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Simple Summary: Pullorum disease (PD), caused by Salmonella enterica serovar Pullorum (S. Pul-
lorum), is the most consequential poultry disease in countries with a developing poultry industry,
which poses a considerable economic burden on the poultry industry. Antimicrobial peptides are
key components of the innate immune system and are next-generation antibiotic agents with broad
antimicrobial spectrum, low resistance, and low cytotoxicity. The aim of the present study was to
generate a recombinant antimicrobial peptide, OaBac5mini, and explore its efficacy on PD. In this
study, 1-day-old chicks were orally challenged with S. Pullorum to establish PD models. S. Pullorum
markedly increased the organ indexes of the heart, liver, spleen, and kidney; induced histopathologi-
cal changes in multiple organs; and impaired the innate immunity through the TLR4/MyD88/NF-κB
pathway. Recombinant OaBac5mini was generated by an Escherichia coli recombinant expression
system and exhibited strong antibacterial activity in S. Pullorum-challenged chicks. It decreased the
organ bacterial loads in the liver and spleen, ameliorated the organ indexes and histopathological
changes of chicks with PD, and reduced the expression of pro-inflammatory cytokines by modulating
the innate immunity through the TLR4/MyD88/NF-κB pathway. These findings reveal the in vivo
antibacterial activity of recombinant OaBac5mini against S. Pullorum and demonstrate its therapeutic
potential as an antibiotic agent for PD.

Abstract: Pullorum disease (PD), caused by Salmonella Pullorum (S. Pullorum), is a serious threat to
the poultry industry worldwide. Antimicrobial peptides (AMPs) have drawn extensive attention as
new-generation antibiotics because of their broad antimicrobial spectrum, low resistance, and low
cytotoxicity. AMP OaBac5mini exhibits strong antibacterial activity against Gram-negative bacteria,
but its efficacy and anti-inflammatory effects on chicks with PD remain unclear. The aim of this study
was to generate recombinant OaBac5mini via the Escherichia coli (E. coli) recombinant expression
system and evaluate its antibacterial effect against S. Pullorum in vitro and in vivo. Real-time cellular
analysis (RTCA) results showed that recombinant OaBac5mini exhibited no cytotoxicity on IPEC-J2
and RAW 264.7 cells and significantly alleviated the drop in the cell index of S. Pullorum-infected cells
(p < 0.0001). In the chick model of PD, recombinant OaBac5mini significantly attenuated the increase
in organ indexes (heart, liver, spleen, and kidney) and bacterial loads (liver and spleen) induced
by S. Pullorum. Histopathology examination showed that recombinant OaBac5mini ameliorated
histopathological changes and inflammation in chicks with PD, including impaired epithelium of
duodenal villi, infiltration of pseudoacidophilic granulocytes in the cecum and bursa of Fabricius,
congested blood clots and increased macrophages in the liver, and increased lymphoid nodule and B
lymphocytes in the spleen. Western blot and quantitative real-time PCR (qRT-PCR) results indicated
that recombinant OaBac5mini alleviated inflammation by modulating innate immunity through the
TLR4/MyD88/NF-κB pathway and by suppressing the expression of pro-inflammatory cytokines.
These results suggested that recombinant OaBac5mini has good potential as a clinical substitute for
antibiotics in PD intervention.
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1. Introduction

Pullorum disease (PD) is caused by the serotype Salmonella enterica serovar Pullorum
(S. Pullorum) and is one of the most important poultry diseases listed by the World Organi-
zation for Animal Health as it creates considerable economic burden in the poultry industry;
it is most common in countries with developing poultry industries [1–3]. S. Pullorum is a
serious threat to the poultry industry as it contributes to the high mortality rate of embryos
and chicks [4] and is spread both vertically through the reproductive tract and horizontally
from contaminated environments [5]. Most adult chickens infected with Salmonella are
usually recessive in the absence of clinical signs and symptoms, but the pathogens can exist
in the intestine, ovary, and eggshell surface [6], which might cause foodborne or zoonotic
diseases [7].

The widespread attention to foodborne and zoonotic diseases is due to the increas-
ing spread of resistant or multiresistant Salmonella strains resulting from the antibiotics
used in the livestock industry [8,9]. Antibiotics used as feed supplements for growth
enhancement in livestock were banned by the European Union Commission, U.S. Food
and Drug Administration, and China in 2006, 2017, and 2020, respectively, to reduce the
increasing risk of resistance development [10,11]. A potent alternative—antimicrobial
peptides (AMPs), which are key components of the innate immune system—has drawn
extensive attention because of its broad antimicrobial spectrum, low cytotoxicity, and low
antimicrobial resistance brought by its unique bactericidal mechanism [12]. Cathelicidins
are one of the most characterized AMP families; they exhibit strong antibacterial activity
against Gram-negative bacteria with remarkably low cytotoxicity [13]. Bac5 is the first
characterized member of cathelicidins; it has been identified in cattle, sheep, and goats [14].
OaBac5 is a Bac5 homolog derived from sheep neutrophils and is a linear proline-rich
antibacterial peptide (PrAMP) with 51 residues [15]. Its truncated fragment, OaBac5mini,
is a linear PrAMP consisting of 24 residues with eight net positive charges [16] that exhibits
strong antibacterial activity against S. enterica serovar Typhimurium in vitro (minimum
inhibitory concentration is 0.5 µg/mL) [17]. However, the antibacterial activities and
mechanisms of OaBac5mini and its recombinant protein products against S. Pullorum
in vivo remain unclear. Recombinant expression is the most efficient method for large-scale
peptide production, offering substantial amounts of highly purified peptides to support
both basic research and clinical trials [18]. In this study, we produced a fusion protein
consisting of OaBac5mini and interferon (IFN) using a recombinant protein expression
system in Escherichia coli (E. coli), which is the most commonly used host. This approach
minimized toxicity to E. coli and allowed us to investigate the therapeutic potential of the
fusion protein for PD, providing new insights for the production of recombinant AMPs
and the development of PD treatment strategies.

2. Materials and Methods
2.1. Recombinant Expression of IFN_OaBac5mini

The recombinant expression vector pET-32a::IFN_OaBac5mini was designed as shown
in Figure S1. In brief, IFN_OaBac5mini fragments containing an enterokinase site were
amplified by three-step polymerase chain reaction (PCR) with PrimeSTAR Max Premix
(TaKaRa, Kyoto, Japan). For the first step of PCR, pET28a-SUMO::IFN + PG plasmid
was used as the template, and OaBacR1 containing restriction endonuclease sites was
used as the primer (Forward: 5′-CCAGAGGTCAAGCCAGAAGT-3′ and Reverse: 5′-
CGGCGGACGACGAATCGGCGGACGAAACCTCTTGTCGTCGTCGTCGCCT-3′). The
PCR products were purified using E.Z.N.A® Gel Extraction Kit (Omega, Norcross, GA,
USA) and used as the template for the second step of PCR with the following primers:
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OaBacR2 (Forward: 5′-CCAGAGGTCAAGCCAGAAGT-3′ and Reverse: 5′-CGAAACGG
AGGACGAAAAGGCGGACGAATCGGCGGACGACGAATCGGCGG-3′). The final PCR
step was performed using the gel-purified PCR products from the second step of PCR with
the following primers: OaBacR3 (Forward: 5′-CCAGAGGTCAAGCCAGAAGT-3′ and Re-
verse: 5′-TTCTCGAGTTAGCGCACCGGCGGGCGAAACGGAGGACGAAAAG-3′). The
final-step PCR fragments were purified and digested with BamHI (Thermo Fisher Scientific,
Waltham, MA, USA) and XhoI (Thermo Fisher Scientific, USA). The plasmid pET-32a (+)
was digested with the same restriction endonucleases and purified. Then, the linear vector
(5860 bp) and IFN_OaBac5mini fragment (612 bp) were ligated with T4 ligase (Thermo
Fisher Scientific, USA) overnight at 4 ◦C, repurified, and transferred into E. coli DH5α
by electroporation (GenePulser Xcell PA-400, Bio-Rad, Hercules, CA, USA; time constant
protocol: 1800 V voltage, 3 ms TC, 1mm cuvette). The transformants were selected on
Luria–Bertani agar (Solarbio, Beijing, China) plates containing 60 µg/mL ampicillin (China
National Institute for Drug and Biological Products Control, Beijing, China) at 37 ◦C. The in-
serted sequence was amplified from the ampicillin-resistant strains using primers (Forward:
5′-ACTGGATGAAATCGCTGACG-3′, Reverse: 5′-CCGAGATAGGGTTGAGTGTTGT-3′,
1492 bp) and sequenced by Sangon Biotech Co. (Shanghai, China).

The recombinant expression vector, pET-32a::IFN_OaBac5mini, was extracted from
E. coli DH5α and electroporated into E. coli BL21. The positive strain was cultured in
2 × YT broth (Solarbio, Beijing, China) containing 80 µg/mL ampicillin and induced by
0.4 mM isopropyl ß-D-1-thiogalactopyranoside (IPTG, Solarbio, Beijing, China) for 14 h
at 18 ◦C. The bacteria were centrifuged and resuspended with phosphate buffered saline
(PBS, pH 8.0), followed by ultrasonic breaking using low-temperature ultra high-pressure
continuous flow cell crusher JN-10C (Juneng Nano&Bio, Guangzhou, China) at 1800 bar
pressure 4 ◦C and centrifuging. The inclusion body (IB) was renatured and purified with
NI-NTA pre-packed gravity column (Sangon, Shanghai, China) following the instructions
of the manufacturer and Chen et al. [19]. Then, the expressed recombinant AMP was
collected and analyzed using sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE) and BCA kit (BioTeke, Wuxi, China) to determine its purity and concentration.
Finally, IFN_OaBac5mini was digested with recombinant enterokinase (Beyotime, Shanghai,
China) to obtain recombinant OaBac5mini.

2.2. Real-Time Cell Assay

Real-time cellular analysis (RTCA) was conducted to evaluate the cytotoxicity of the
digested IFN_OaBac5mini. Intestinal porcine enterocytes (IPEC-J2) and macrophage cells
(RAW 264.7) were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM;
HyClone, Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS; Biological
Industries, Haemek, Israel) and 1% penicillin–streptomycin (Solarbio, Beijing, China) at
37 ◦C with 5% CO2. Cells were seeded in 16-well E-plates (xCELLigence, ACEA biosciences,
San Diego, CA, USA). The next day, DMEM was replaced by fresh complete high-glucose
DMEM containing different concentrations of digested IFN_OaBac5mini (25–400 µg/mL).
Cell index, which is used to assess proliferation and cell viability [20,21], was monitored
using the xCELLigence RTCA DP System (xCELLigence, ACEA Biosciences, San Diego,
CA, USA) for 40 h at 15 min intervals and normalized by RTCA software 2.0 (xCELLigence,
ACEA biosciences, San Diego, CA, USA).

RTCA monitoring was conducted using IPEC-J2 and RAW 264.7 cells to evaluate
the protective effect of recombinant OaBac5mini on small intestinal epithelial cells and
macrophages against S. Pullorum. In brief, cells were seeded in 16-well E-plates and rinsed
with sterile PBS on the next day. The digested IFN_OaBac5mini (final concentration is
1 mg/mL for better antibacterial effect) and S. Pullorum CVCC 530 (National Center for
Veterinary Culture Collection, Wuhan, China; the optimal multiplicity of infection (MOI)
is 10:1) were mixed with high-glucose DMEM (without penicillin–streptomycin) alone or
together and then added to each well. Monitoring was conducted for 35 h, and the cell
index was normalized.
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2.3. Total RNA Extraction and qRT-PCR

RAW 264.7 cells were seeded in a 6-well plate, cultured overnight, and then rinsed
with PBS. High-glucose DMEM (without penicillin–streptomycin) containing digested
IFN_OaBac5mini and/or S. Pullorum (MOI is 10:1) was added. Total RNA was extracted
using TRIzol reagent (Ambion, Austin, TX, USA) following the manufacturer’s instructions
and analyzed on NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA) to determine
the concentration. Quality was assessed by optical density 260/280 ratio and 1% agarose
gel electrophoresis, and then cDNA was synthesized using EasyScript One-Step gDNA Re-
moval and cDNA Synthesis SuperMix (TransGen Biotech, Beijing, China) with 1 µg of each
RNA sample. Quantitative real-time PCR (qRT-PCR) was performed in triplicate using the
following primers: TNF-α (Forward: 5′-CCCAGACCCTCACACTCAGATCATC-3′ and Re-
verse: 5′-GTTGGTTGTCTTTGAGATCCATGCC-3′), IL-1β (Forward: 5′-GAAATGCCACC
TTTTGACAGTG-3′ and Reverse: 5′-TGGATGCTCTCATCAGGACAG-3′), IL-6 (Forward:
5′-GGAGTCACAGAAGGAGTGGCTAAG-3′ and Reverse: 5′-AGTGAGGAATGTCCA
CAAACTGATA-3′), IL-12 (Forward: 5′-TGGTTTGCCATCGTTTTGCTG-3′ and Reverse:
5′-ACAGGTGAGGTTCACTGTTTCT-3′) and reference gene GAPDH (Forward: 5′-AGGTC
GGTGTGAACGGATTTG-3′ and Reverse: 5′-GGGGTCGTTGATGGCAACA-3′). The re-
actions were carried out with the 2× Universal SYBR Green Fast qPCR Mix (ABclonal,
Prinzenallee, Germany) and run in the QuantStudio 5 Real-time PCR Instrument (Thermo
Fisher Scientific, USA) under the following conditions: initial denaturing at 95 ◦C for 30 s,
40 cycles at 95 ◦C for 10 s, annealing at 58 ◦C for 20 s, and 72 ◦C for 20 s. Data were analyzed
by the 2−∆∆Ct method [22], and the transcriptional level of each gene was normalized to
GAPDH level.

2.4. Animal Experiment Design

A total of 120 1-day-old laying hens were obtained by hatching specific pathogen-
free (SPF) chicken embryos in our laboratory. The hens were randomly divided into four
groups: control group (Control), S. Pullorum CVCC 530 infection group (S. Pullorum),
recombinant OaBac5mini group (IFN_OaBac5mini), and S. Pullorum and recombinant
OaBac5mini treatment group (S. P + IFN_OaBac5mini). Each group had 10 chicks, and
three independent repeats were performed. The S. Pullorum CVCC 530 culture was
centrifuged and resuspended with aseptic PBS into 1 × 109 CFU/mL. For each 1-day-
old chick in the S. Pullorum and S. P + IFN_OaBac5mini groups, 100 µL of bacterial
suspension was administered orally for three consecutive days. After that, aseptic
PBS was orally administered to each chick in the control group and S. Pullorum group
for seven successive days, and each chick in the S. P + IFN_OaBac5mini group was
given 100 µL of aseptic PBS containing 2 mg/mL digested IFN_OaBac5mini for seven
successive days. After the 7-day therapeutic trial, the chicks were sacrificed humanely
for the subsequent experiments.

2.5. Organ Index Determination

The heart, liver, spleen, and kidney were collected, washed with aseptic PBS, and
weighed after the residual water was removed using filter paper. Organ index was calcu-
lated using the formula:

Organ index = Organ weight (g)/Body weight (kg).

2.6. Organ Bacterial Load Detection

The liver and spleen were aseptically collected, weighed, and homogenized in 1 mL of
aseptic PBS using Tissuelyser (Hoder, Beijing, China) at 75 Hz and 4 ◦C for 5 min. The tissue
homogenate was diluted gradiently by PBS, and 100 µL of dilutions were plated on xylose
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lysine desoxycholate agar (Hopebio, Qingdao, China) selective plates and cultured overnight
at 37 ◦C to count the number of colonies. Organ bacterial load was calculated as follows:

Organ Bacterial Load = Number of colonies (CFU)/Organ weight (g).

2.7. Histopathology Examination

The duodenum, cecum, liver, spleen, and bursa of Fabricius were fixed with 4%
paraformaldehyde for 24 h, dehydrated with gradient ethanol, clarified with xylene, and
dipped in paraffin. The paraffin blocks were sliced into 4–6 µm-thick sections followed by
conventional hematoxylin–eosin (HE) staining for histopathological examination.

2.8. Western Blot Assays

Total proteins of the spleen were extracted using radioimmunoprecipitation assay
(RIPA; Solarbio, Beijing, China) buffer with 1% protease inhibitors (Boster, Wuhan, China)
and 1% phosphatase inhibitors (Cowin Bio., Taizhou, China), and then qualified by bicin-
choninic acid (BCA) kit (BioTeke, Wuxi, China) to determine their concentrations. Equal
amounts of protein for each sample were separated in 10% SDS-PAGE and transferred
onto polyvinylidene fluoride (PVDF) membranes (0.2 µm; Merk Millipore Ltd., Darmstadt,
Germany). The PVDF membranes were blocked with 5% bovine serum albumin (Solarbio,
Beijing, China) at room temperature for 1 h and then incubated overnight with the primary
antibodies (TLR4, Bioss, Beijing, China, 1:1000; phospho-p65, Bioss, Beijing, China, 1:1000;
p65, Abmart, Shanghai, China, 1:1000; phospho-IκBα, CST, Danvers, MA, USA, 1:1000;
IκBα, Affinity, Liyang, China, 1:1000; MyD88, Affinity, Liyang, China, 1:1000; GAPDH,
Bioworld, Nanjing, China, 1:5000) at 4 ◦C. Afterward, the membranes were rinsed with
PBS containing 0.1% Tween 20 three times and incubated with goat anti-rabbit secondary
antibody (ZSGB Bio., Beijing, China, 1:5000) at 37 ◦C for 1 h. Ultimately, the protein bands
were visualized using enhanced chemiluminescence supersensitive luminescent liquid
(Solarbio, Beijing, China) in Amersham Imager 600 (Cytiva, Marlborough, MA, USA),
and the gray-scale values were analyzed using ImageJ 8.0 (National Institutes of Health,
Bethesda, MD, USA).

2.9. Data statistical Analysis

All data were represented as mean± standard deviation. Differences were determined
by one-way ANOVA followed by Tukey’s post hoc test using SPSS 22.0 statistical software
(SPSS Inc., Chicago, IL, USA). p < 0.05 was considered statistically significant.

3. Results
3.1. Recombinant Expression of Fusion Protein IFN_OaBac5mini

The recombinant expression vector, pET-32a::IFN_OaBac5mini, was constructed, and
the length of the PCR products of the positive strains containing recombinant vectors
was 1492 bp (Figure 1A). Furthermore, fusion protein IFN_OaBac5mini was generated by
induction with IPTG and purification in Ni-NTA column, and recombinant OaBac5mini was
obtained by enterokinase digestion (Figure 1B). The yield of recombinant IFN_OaBac5mini
was up to 2 mg/mL (BCA kit detection), containing 250 µg/mL OaBac5mini (the molecular
weight ratio of IFN to OaBac5mini is 7:1).

3.2. Recombinant IFN_OaBac5mini Exhibited no Obvious Cytotoxicity

The cytotoxicity of IFN_OaBac5mini to IPEC-J2 and RAW 264.7 cells was evaluated.
RTCA results (Figure 2) showed that the cell indexes of JPEC-J2 and RAW 264.7 cells treated
with IFN_OaBac5mini were significantly increased compared to those of the control group
(p < 0.0001). The results indicated that IFN_OaBac5mini exhibited no cytotoxicity and
promoted the proliferation of IPEC-J2 and RAW 264.7 cells.
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3.3. Recombinant OaBac5mini Alleviated the Drop in the Cell Index of S. Pullorum-Infected Cells

RTCA was conducted using IPEC-J2 and RAW 264.7 cells treated by S. Pullorum
with or without recombinant OaBac5mini to real-time evaluate the effect of recombinant
OaBac5mini on the viability of S. Pullorum-infected cells. Results (Figure 3) showed that
S. Pullorum significantly decreased the cell indexes of IPCE-J2 cells (Figure 3A,B) and RAW
264.7 cells (Figure 3C,D, p < 0.0001) compared with the control group. The cell indexes in the
S. P + IFN_OaBac5mini group were significantly increased compared with the S. Pullorum
group (p < 0.0001), which indicated that recombinant OaBac5mini alleviated the drop in
the cell index of S. Pullorum-infected intestinal epithelial cells and macrophages.
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** p < 0.01 vs. control group, **** p < 0.0001 vs. control group, #### p < 0.0001 vs. S. Pullorum group.
n = 4.



Animals 2023, 13, 1515 8 of 15

3.4. Recombinant OaBac5mini Suppressed the mRNA Expression of Pro-Inflammatory Cytokines
Induced by S. Pullorum

The transcription levels of pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6,
and IL-12, were significantly upregulated by S. Pullorum in IPEC-J2 and RAW 264.7 cells
(p < 0.05, Figure 4). Furthermore, the mRNA expression levels of such pro-inflammatory
factors were significantly downregulated in the S. P + IFN_OaBac5mini group compared
with the S. Pullorum group (p < 0.05), but exhibited no obvious changes compared with the
control group (p > 0.05).
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Figure 4. mRNA expression levels of pro-inflammatory cytokines. Relative expression levels of
TNF-α, IL-1β, IL-6, and IL-12 in RAW 264.7 cells were significantly upregulated by S. Pullorum
(p < 0.05). mRNA expression levels of the pro-inflammatory cytokines in the S. P + IFN_OaBac5mini
group were significantly downregulated compared with those in the S. Pullorum group (p < 0.05).
Data represent results from triplicate experiments. ns: p > 0.05 vs. control group, * p < 0.05 vs. control
group, # p < 0.05 vs. S. Pullorum group.

3.5. Recombinant OaBac5mini Attenuated the Increase in Organ Indexes in S.
Pullorum-Challenged Chicks

The organ indexes of heart, liver, spleen, and kidney were investigated after the trial.
The results (Figure 5) showed that the chicks challenged with S. Pullorum exhibited signifi-
cantly increased organ indexes compared with the control (p < 0.05). However, the organ
indexes of the IFN_OaBac5mini treated PD chicks were significantly decreased compared
with the S. Pullorum group (p < 0.05), which indicated that recombinant OaBac5mini
attenuated the increase in organ indexes triggered by S. Pullorum.

3.6. Recombinant OaBac5mini Decreased Organ Bacterial Loads in S. Pullorum-Challenged Chicks

The bacterial loads in the liver and spleen were quantified using a S. Pullorum selective
plate to explore the inhibiting effect of recombinant OaBac5mini on the colonization of
S. Pullorum in vivo. Results (Figure 6) showed that no bacteria were detected in the control
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and OaBac5mini group, but the bacterial loads in the liver and spleen of the chicks with PD
were significantly increased (p < 0.0001). Conversely, the bacterial loads of IFN_OaBac5mini
treated PD chicks significantly decreased in the liver and spleen compared with those in
the S. Pullorum group (p < 0.0001).
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Figure 5. Organ indexes. Organ indexes of the heart, liver, spleen, and kidney of the S. Pullorum
infection group were significantly increased compared with those of the control group (p < 0.05
and p < 0.01). Recombinant IFN_OaBac5mini significantly attenuated the increase in organ indexes
(p < 0.05 and p < 0.01). * p < 0.05 and ** p < 0.01 vs. control group; # p < 0.05 and ## p < 0.01 vs.
S. Pullorum infection group. n = 15.
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Figure 6. Organ bacterial loads. No bacterial loads were detected in the liver and spleen of the control
group and IFN_OaBac5mini treatment group. The bacterial loads of the S. Pullorum infection group
were significantly increased (p < 0.0001), and recombinant IFN_OaBac5mini significantly attenuated the
increase (p < 0.0001). **** p < 0.0001 vs. control group, #### p < 0.0001 vs. S. Pullorum group. n = 15.
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3.7. Recombinant OaBac5mini Ameliorated Histopathological Changes in PD Chicks

HE staining of organ slices indicated that S. Pullorum triggered histopathological
changes and inflammation in multiple organs (Figure 7). Duodenum sections showed that
S. Pullorum impaired the epithelium of duodenal villi in PD chicks, whereas OaBac5mini
prevented the damage, showing intact villi in the S. P + IFN_OaBac5mini group. In
cecum sections, complete cecum structure with well-developed intestinal glands and a
clear epithelial boundary was observed in all groups except for the S. Pullorum infection
group, which had more goblet cells in the epithelium. Moreover, a large number of
pseudoacidophilic granulocytes were observed infiltrating the lamina propria and the
interfollicular connective tissue of the bursa of Fabricius in PD chicks. However, the
infiltration of pseudoacidophilic granulocytes in the cecum and bursa of Fabricius was
alleviated by OaBac5mini. In liver sections, S. Pullorum resulted in blood clots that
congested in the central vein and macrophage infiltration in hepatic lobules. In the S. P +
IFN_OaBac5mini group, the hepatic lobule exhibited a complete structure, no blood cells
accumulated in the central vein, and the number of macrophages decreased, which was
similar than that in the control group. In spleen sections, PD chicks exhibited a thicker
lymphatic sheath and a larger lymphoid nodule with more B lymphocytes than other
groups, and these changes were alleviated by OaBac5mini treatment.
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num: black arrow, damaged epithelium; V, villi; C, crypts; E, epithelium; LP, lamina propria; G, Figure 7. HE staining of the duodenum, cecum, liver, spleen, and bursa of Fabricius slices. Duodenum:
black arrow, damaged epithelium; V, villi; C, crypts; E, epithelium; LP, lamina propria; G, goblet
cell. Cecum: red arrow, pseudoacidophilic granulocyte; E, epithelium; LP, lamina propria; SM,
sub-mucosa; GL, gland; G, goblet cell. Liver: green arrow, macrophages; *, congested central vein;
CV, central veins. Spleen: CA, central arteriole; LN, lymphoid nodule. Bursa of Fabricius: red arrow,
pseudoacidophilic granulocyte; F, bursal follicule; IC, interfollicular connective tissue.
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3.8. Recombinant OaBac5mini Modulated the TLR4/MyD88/NF-κB Pathway in PD Chicks

TLR4 is an innate immune receptor that responds to the lipopolysaccharide (LPS)
of bacteria and activates NF-κB through a MyD88-dependent pathway. The protein ex-
pression levels of the TLR4/MyD88/NF-κB pathway were investigated to explore the
mechanism of recombinant OaBac5mini in suppressing the inflammation induced by
S. Pullorum in PD chicks. Western blot results (Figure 8) showed that S. Pullorum acti-
vated the TLR4/MyD88/NF-κB pathway, in which the protein expression levels of TLR4
and MyD88, the ratio of p-p65 to p65, and the ratio of p-IκB to IκB were significantly
upregulated (p < 0.05). The recombinant OaBac5mini significantly downregulated the
expression and ratio of such proteins (p < 0.05) compared with the S. Pullorum infection
group, which indicated that recombinant OaBac5mini effectively suppressed the activation
of the TLR4/MyD88/NF-κB pathway in PD chicks.
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Figure 8. Expression levels of proteins in the TLR4/MyD88/NF-κB pathway in the spleen of chicks.
The expression levels were normalized to GAPDH. Data represent results from triplicate experiments.
* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. control group. # p < 0.05, ## p < 0.01, and ### p < 0.001 vs.
S. Pullorum infection group.

4. Discussion

Antibiotics used as feed supplements for growth promotion are restricted in several
countries because of the rapid spread of drug-resistant and multidrug-resistant bacterial
pathogens [8,11], leading to an urgent need to find new antibiotic alternatives and their
suitable production methods. AMPs are important components of animals’ innate immune
systems and are promising as next-generation antibiotics owing to their broad antimicrobial
spectrum [23,24]. AMP OaBac5mini, which exhibits strong antibacterial activity against
Gram-negative bacteria and has good stability and low cytotoxicity [16,17], is worthy
of further study. However, the artificial genetic engineering production of OaBac5mini
has not been reported. The recombinant approach offers the most cost-effective means
for large-scale peptide manufacture, and E. coli is the most widely used recombinant
expression system with high expression yields [18]. However, it poses serious challenges
because AMP has a molecular weight of less than 50 amino acid residues and is toxic
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to the host cells of E. coli [18]. Therefore, we constructed the fusion expression system,
pET-32a::IFN_OaBac5mini, which combined IFN and OaBac5mini with an enterokinase site
(Figure S1) to overcome these disadvantages. After the culture and induction conditions
and purification methods were optimized, the purified fusion protein reached an expression
yield of up to 2 mg/mL containing 250 µg/mL recombinant OaBac5mini (BCA kit detection
results), and it exhibits similar or better antibacterial activity against S. Pullorum compared
to traditional antibiotics (Table S1), with negligible cytotoxicity to small intestinal epithelial
cells and macrophages (Figure 2).

In countries with developing poultry industries, PD is the most consequential poul-
try disease caused by S. Pullorum, which poses considerable economic costs to poultry
producers [25]. S. Pullorum causes severe septicemia in young birds and can colonize the
reproductive tract, resulting in transovarial transmission to eggs (vertical transmission) [26].
In addition, S. Pullorum from contaminated environments (horizontal transmission) in-
vades the intestinal tract by colonizing and proliferating in intestinal epithelial cells and
further proliferates in macrophages or dendritic cells by phagocytosis through interrupting
intestinal epithelium [27], where it can directly diffuse and translocate to the liver and
spleen through blood circulation [28]. In the present study, S. Pullorum damaged the
intestinal villous epithelium and was isolated from the liver and spleen of the PD chicks,
but recombinant OaBac5mini ameliorated the histopathological changes of the intestine
and considerably decreased the bacterial loads in the liver and spleen (Figures 6 and 7),
which indicated that OaBac5mini blocks the translocation of S. Pullorum.

S. Pullorum can evidently stimulate host immunity. Setta et al. [29] reported that
Salmonella infection increased the number of B-lymphocytes and macrophages in the cecal
tonsils of infected birds. In this study, histopathological examination indicated that PD
chicks presented an increase in macrophages and B-lymphocytes in the liver and spleen
and infiltration of pseudoacidophilic granulocytes in the cecum and bursa of Fabricius
(Figure 7). Recombinant OaBac5mini probably attenuated the increase of such innate
immune cells by decreasing the number of infiltrating S. Pullorum through blocking the
translocation of S. Pullorum.

Such inflammatory cell infiltration in the histological section implies the immune
stimulation and inflammatory cell chemotaxis caused by S. Pullorum. Toll-like receptors
(TLRs) are key elements of innate immunity against invading pathogens and activate
a variety of host defense signal pathways [30]. TLR4 responds to the LPS secreted by
Gram-negative bacteria; activates NF-κB through a MyD88-dependent pathway [31]; and
finally, induces the expression of genes related to immune stimulation, cell apoptosis, and
inflammatory cell chemotaxis [32]. Li et al. [33] demonstrated that the TLR4/MyD88-
dependent pathway plays a role in S. Pullorum-infected chicks. In the present study,
S. Pullorum upregulated the expression of TLR4 and MyD88 (Figure 8), which indicated
that S. Pullorum activated the TLR4/MyD88/NF-κB pathway. The binding of IκB to the NF-
κB subunit results in the conformational changes of NF-κB, which inhibits the binding of
NF-κB p65 to the target gene [34]. When phosphorylated IκB is degraded by ubiquitination,
p65 is released into the nucleus and is phosphorated to regulate the transcription of pro-
inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-12 [35]. In the present study, S. Pullorum
increased the ratio of p-p65 to p65 and the ratio of p-IκB to IκB, as well as inducing the
upregulation of the expression of the pro-inflammatory cytokines, TNF-α, IL-1β, IL-6,
and IL-12. The results indicated that the innate immune performance of PD chicks was
severely impaired by S. Pullorum through the TLR4 pathway. AMPs, as effector molecules,
are important for innate immunity. The body expresses AMPs to play a corresponding
immunomodulatory effect against foreign bacterial infection [36]. Shin et al. and Sun
et al. reported that AMPs are capable of tackling inflammation by targeting TLR signaling
to downregulate the expression of pro-inflammatory mediators [37,38]. In the current
study, recombinant OaBac5mini blocked the increased expression of related proteins in the
TLR4/MyD88/NF-κB pathway (Figure 8) and inhibited both the phosphorylation of NF-κB
p65 and the transcription of its pro-inflammation target genes, TNF-α, IL-1β, IL-6, and
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IL-12, in PD chicks. The results implied that OaBac5mini modulated the innate immunity
impaired by S. Pullorum. OaBac5 belongs to the cathelicidin family, and Niyonsaba et al.
and Mookherjee et al. reported that LL-37, another cathelicidin family member, can prevent
the translocation of the NF-κB subunit p65 or directly bind to LPS, which carries negative
charges, preventing its interaction with LPS-binding protein and therefore inhibiting the
activation of TLR4 and downstream signaling pathways [39,40]. OaBac5mini has eight
positive charges [16], which is more than the six positive charges of LL-37 [41]. This finding
suggests that OaBac5 may modulate the TLR4 pathway by reducing the amount of LPS or
by binding to LPS. In short, recombinant OaBac5mini alleviated inflammatory response by
modulating innate immunity through the TLR4/MyD88/NF-κB pathway in PD chicks.

5. Conclusions

Fusion protein IFN_OaBac5mini was expressed by the E. coli recombinant protein
expression system and exhibited good antibacterial activity against S. Pullorum in vitro and
in vivo with no obvious cytotoxicity. Recombinant OaBac5mini inhibited the colonization
of S. Pullorum, attenuated the organomegaly and histopathological changes of PD chicks,
and ameliorated inflammation response through the TLR4/MyD88/NF-κB pathway.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13091515/s1, Figure S1 Construction strategy for recombinant
expression vector pET-32a::IFN_OaBac5mini. IFN_OaBac5mini fragment was amplified by three
steps PCR using pET 28a-SUMO:IFN_PG as original template. IFN_OaBac5mini fragment (612 bp)
and pET-32a (+) plasmid were digested with BamHI and XhoI, purified and recombined to construct
the recombinant expression vector; Table S1 MICs of different antibiotic agents against S. Pullorum
CVCC 530 (unit: µg/mL).
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