted analyses on the diseased populations of L. crocea, involving a total
of 64 screened fishes along the southeast coast of China from 2021 to 2023. The results revealed that
the infection rate of P. plecoglossicida in diseased L. crocea exceeded over 90% in March and April,
while in other months, the maximum recorded infection rate was merely 10%. The detection method
developed in this study shows potential for early warning and routine monitoring of visceral white
nodules disease in the internal organs of species such as L. crocea.

Keywords: Pseudomonas plecoglossicida; nested PCR; visceral white nodules disease; Larimichthys
crocea

1. Introduction

The large yellow croaker (Larimichthys crocea), a renowned marine economic fish
species in China, is highly esteemed for its organoleptic properties and abundant nutri-
tional content [1]. Following significant advancements in L. crocea breeding techniques [2],
rapid growth has been observed in the aquaculture industry of this species, particularly
in Zhejiang, Fujian, and Guangdong, its primary cultivation regions. In recent years, as
the farming scale has expanded, the aquaculture environment has gradually deteriorated,
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leading to frequent disease outbreaks among large yellow croakers reared in high-density
cages. These diseases continue to have a profound impact on the growth, metabolism,
digestion, and immune system of the fish [3,4]. One of the most devastating bacterial dis-
eases affecting large yellow croakers is visceral white nodule disease (VWND). This chronic
infectious disease is characterized by the appearance of numerous white nodules, ranging
from 1 mm to 2 mm, in organs such as the spleen and kidney, accompanied by intestinal
inflammation [5]. The high incidence and infectivity of this disease pose a significant threat
to L. crocea populations [6]. Pseudomonas plecoglossicida has been identified as one of the
primary pathogens responsible for causing VWND in large yellow croakers [6–8]. It is
crucial to understand the pathogenesis and develop effective control strategies for this
bacterium in order to safeguard the health and sustainability of L. crocea aquaculture.

Currently, the development of an effective treatment or prophylactic drug for VWND
remains elusive, with significant delays [9]. The early detection of the disease is challenging,
significantly compromising the effectiveness of treatments administered after the appear-
ance of white nodules on the internal organs. Studies have proposed that antibiotics can
be used to treat VWND [10,11], but it was found that the treatment effect is not good in
practical application. At the same time, the abuse of antibiotics will not only cause drug
resistance in bacteria but also cause great damage to the marine environment. Sun [12]
has screened two sensitive drugs of P. plecoglossicida from large yellow croakers for early
intervention in VWND. This strategy highlights the significance of quickly beginning phar-
macological interventions as soon as P. plecoglossicida infection is detected in fish, which has
been shown to provide substantial therapeutic advantages. This underscores the crucial
significance of early monitoring in the management of VWND in large yellow croakers.

Studies have found that the predominant pathogen causing VWND in large yellow
croakers is P. plecoglossicida [13,14]. As an opportunistic pathogen, the infection in fish is
intricately linked to temperature [15,16]. P. plecoglossicida notably encodes both the type
III (T3SS) and type VI secretion systems (T6SS) [17,18], which are key protein secretion
mechanisms common among Gram-negative pathogenic bacteria. These systems serve
as crucial avenues for bacterial virulence factors to exert their deleterious effects [19].
Several scholars have found that T3SS can provide a channel for Gram-negative bacteria to
directly secrete and inject effector proteins into the cytoplasm of host cells to exert virulence
functions [20,21]. The sctU gene encodes a critical component of the Type III secretion
system (T3SS). The protein synthesized by this gene plays a pivotal role in forming the
export apparatus of the T3SS. Additionally, Kuhlen et al. [22] have identified the export
gate as a crucial element in the secretion channel. Nested PCR (Nested Polymerase Chain
Reaction) is a gene amplification technology in vitro established by Mullis and Faloona [23]
in 1987 on the basis of conventional PCR. This method utilizes two sets of primers: an
outer primer and an inner primer. To enhance the detection of P. plecoglossicida in low-
concentration samples, we employed a triple-nested PCR method known for its high
sensitivity and specificity compared to conventional PCR methods. Nested PCR can be
used to identify the positive samples, specifically when the content of the template DNA is
very low [24].

In this study, based on the sequence of the sctU gene in the complete genome of P.
plecoglossicida in NCBI, three pairs of specific nested PCR primers were designed, adhering
to the principles of high intraspecies conservation and interspecies specificity. We aim
to develop an efficient, sensitive, and accurate nested PCR detection technique that will
provide essential technical support for monitoring.

2. Materials and Methods
2.1. Strains Tested

The P. plecoglossicida XSDHY-P (CP031146) was provided by the Disease Control Labo-
ratory, College of Fisheries, Zhejiang Ocean University. Pseudomonas putida (BNCC192818),
Pseudomonas fluorescens (BNCC336632), Pseudomonas aeruginosa (BNCC125486), Aeromonas
hydrophila (BNCC337115), Vibrio parahaemolyticus (BNCC333072), Vibrio harveyi (BNCC336937),



Animals 2024, 14, 1427 3 of 11

Vibrio alginolyticus (BNCC337013), Vibrio fluvialis (BNCC337051), and Vibrio vulnificus
(BNCC186281) were purchased from the BeNa Culture Collection (Kunshan, China).

2.2. Experimental Methods
2.2.1. Bacterial Activation Culture and DNA Extraction

After the lyophilized bacterial powder was completely dissolved, 200 µL bacterial
suspension was aspirated and evenly spread onto the plate. All strains were incubated
at 220 rpm/min for 16 h at constant temperature. Except for P. plecoglossicida and V.
parahaemolyticus, which were cultured at 37 ◦C, the cultivation temperature of the other
bacteria was 30 ◦C. Subsequently, single colonies that had been cultured overnight were
selected and propagated in a liquid medium. After the completion of the expansion culture,
bacterial DNA was extracted using two methods: the boiling water bath method [25] and
the improved salting-out method [26]. The extracted DNA was then stored at −20 ◦C.

2.2.2. Pathological Observation

Diseased large yellow croakers for pathological analysis were collected from marine
culture cages in Ningde, Fujian Province. These fish measured 32 ± 4 cm in length,
9 ± 1 cm in width, and weighed 400 ± 80 g. While most exhibited no external wounds,
some displayed surface ulcers. We used optical microscopy to detect internal and external
parasites. The diseased tissue, dissected on site, was sectioned into 1 cm3 pieces, preserved
in 4% paraformaldehyde, and processed into pathological sections after 24 h of soaking.

2.2.3. Primer Design and Synthesis

For the detection of P. plecoglossicida, we utilized a triple-nested PCR approach. Initially,
the outer primers are combined with the template DNA to perform the first round of
amplification. Subsequent rounds utilize progressively internal primers, enhancing the
amplification specificity and yielding a high concentration of target DNA from the minimal
starting material. This method substantially increases detection accuracy, offering about a
100-fold improvement over traditional PCR techniques. Based on the sctU gene in the full-
length sequence of P. plecoglossicida XSDHY-P (CP031146) in GenBank, specific sites were
identified through MEGA alignment, and three pairs of nested primers were subsequently
designed and synthesized by Qingke Biological Company (Shanghai, China). The details
are shown in Table 1.

Table 1. Primer sequences and product length.

Primer Name Sequence (5′–3′) Expected Product Length (bp)

P.ple-sctU-O OF CGCTACTCACTGGCTACA
795OR CGACGCCTTCTTCTTCC

P.ple-sctU-M MF CAGATGTTGCTGCTGTGC
326MR ACCAATGCCTGCTCGTT

P.ple-sctU-I IF AACGAAGGTAGCCCACA
133IR GATGCCCACGGCAATAT

O: Outer, M: Middle, I: Inner.

2.2.4. Construction of Nested PCR System

The distinct annealing temperatures for the amplification primers were set at 50 ◦C,
52 ◦C, 54 ◦C, 56 ◦C, and 58 ◦C, with the extension time established at 90 s based on the
predicted product length. The reaction program for the first round of amplification included
pre-denaturation at 94 ◦C for 4 min, denaturation at 94 ◦C for 30 s, annealing at 52 ◦C for
30 s, extension at 72 ◦C for 1 min, followed by 30 cycles, and a final extension at 72 ◦C
for 5 min. In the second round of amplification, products of the first round were used
as templates, and the reaction program consisted of pre-denaturation at 94 ◦C for 4 min,
denaturation at 94 ◦C for 30 s, annealing at 54 ◦C for 30 s, extension at 72 ◦C for 30 s,
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30 cycles, and a final extension at 72 ◦C for 5 min. The third round of amplification used
the products of the second round of amplification as templates, with a reaction program of
pre-denaturation at 94 ◦C for 4 min, denaturation at 94 ◦C for 30 s, annealing at 52 ◦C for
30 s, extension at 72 ◦C for 30 s, 30 cycles, and a final extension at 72 ◦C for 5 min. PCR
products were examined by electrophoresis on a 1% agarose gel after the third round of
PCR amplification.

2.2.5. Tests of Specificity

According to the nested PCR reaction steps constructed in this study, P. plecoglossicida, P.
putida, P. fluorescens, P. aeruginosa, A. hydrophila, V. parahaemolyticus, V. harveyi, V. alginolyticus,
V. fluvialis, and V. vulnificus were simultaneously amplified and detected, and the specificity
of the nested PCR method was evaluated.

2.2.6. Detection of Sensitivity

The original DNA concentration of P. plecoglossicida was determined using NanoDrop
2000, and the copy number of the plasmid was calculated according to the following for-
mula: N = (C × NA)/M. The DNA of P. plecoglossicida was diluted by a 10−1–10−10 dilution
gradient and then amplified according to the nested PCR system, and the sensitivity of the
nested PCR method was evaluated.

2.2.7. Construction of Positive Control Plasmids

The P.ple-sctU-O group primers were used to amplify the template, and the PCR products
were analyzed by electrophoresis on a 1% agarose gel. Subsequently, the purified PCR
fragments were ligated into the pMD19-T vector and transformed into DH5α competent
cells. The transformed competent cells were then plated onto LB solid medium containing
ampicillin, X-Gel, and IPTG and incubated for 12 h at 37 ◦C to facilitate blue–white colony
screening. Single white colonies were picked and cultured in a 5 mL LB liquid medium for
expansion, and plasmids were extracted using a plasmid extraction kit after overnight culture.

2.2.8. Sample Collection and DNA Extraction of Large Yellow Croaker

From September 2021 to May 2023, a total of 64 large yellow croakers were collected
from Zhoushan, Ningde, and Ningbo City. The muscle, surface mucus, gills, spleen, and
kidneys were dissected on the spot and stored in sterile tubes at −80 ◦C. The tissue samples
and surface mucus DNA of a large yellow croaker were extracted by the salting out method
for subsequent sample detection experiments. A total of 192 samples were collected, of
which 164 samples were successfully extracted with DNA, with a success rate of 85.4%,
and the detailed information is shown in Table 2.

Table 2. Detailed information on sampling of L. crocea samples.

Sampling Date Sampling Location
Types and Quantities of Samples

Surface Mucus Tissues Total

September 2021 Zhoushan, Zhejiang 4 10 14

July–August 2022 Ningde, Fujian 4 4 8
Zhoushan, Zhejiang 5 5 10

March–May 2023
Ningde, Fujian 20 70 90

Ningbo, Zhejiang 4 15 19
Ningde, Fujian 8 15 23

Total 47 117 164

3. Results
3.1. Observation of Visceral White Nodules Disease in Large Yellow Croaker

There were no wounds on the body surface of the diseased large yellow croakers, and
a large number of white nodules were found in the spleen and kidney of the diseased fish.
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Additionally, some diseased large yellow croakers exhibited enlarged livers and abdominal
fluid accumulation. To further investigate these pathological changes, the spleen and
kidneys of these diseased fish were paraffin-embedded and analyzed using HE staining.
Figure 1A shows the HE-staining pathological section of the kidney. Figure 1A—(1) is
the healthy large yellow croaker kidney; in Figure 1A—(2), the glomeruli were disinte-
grated, and the lumen of the renal tubules was occluded and deformed. The pathological
section highlighted by the arrow demonstrates significant white blood cell infiltration
(Figure 1A—(3)), which indicates the presence of inflammation. In Figure 1A—(4), the
bacteria were surrounded by tissue and appeared as pathological nodules, which were
the macroscopic white dots. Figure 1B shows the HE staining pathological section of
the spleen, and Figure 1B—(1) shows the healthy large yellow croaker spleen tissue. In
Figure 1B—(2), the splenic parenchymal cells exhibit blurred boundaries and numerous
vacuoles. Figure 1B—(3) reveals the presence of pathological nodules, corresponding to
the visible “white nodules” along with tissue amyloidosis. The presence of neutrophil
infiltration in Figure 1B—(4) indicates the presence of inflammation.
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Figure 1. Pathological changes in the spleen and kidney tissues of diseased fish. (A) Pathological
changes in the kidney tissues of diseased L. crocea. (1) Healthy kidney of yellow croaker; (2) Glomeru-
lar disintegration, tubular lumen obstruction; (3) White blood cell infiltration at the arrowhead;
(4) The visible “white nodules” at the arrowhead. (B) Pathological changes in the spleen tissues of
diseased L. crocea. (1) Healthy spleen of yellow croaker; (2) Blurred boundaries of splenic parenchymal
cells, vacuolization; (3) Spleen nodule; (4) Neutrophil infiltration at the arrowhead.

3.2. Tests of Specificity

According to the established reaction conditions, all strains and the negative control
group were subjected to amplification and detection. The results showed that only P.
plecoglossicida yielded bands in three rounds of amplification, while other groups tested
negative, demonstrating good specificity (Figure 2).
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Figure 2. Specificity testing. M: DL 2000 DNA Marker, 1–11: P. plecoglossicida DNA, P. putida DNA, P.
aeruginosa DNA, P. fluorescens DNA, A. hydrophila DNA, V. harveyi DNA, V. parahaemolyticus DNA, V.
alginolyticus DNA, V. fluvialis DNA, V. vulnificus DNA, and ddH2O.

3.3. Detection of Sensitivity

The initial concentration of P.ple-sctU-O positive recombinant plasmid was established
at 100 ng/µL, corresponding to a copy number of 2.62 × 1010 copies/reaction. It was
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observed that no distinct bands were visible when the template concentration was reduced
to 1 × 10−4 ng/µL (2.62 × 104 copies/reaction) following outer amplification and to
5 × 10−8 ng/µL (13.1 copies/reaction) after middle amplification. However, distinct bands
remained visible following inner amplification, even when the template concentration was
as low as 1 × 10−9 ng/µL (2.62 copies/reaction), indicating that the minimum detectable
copy number of the constructed P.ple-sctU detection system was 2.62 copies/reaction
(Figure 3).

Animals 2024, 14, x FOR PEER REVIEW 6 of 11 
 

3.2. Tests of Specificity 

According to the established reaction conditions, all strains and the negative control 

group were subjected to amplification and detection. The results showed that only P. pleco-

glossicida yielded bands in three rounds of amplification, while other groups tested nega-

tive, demonstrating good specificity (Figure 2). 

 

Figure 2. Specificity testing. M: DL 2000 DNA Marker, 1–11: P. plecoglossicida DNA, P. putida DNA, 

P. aeruginosa DNA, P. fluorescens DNA, A. hydrophila DNA, V. harveyi DNA, V. parahaemolyticus DNA, 

V. alginolyticus DNA, V. fluvialis DNA, V. vulnificus DNA, and ddH2O. 

3.3. Detection of Sensitivity 

The initial concentration of P.ple-sctU-O positive recombinant plasmid was estab-

lished at 100 ng/μL, corresponding to a copy number of 2.62 × 1010 copies/reaction. It was 

observed that no distinct bands were visible when the template concentration was re-

duced to 1 × 10−4 ng/μL (2.62 × 104 copies/reaction) following outer amplification and to 5 

× 10−8 ng/μL (13.1 copies/reaction) after middle amplification. However, distinct bands re-

mained visible following inner amplification, even when the template concentration was 

as low as 1 × 10−9 ng/μL (2.62 copies/reaction), indicating that the minimum detectable 

copy number of the constructed P.ple-sctU detection system was 2.62 copies/reaction (Fig-

ure 3). 

 

Figure 3. Sensitivity testing. M: DL 2000 DNA Marker, 1~15: DNA content per reaction, 1: 2.62 × 1010 

copies, 2: 2.62 × 109 copies, 3: 2.62 × 108 copies, 4: 2.62 × 107 copies, 5: 2.62 × 106 copies, 6: 2.62 × 105 

copies, 7: 2.62 × 104 copies, 8: 2.62 × 103 copies, 9: 2.62 × 102 copies, 10: 26.2 copies, 11: 13.1 copies, 12: 

6.55 copies, 13: 3.28 copies, 14: 2.62 copies, 15: 1.31 copies. 

3.4. Detection of Samples 

All the collected large yellow croaker samples were detected by the successfully con-

structed nested PCR-specific primers of P. plecoglossicida, and the results are shown in Table 3. 

In the samples tested, a single positive detection was recorded for Zhoushan in 2021, with 

a detection rate of 7.1%. Similarly, for Zhoushan in 2022, one sample tested positive, re-

sulting in a detection rate of 10%. In contrast, no samples from Ningde in 2022 tested 

Figure 3. Sensitivity testing. M: DL 2000 DNA Marker, 1~15: DNA content per reaction, 1:
2.62 × 1010 copies, 2: 2.62 × 109 copies, 3: 2.62 × 108 copies, 4: 2.62 × 107 copies, 5: 2.62 × 106 copies,
6: 2.62 × 105 copies, 7: 2.62 × 104 copies, 8: 2.62 × 103 copies, 9: 2.62 × 102 copies, 10: 26.2 copies, 11:
13.1 copies, 12: 6.55 copies, 13: 3.28 copies, 14: 2.62 copies, 15: 1.31 copies.

3.4. Detection of Samples

All the collected large yellow croaker samples were detected by the successfully
constructed nested PCR-specific primers of P. plecoglossicida, and the results are shown in
Table 3. In the samples tested, a single positive detection was recorded for Zhoushan in
2021, with a detection rate of 7.1%. Similarly, for Zhoushan in 2022, one sample tested
positive, resulting in a detection rate of 10%. In contrast, no samples from Ningde in 2022
tested positive. The positive rates of 2023 in Ningde, Ningbo, and Zhoushan were 94.4%,
84.2%, and 13%, respectively.

Table 3. Positive rates of P. plecoglossicida in large yellow croaker samples.

Sample Group
Surface Mucus Tissues

Positive Rate in Total
Detections Positive Rate Detections Positive Rate

September 2021 Zhoushan 0 0 1 10% 7.1%
July 2022 Ningde 0 0 0 0 0

August 2022 Zhoushan 0 0 1 20% 10%
March 2023 Ningde 17 85% 68 97.1% 94.4%
April 2023 Ningbo 3 75% 13 86.7% 84.2%

May 2023 Zhoushan 1 12.5% 2 13.3% 13.0%
Total 21 44.7% 85 72.6% 64.6%

According to the monthly variation, positive rates in May, August, and September were
observed to be less than 10%, while those in March and April approached 90%. Literature
reviews and statements from local fishermen indicate that the onset months for VWND
range from December to April, with March and April being periods of high incidence.
The detection results of the P. plecoglossicida nested PCR detection method constructed
in this study are consistent with the known outbreak months of VWND. As shown in
Figure 4, it is evident that there is an inverse relationship between temperature and the
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positive rate of the samples. The observed positive rates, derived from the incidence data
at various monitoring stations in Fujian Province collected by Chen from 2017 to 2018 [27],
follow a similar trend but with some prolongation. This prolongation may be attributed to
errors caused by the small sample sizes in August and September. Spearman correlation
analysis confirmed a significant negative correlation between temperature and positive
rate (r = −0.829, p < 0.05).
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The detection of different types of large yellow croaker samples during the high-onset
period is shown in Figure 5. Among these, the spleen and kidney samples displayed the
highest positive rates, reaching 100%. In comparison, the positive rate for gill samples was
the lowest, at 85.7%. The muscle tissue samples and mucus samples exhibited positive
rates of 94.4% and 92.6%, respectively.
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4. Discussion

With the expansion of large yellow croaker aquaculture, various diseases have increas-
ingly restricted the development of this industry, particularly bacterial diseases, which
have incurred substantial economic losses. VWND, often undetectable in its early stages,
results in high mortality rates following an outbreak. Once nodules develop in large yellow
croakers, the effectiveness of drug treatments significantly diminishes [12]. Therefore,
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early prevention and detection have become crucial, and the importance of utilizing highly
sensitive and specific pathogen detection technologies for early warning of VWND is
increasingly recognized.

By optimizing the PCR reaction conditions, including the optimal annealing tempera-
ture, extension time, and the amounts of template and primer added, optimal PCR reaction
conditions were established. In the specificity tests, which included nine other bacteria as
the control group, it was determined that only P. plecoglossicida could amplify a single band
with the correct length. The positive control plasmid was prepared using the amplified
product of P.ple-sctU-O as the template, and a dilution gradient from 1 to 1010 was set for
the sensitivity test. The results showed that after three rounds of nested PCR amplification,
the minimum detectable copy number reached 2.62 copies/reaction, which was 104 times
more sensitive than a standard PCR reaction.

Zhou et al. established a P. plecoglossicida SYBR GreenI fluorescence quantitative PCR
detection method based on the rpoD gene of P. plecoglossicida [28], achieving a sensitivity of
up to 1.9 × 103 copies/reaction. Based on the gyrB gene of P. plecoglossicida, Cui et al. [29]
employed real-time fluorescent PCR (qRT-PCR) to detect the concentration of pathogenic
bacteria in a juvenile large yellow croaker artificially infected with P. plecoglossicida. Li
et al. [30] constructed a multiplex PCR detection method with a sensitivity of 4 ng/µL.
Ding [31] designed a loop-mediated isothermal amplification technology based on the
gyrB gene of P. plecoglossicida and established a real-time fluorescent LAMP method and a
loop-mediated isothermal amplification combined with a lateral flow test strip for rapid
detection of P. plecoglossicida. Mao et al. [32] reported a rapid detection of P. putida based
on the rpoN gene, noting that the assay’s sensitivity of 4.8 cfu/reaction was 10 times
higher than that of conventional PCR. At present, a variety of detection methods have
been developed, each offering different advantages. However, due to the low content of
bacteria in the early stages of the disease, it is particularly important to construct a detection
method with high specificity and sensitivity. Izumi et al. [33] designed PCR primers based
on the gyrB gene of P. plecoglossicida, achieving a detection limit of 0.86 CFU. This study
confirmed that the nested PCR technology based on the gyrB sequence could be utilized
for the diagnosis of BHA. Various simple detection methods have been established in the
studies mentioned above, some of which allow for direct visual judgment. However, the
nested PCR detection method constructed in this study offers extremely high sensitivity
and provides a sufficiently sensitive method for early detection.

Meanwhile, to evaluate the practical application of the nested PCR detection system
developed in this study, pathogenic samples of large yellow croaker were collected and
analyzed from Zhoushan and Xiangshan in Zhejiang Province and Ningde in Fujian
Province during 2021–2023. The results showed that the detection rates of the samples
from Zhoushan in September 2021 and August 2022 were 7.1% and 10%, respectively. The
detection rate was 0 in Ningde in July 2022, and in 2023, the detection rates were 94.4%,
84.2%, and 13% in Ningde, Ningbo, and Zhoushan, respectively. According to the results, a
strong correlation was found between the detection rate of large yellow croaker samples
and specific months. The detection rate of VWND in March and April was about 90%, while
in other months, it was less than 10%, corroborating the results of Li et al. [5]. These results
indicate that the developed detection system is not only reliable in practical applications
but also easy to operate. It is anticipated that this system could be utilized for early warning
and routine detection of VWND in cultured species such as large yellow croakers.

At the same time, the detection results of large yellow croaker samples from various
microbial sources during the epidemic period from March to April were analyzed. It
was found that gill tissue exhibited the lowest detection rate, followed by mucus and
muscle tissue. Wakabayashi [34] used q-PCR technology to investigate the distribution
of P. plecoglossicida in fish tissues. According to his study, skin and gills were identified
as the initial points for bacterial invasion, with bacteria enriching in the liver, spleen, and
kidney within 6 h post-infection. This observation explains why the detection rate using
gill tissue is the lowest. The most plausible explanation is that most of the collected large



Animals 2024, 14, 1427 9 of 11

yellow croaker samples were in the late stages of the disease, whereas the gills, serving as
the primary entry points for bacterial invasion, contained higher bacterial content in the
early stages, which decreased after the bacteria spread internally during the later stages.
Huang et al. [35] used dual RNA-seq technology to dynamically monitor gene expression
changes between bacterial pathogens and their hosts, discovering that P. plecoglossicida
significantly accumulated in the spleen 48 h post-infection. It was found that the highest
detection rates were obtained from two microbial enrichment areas, the spleen and kidney,
achieving a positive rate of 100%. Among the five types of large yellow croaker samples,
mucus samples are the most recommended. Firstly, mucus samples can be collected simply
and with less difficulty compared to other samples. Second, these samples do not affect the
normal growth of large yellow croakers, causing the least bodily harm. Finally, due to their
high accuracy and sensitivity, mucus samples have proven most practical for use in field
applications.

5. Conclusions

In this study, a highly sensitive and specific nested PCR detection system was es-
tablished for detecting visceral white nodule disease in large yellow croakers caused by
P. plecoglossicida. A triple-nested PCR system was designed based on the sctU gene of P.
plecoglossicida XSDHY-P (NZ_CP031143.1) from GenBank. With the exception of P. plecoglos-
sicida, no target bands could be amplified by other control bacteria, and the minimum
detection limit was established at 1 × 10−9 ng/µL (2.62 copies/reaction). During the
epidemiological survey of large yellow croakers from 2021 to 2023, it was found that the
positive rate of P. plecoglossicida in all samples was 64.6%. The results showed that March
and April were the periods of high incidence for large yellow croaker, inversely related to
temperature. At the same time, the advantages and disadvantages of different samples
for detection were compared, and mucus samples were considered to have the highest
practical application value.

6. Patents

The pathogen detection method constructed in this study has applied for a Chinese
invention patent (application number: 202410272186.X).
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