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Simple Summary: The H9N2 avian influenza virus has spread to the whole world and become one
of the dominant subtype influenza viruses in chickens in China. H9N2 virus could not only result
in great economic losses by reducing egg production but also serve as a gene vector to provide its
gene segments to other emerging severe influenza A viruses to cause higher mortality and more
serious consequences. Thus, developing models to predict H9N2 status should be given priority. Our
main aim was to use the machine learning method (XGBoost classification algorithm) and regular
production data (laying rate and mortality) to predict the occurrence and development of H9N2 in
laying hen houses and evaluate their performance in disease prediction. Additionally, we assessed the
working ability of the framework with different time frames to predict H9N2 status in advance within
a 3-day period. We found that this framework could work well in prediction with high accuracy and
sensitivity, and with more information introduced into the model, more “don’t care values” would
be added into datasets to affect model performance by forming attribute noise. Besides, our study
recommended efficient frameworks and models for H9N2 status prediction and provided practical
potential uses in the livestock and poultry industry.

Abstract: The H9N2 avian influenza virus has become one of the dominant subtypes of avian
influenza virus in poultry and has been significantly harmful to chickens in China, with great
economic losses in terms of reduced egg production or high mortality by co-infection with other
pathogens. A prediction of H9N2 status based on easily available production data with high accuracy
would be important and essential to prevent and control H9N2 outbreaks in advance. This study
developed a machine learning framework based on the XGBoost classification algorithm using
3 months’ laying rates and mortalities collected from three H9N2-infected laying hen houses with
complete onset cycles. A framework was developed to automatically predict the H9N2 status of
individual house for future 3 days (H9N2 status + 0, H9N2 status + 1, H9N2 status + 2) with five
time frames (day + 0, day − 1, day − 2, day − 3, day − 4). It had been proven that a high accuracy
rate > 90%, a recall rate > 90%, a precision rate of >80%, and an area under the curve of the receiver
operator characteristic ≥ 0.85 could be achieved with the prediction models. Models with day + 0
and day − 1 were highly recommended to predict H9N2 status + 0 and H9N2 status + 1 for the direct
or auxiliary monitoring of its occurrence and development. Such a framework could provide new
insights into predicting H9N2 outbreaks, and other practical potential applications to assist in disease
monitor were also considerable.
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1. Introduction

In recent years, various infectious diseases have posed risks to the livestock and
poultry industry [1], such as avian influenza, foot and mouth disease (FMD), and classical
swine fever. Infectious diseases are mostly caused by viruses, bacteria, fungi, etc. [2], which
could rapidly outbreak and spread to greatly limit and test the epidemic prevention and
response capacity of government and farmers. To date, infectious disease outbreaks have
caused tremendous socioeconomic losses and public health consequences globally due to
disease control measures [3], such as culling animals in endemic areas, temporary bans on
the import and export of livestock products, and the limitation of livestock production and
market activities [4].

For infectious disease management, the most appropriate strategy is accurate and
rapid detection and control [5]. Researchers have developed some novel approaches of
classifications based on association models to identify virus sequences, virus host range
and zoonotic transmissible sequences to avoid pandemic or disastrous epidemics [6,7].
Infectious disease prediction has great value for initiating rapid responses and for the safety
of the livestock and poultry industry. In order to well monitor animal health and diseases,
many prediction models for infectious diseases have been developed in recent years [8]
for early warning of individual animals, animal herds, and regions. Prediction models
based on classical statistical and mathematical methods (e.g., logistic regression) have
been widely demonstrated in epidemiological risk warning [9], which were usually consid-
ered as kind suitable techniques for identifying risk factors (e.g., lameness recognition in
broiler [10]) rather than establishing outbreak prediction models [9,11]. There is increasing
interest in trying to use machine learning methods for epidemic prediction [11,12], espe-
cially the tree-based machine learning methods, such as random forest (RF) and extreme
gradient boosting (XGBoost), which have been widely used in predicting diseases with
the advantages of high efficiency, and strong interpretability [13–15]. In the field of veteri-
nary sciences, only a few studies focused on the prediction of disease outbreaks. RF was
demonstrated to have good capability in predicting FMD outbreaks with the external risk
factors as input, like purchasing, neighbors, vaccinations and close to the main road [12],
and a knowledge map was maturely applied to diagnose livestock and poultry diseases
with varied symptoms [16,17]. Obviously, additional time and labor are required to collect
and count these input variables mentioned above in addition to the normal production
data. It would be more convenient and beneficial for farmers and veterinarians to identify
animal health abnormalities and rapidly respond if the regular production data could be
used directly to reflect disease outbreaks, but it is still a gap. Meanwhile, the developed
models just predicted the current outbreak status and were not forward-looking. Many
studies have been using a time-series forecasting model to explain, evaluate and estimate
the development trends in outbreak human diseases (e.g., COVID-19), such as the further
values of outbreak disease cases, deaths, or transmission rates [18,19]. Besides, XGBoost
was proved to have more outstanding prediction accuracy and generalization ability than
RF, support vector machines (SVM), k-nearest neighbor (KNN), and back propagation
neural network (BPNN) in predicting the risk and outbreaks of diabetes [20], dermato-
myositis [21], COVID-19 [14,15], wheat stripe rust [22], and other diseases of human and
plants, due to the superiority of its architecture, which also provided a new idea and
algorithm for risk/outbreak identification, early intervention, and practical application in
animal diseases.

Different infectious diseases do not only show different symptoms in pathological
changes but also show different effects on production performance indicators due to differ-
ences in virulence, adaptability and replication; even different strains of the same disease
can have different clinical manifestations [23]. For example, there were significant dif-
ferences in the survival percentage and weight-changing trends of broilers infected with
HN10PY01 and NX0101 of avian leukosis virus-J field strains [23]. One study showed
the survival rate was 30%, 50%, and 90% in broilers inoculated with Ornithobacterium
rhinotracheale (ORT) + H9N2 avian influenza virus, ORT and H9N2 virus alone, respec-



Animals 2023, 13, 1494 3 of 15

tively [24]. These indicators mentioned above are the regular ones recorded every day
in most commercial farms, which supports the use of regular production data to reflect
different diseases. Even though some different diseases show similarities in production
data, the prediction of infectious disease outbreaks with regular production data will also
be beneficial to help governments and farmers rapidly respond to screening and control
infectious diseases.

Generally, effective detection and monitoring are necessary for infectious disease
management [25]. This study used the data from laying hens infected with the H9N2
virus as an example, trying to use a machine learning method (XGBoost classification
algorithm) and regular production data (laying rate and mortality) to predict the occurrence
and development of H9N2 and prove the prediction performance of the framework and
XGBoost models to provide an efficient method for infectious diseases early warning in
livestock and poultry farms.

2. Materials and Methods

Avian Influenza caused by H9N2 avian influenza virus (“H9N2 Avian Influenza”
referred to as “H9N2” below) can pose a serious threat to both the poultry industry and
public health safety, and an effective and rapid diagnostic method for H9N2 occurrence
and development is urgently needed for prompt prevention and control.

2.1. H9N2 Cases and Data Collection

This study collected information on H9N2 occurrence and development and correlated
production data from a large-scale concentrated laying hen farm located in Beijing. Trained
and experienced veterinarians, who routinely conduct disease identification and abnormity
diagnosing, helped to confirm the H9N2 cases (including the start and end of this epidemic)
with their experiences and the results of the avian influenza virus antigen detection card
based on the colloidal gold method.

Data were collected from 3 infected laying hen houses every day from the period of
October to December 2012, covering the whole onset cycle of each outbreak. The numbers
of days of having H9N2 and non-H9N2 were 37 and 88, with a case-to-control ratio of ap-
proximately 1:2, fitting the typically recommended ratio of observational studies of disease
incidence [26]. Variables collected in this study are listed in Table 1. Temperature and rela-
tive humidity were automatically measured by sensors and recorded in the environment
management system. Date, age, laying rate and mortality were automatically generated,
calculated and recorded by the management system. The number of abnormal laying hens,
the qualified rate of immune antibodies against highly pathogenic avian influenza (HPAI)
(QRimmu), and the treatment for H9N2 infection were confirmed, recorded, and provided
by a veterinarian. Veterinarians treated the laying hens with drugs from the day that the
first H9N2-infected bird was detected until a non-H9N2-infected bird was confirmed.

Table 1. Variables about the information of H9N2 occurrence and development and correlated
production data.

Variables Variables

Date Laying rate/%
Age/days Mortality/%

Maximum temperature throughout the day
(Tmax)/◦C Number of abnormal laying hens (Nab-hens)

Minimum temperature throughout the day
(Tmin)/◦C Qualified rate of immunization (QRimmu)/%

Average relative humidity (RH)/% Treatment for H9N2 infection

2.2. Xgboost Algorithm

XGBoost is 1 of the latest tree-boosting algorithms based on a novel sparsity-aware
algorithm and weighted quantile sketch to develop a “strong” learner using all prediction
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results of “weak” learners [27,28] with great success in terms of both performance and
speed. As a tree-based model, the XGBoost classification algorithm changes the score of
leaves to a class tag and finally outputs the class tag with the highest proportion of allocated
leaves. In this study, the XGBoost classification model was built to predict H9N2 status
to reflect the occurrence and development process of this epidemic, and Figure 1 uses an
example to illustrate the progress of the XGBoost classification model using 2 trees, each
with 2 depths to predict the status. In fact, there are always more than 2 trees and 2 depths
in model training. H9N2 status was dealt with binary problems with the labels of 0 and 1,
of which “0” meant “no H9N2 case”, and “1” meant “having H9N2 case”. If the sum of
the function leaf scores was greater than 0.5, it was judged to belong to 1; otherwise, it
belonged to 0. Features including laying rate, mortality and time frame features, which
were directly and closely related to H9N2 oncomes, were used as the input.
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Figure 1. Illustration of XGBoost classification model using 2 trees, each with 2 depths to predict
H9N2 status, an example. Laying rate + 0 = laying rate of today, laying rate − 1 = laying rate of
yesterday, mortality + 0 = mortality of today, mortality − 1 = mortality of yesterday.

Hyperparameters, such as the regularization parameters in XGBoost, can greatly affect
the performance of a model [29]. In this study, Grid Search Cross-Validation exhaustive
parameter search technique with fivefold cross-validation was applied to search the optimal
hyperparameters involved in the performance of the models, which included learning_rate,
n_estimators, max_depth, min_child_weight, gamma, subsample, and colsample_bytree,
with the search spaces of 0.001~0.2, 0~100, 1~15, 1~15, 0~1, 0.7~0.9, and 0.7~0.9, respectively.
The optimized hyperparameters were determined by the maximum value of the accuracy.
Then, the importance of these features in building and boosting the tree-based XGBoost
classification model was calculated for model interpretation [30].

2.3. Framework Design

All of the XGBoost classification algorithm running, hyperparameters tuning, and
statistical analysis were conducted using Python software 3.6 and the scikit-learn toolkit.
The examples of Python codes and collated datasets were provided as supplemental files
(Codes S1 and Datasets S1).

The overall workflow for the prediction task is given in Figure 2. In order to prove the
model’s good application ability, the collected datasets from 2 infected laying hen houses
were used as a training set (about 64% of all data), and datasets from the 3rd infected laying
hen house were used as a testing set (about 36% of all data). Fivefold cross-validation was
conducted in each model training process to evaluate the performance of such a framework
under practical farm management conditions. The hyperparameters were tuned only
utilizing the training set. The input factors included the laying rate with time frames and
the mortality with time frames, and the output value was H9N2 status. After training
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XGBoost models, the accuracy, recall rate, precision rate and receiver operator characteristic
(ROC) curve of each model were calculated to evaluate the framework performance.
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Laying hens inevitably suffer different diseases or breeding equipment failures in the
normal breeding process, which will affect the normal laying rate and mortality changing
regulars. In order to avoid the impact of outliers in long-term production data on the
classification performance of the model and to reduce the data requirement for small
sample events such as infectious disease outbreaks, this study tried to investigate the
suitable time frame using for H9N2 status confirming. Given that H9N2 can cause sudden
changes in production performance, choosing long-term data is not obviously helpful for
the prediction of disease outbreaks; this study set 5 time frames rolling windows of today
(day + 0), the previous 1 day (day − 1), the previous 2 days (day − 2), the previous 3 days
(day − 3), and the previous 4 days (day − 4) to study the suitable time frame for H9N2
status confirming. In each time frame case, 3 XGBoost models were built to predict coupled
future 3 days’ values, of which model #1 would predict today’s status (i.e., H9N2 status + 0),
model #2 would predict the next day’s status (i.e., H9N2 status + 1), and model #3 would
predict the future 2nd day’s status (i.e., H9N2 status + 2). The H9N2 status was defined into
2 categories, “no” (marked as 0) and “yes” (marked as 1), of which “no” meant no H9N2
case, and “yes” meant having an H9N2 case. Due to each prediction being targeted on a
3-day period, a time series 3-day rolling window was applied to create input and output
variables in train or test datasets, as shown in Figure 3.
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model framework. +0 = today, −1 = previous 1 day, −2 = previous 2 days, −3 = previous 3 days, and
−4 = previous 4 days.

2.4. Evaluation Criteria

There were 4 generally used criteria calculated to evaluate and compare the prediction
capacity of developed models with different time frames. This study defined the 0 status
(no H9N2 case) as negative and the 1 status (having H9N2 case) as positive. The agreement
of the results between the actual and predicted status was described by the number of true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), of which
the sum of TP, TN, FP and FN was the total number of observed days in 3rd laying hen
house (N). Accuracy rate, recall rate, precision rate, and the area under the curve (AUC) of
the ROC were used to assess the performances of the XGBoost models [12]:

(1) Accuracy rate (ACC)

ACC =
TP + TN

N
× 100% (1)

(2) Recall rate (RR)

RR =
TP

TP + FN
× 100% (2)

(3) Precision rate (PR)

PR =
TP

TP + FP
× 100% (3)

AUC of ROC
AUC is an indicator of the discriminative or predictive ability of prediction models.

The prediction ability could be generally judged based on the AUC values: AUC = 0.5, no
discrimination; 0.5 < AUC < 0.6, poor discrimination; 0.6 ≤ AUC < 0.7, fair discrimination;
0.7 ≤ AUC < 0.8, acceptable discrimination; 0.8 ≤ AUC < 0.9, excellent discrimination;
and AUC ≥ 0.9, outstanding discrimination [31]. A higher AUC value means the model
prediction performance is better.

3. Results
3.1. Descriptive Statistic

The descriptive statistics associated with the variables about the information of H9N2
occurrence and development and correlated production data are shown in Table 2. The
age range of studied birds was 161–266 days, with an average laying rate of 93.3% and
an average mortality of 0.03% during the normal production period. Their average age
was around 27 weeks, which was in the peak laying period [32]. During the period of data
collection, the temperature ranges of houses 1 and 2 were similar, with Tmax values from
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3 to 24 ◦C and Tmin values from −10 to 9 ◦C; the temperature of house 3 was significantly
lower than the other 2 houses (p < 0.05). The average RH range of 3 houses was from 35 to
65%. With the QRimmu above 80%, the extreme values of laying rate, mortality, and Nab-hens
were 84.1%, 0.20%, and 265 hens, respectively, after the hens were infected with H9N2.

Table 2. Variable description of the overall data in the 3 H9N2 infected laying hen houses.

Variable Unit Max Mean Min SD

House 1

Age days 199 - 161 -
Tmax

◦C 24 15 5 5
Tmin

◦C 9 1 −6 4
RH % 65 52 38 7

Laying rate % 97.1 92.5 87.4 2.9
Mortality % 0.10 0.03 0.01 0.02
Nab-hens hens 201 - 0 -
QRimmu % 90 90 90 0

House 2

Age days 258 - 218 -
Tmax

◦C 22 11 3 5
Tmin

◦C 9 −2 −10 4
RH % 65 49 35 8

Laying rate % 94.3 92.4 86.1 2.3
Mortality % 0.20 0.04 0.01 0.03
Nab-hens hens 265 - 0 -
QRimmu % 80 80 80 0

House 3

Age days 266 - 222 -
Tmax

◦C 12 4 −4 5
Tmin

◦C 1 −6 −14 4
RH % 65 46 35 7

Laying rate % 93.4 91.4 84.1 2.7
Mortality % 0.13 0.05 0.01 0.03
Nab-hens hens 214 - 0 -
QRimmu % 80 80 80 0

The data from house 1 was taken as an example to reflect the basic changing of
environment and production variables in Figure 4. It was clear that the temperature
showed a slow downward trend; RH fluctuated regularly and was stable in total. Before
the H9N2 outbreak, the laying rate increased gradually and stabilized at 96% according to
the normal growth curve of laying hens. Meanwhile, the mortality regularly changed to
around 0.02%. After the H9N2 outbreak, both the laying rate and mortality were sharply
affected. Interestingly, there were slight abnormal changes in laying rate and mortality
occurring 1 or 2 days before the outbreak, which could be mined to be the portends of the
H9N2 outbreak.

Animals 2023, 13, x FOR PEER REVIEW 7 of 16 
 

65%. With the QRimmu above 80%, the extreme values of laying rate, mortality, and Nab-hens 
were 84.1%, 0.20%, and 265 hens, respectively, after the hens were infected with H9N2. 

Table 2. Variable description of the overall data in the 3 H9N2 infected laying hen houses. 

Variable Unit Max Mean Min SD 

House 1 

Age days 199 - 161 - 
Tmax °C 24 15 5 5 
Tmin °C 9 1 −6 4 
RH % 65 52 38 7 

Laying rate % 97.1 92.5 87.4 2.9 
Mortality % 0.10 0.03 0.01 0.02 

Nab-hens hens 201 - 0 - 
QRimmu % 90 90 90 0 

House 2 

Age days 258 - 218 - 
Tmax °C 22 11 3 5 
Tmin °C 9 −2 −10 4 
RH % 65 49 35 8 

Laying rate % 94.3 92.4 86.1 2.3 
Mortality % 0.20 0.04 0.01 0.03 

Nab-hens hens 265 - 0 - 
QRimmu % 80 80 80 0 

House 3 

Age days 266 - 222 - 
Tmax °C 12 4 −4 5 
Tmin °C 1 −6 −14 4 
RH % 65 46 35 7 

Laying rate % 93.4 91.4 84.1 2.7 
Mortality % 0.13 0.05 0.01 0.03 

Nab-hens hens 214 - 0 - 
QRimmu % 80 80 80 0 

The data from house 1 was taken as an example to reflect the basic changing of envi-
ronment and production variables in Figure 4. It was clear that the temperature showed a 
slow downward trend; RH fluctuated regularly and was stable in total. Before the H9N2 
outbreak, the laying rate increased gradually and stabilized at 96% according to the nor-
mal growth curve of laying hens. Meanwhile, the mortality regularly changed to around 
0.02%. After the H9N2 outbreak, both the laying rate and mortality were sharply affected. 
Interestingly, there were slight abnormal changes in laying rate and mortality occurring 1 
or 2 days before the outbreak, which could be mined to be the portends of the H9N2 out-
break. 
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Figure 4. Taking house 1 as an example to show the changes in environment and production
variables during the data collection period: (a) Tmax, Tmin, and RH; (b) Laying rate and abnormal rate;
(c) Mortality and abnormal rate.
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3.2. Predictive Performance Comparison

Table 3 presents the comparative results of the model performances with different
time frames to predict 3 future days’ H9N2 status. All the prediction models had accuracy
rates greater than 80% with high recall rates, which meant the high sensitivity of these
models. It could be seen day + 0 and day − 1 classification models had the same accuracy
and sensitivity in predicting H9N2 status + 0, +1 and +2. With the accumulated days used
as input data increasing, all of the ACC, RR and PR fluctuated and decreased. The XGBoost
classification models predicted the likelihood of the H9N2 status + 0 most precisely since
they revealed the highest PRs. ACC and RR of models for H9N2 status + 0 kept stable at
92.31% with the accumulated days from today to the previous 3 days, then they decreased
with the input days increasing. It was worth noting that the performance of the day − 2
model was the lowest among all of the models to predict H9N2 status + 1; other models had
the same ACC and RR. Meanwhile, for H9N2 status + 2 prediction, all of the models had the
same performances of ACC and RR. It was clear that when the models predicted the H9N2
status of more future days, the performances were worse in general. The performances of
the models of days + 0, −1, −2, and −3 to predict H9N2 status + 0 were the best, with an
ACC and RR of 92.31%, and H9N2 status + 1 was the next.

Table 3. Model performance parameters, including accuracy (ACC), recall rate (RR) and precision
rate (PR) from 15 XGBoost models with 5 time frames of today (day + 0), previous 1 day (day − 1),
previous 2 days (day − 2), previous 3 days (day − 3), and previous 4 days (day − 4) to predict future
3 days’ H9N2 status (+0, +1, +2).

Criteria Predicted Future
Days Day + 0 Day − 1 Day − 2 Day − 3 Day − 4

ACC/%
H9N2 status + 0 92.31 92.31 92.31 92.31 89.74
H9N2 status + 1 89.74 89.74 87.18 89.74 89.74
H9N2 status + 2 84.62 84.62 84.62 84.62 84.62

RR/%
H9N2 status + 0 92.31 92.31 92.31 92.31 84.62
H9N2 status + 1 92.31 92.31 84.62 92.31 92.31
H9N2 status + 2 84.62 84.62 84.62 84.62 84.62

PR/%
H9N2 status + 0 85.71 85.71 85.71 85.71 84.62
H9N2 status + 1 80.00 80.00 78.57 80.00 80.00
H9N2 status + 2 73.33 73.33 73.33 73.33 73.33

A higher AUC value shows a better prediction performance of the evaluated model.
Analyzing Figure 5, the AUC values of most models were higher than 0.90, indicating their
outstanding discrimination. Regarding the AUC values, similar to the results from Table 3,
the more days the models predicted, the worse the performances were. The performance of
models predicting H9N2 status + 0 was the best, with all the AUC values higher than 0.90,
followed by H9N2 status + 1 and H9N2 status + 2. When the input data came from more
days, the AUC values would become worse. ACC and RR of models for H9N2 status + 0
kept stable at 92.31% with the accumulated days from today to the previous 3 days, then
they decreased with the input days increasing. Models of day + 0 and day − 1 to predict
the H9N2 status of different future days had similar great performances, and the highest
AUC value was found in the day − 1 model for H9N2 status + 0 with an AUC of 0.98.

3.3. Feature Importance

Due to the best performances of models to predict H9N2 status + 0, Figure 6 takes
H9N2 status + 0 prediction models as examples to analyze the feature importance ranking,
which refers to the contributions of individual input variables to the performance of the
model. In most of these models, laying rate and mortality were identified as playing
different roles in building models, except the day + 2 model for H9N2 status prediction,
where only laying rates were selected in building the model. This indicated the variations
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in laying production and mortality between different days were the key driver in training
models. The results revealed that laying rate was the more important feature in predicting
H9N2 status than mortality. If the production data only from today and the previous day
were used as input, the laying rate + 0 showed its great importance in prediction models.
While, with the date from more accumulated days inputting, laying rate + 0 seemed not
as important as before, the laying rates of the previous 1 and more days played the key
role in prediction. Similarly to mortality, the importance of mortality from today and the
adjacent days was lower and lower. For instance, the mortality from different days had
similar importance and was ranked last.
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Figure 6. Feature importance for H9N2 status + 0 prediction in laying hen houses from the XGBoost
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4. Discussion

In the present study, the XGBoost classification algorithm was applied to H9N2-related
data to develop models designed to predict the H9N2 status among laying hen houses using
temporal variables and production variables as predictors. The predictive performances of
XGBoost models were evaluated and compared.

4.1. Relationship between Environment and Production Variables and H9N2 Status

Studies proved low temperatures would help avian influenza viruses survive in the
environment to facilitate viruses’ introduction and outbreaks [33]. Meanwhile, the low
temperature would decrease the hens’ immunity, which could potentially cause the H9N2
outbreak in the laying hen house. As shown in Table 2 and Figure 4, the temperature
gradually dropped even to −14 ◦C, which was far away from the optimum temperature
(thermoneutral zone, 19–22 ◦C) for laying hens [34]. And it could be proved by the
correlation analysis in Table 4.

Table 4. Correlation analysis of environment and production variables and H9N2 status (yes or no)
in 3 laying houses.

Laying Hen House Tmax Tmin RH Laying Rate Mortality

House 1 −0.61 ** −0.45 ** −0.01 −0.58 ** 0.67 **
House 2 −0.30 −0.36 * −0.31 * −0.86 ** 0.66 **
House 3 −0.67 ** −0.52 ** −0.21 −0.87 ** 0.83 **

* Significant difference at 0.05 level. ** Significant difference at 0.01 level.

Since the hens were infected, H9N2 would spread to the whole house, and H9N2 had
risen to be the most prevalent subtype of avian influenza virus in China, causing great
economic losses because of the reduced egg production [35,36]. Clearly, after the H9N2
outbreak, the laying rate sharply decreased and was significantly and negatively correlated
with H9N2 positive status (p < 0.01). Besides, H9N2 would cause high mortality associated
with co-infection with other pathogens [37], such as H5N2 [38], H6N1 [39], H7N7 [38],
H7N9 [40], and H10N8 [41]. H9N2 could also cause mortality due to the pathogenicity itself
or the enhancement of other disease responses. In Korea, when layers were infected with
H9N2, the mortality was about 30%, with reduced egg production [42]. In our study, all of
the laying hens were vaccinated with immune antibodies against HPAI, with a qualification
rate of above 80%. This H9N2 epidemic just caused a small increase in mortality but still
significantly and positively affected the mortality (p < 0.01).

Furthermore, 1 or 2 days before the H9N2 had been detected, the laying rate and
mortality changed abnormally compared with the data from the days before. In this stage,
H9N2 was not detected, which might be because of its low concentration, or because
it caused such little impact on production to fail to raise the alarm among farmers and
veterinarians. For epidemics, a delay of 1 or 2 days can lead to a wider impact on animal
health and performance, especially the H9N2 can serve as vehicles by donating their gene
segments to other influenza A viruses [37] to cause more serious consequences. Thus,
developing prediction models to control the circulation of H9N2 should be paid more
attention to, and the laying rate and mortality as the priority corresponding factors could
be used as input variables for H9N2 status prediction models.

4.2. Framework Performance and Model Interpretation

Several studies have reported computational fluid dynamics modeling, air dispersion
modeling, and transmission network modeling on HPAI using past outbreaks of infectious
viral animal diseases to determine the contribution of airborne transmission towards HPAI
spread [43] during its outbreaks. As one of the important subtypes of the avian influenza
virus, H9N2 could donate gene segments to other HPAI viruses. Thus, developing models
to predict and control the circulation of H9N2 should be given priority.
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Different from analytical models used in finding the relationship between different
variables [44], the epidemic-based predictive model is focused on reliable and accurate
prediction under real production. This study evaluated the XGBoost classification models
with different time frames for predicting the H9N2 status of several future days. This
setting ensured the model’s development and future prediction were only dependent on
historical information. By analyzing the performance criteria, the trend and fluctuation
of ACC, RR, PR, and AUC can be seen in Table 3 and Figure 5, and it was found that the
accuracy, sensitivity, and AUC values of the models to predict H9N2 status + 0 were higher
than those to predict H9N2 status + 1 and +2, the drop of accuracy was 7.69% with the
prediction moving forward from 0th to 2nd day. The overall accuracy rate and recall rate of
this framework to predict H9N2 status + 0 with the time frame of day + 0, day − 1, day
− 2 and day − 3 were demonstrated as reliable toward 92% of the predictions, and the
framework to predict H9N2 status + 1 with the time frame of day + 0 and day − 1 still
worked well. Besides, the data captured herein represent the before/after H9N2 occurrence
and development in concentrated and HPAI-immunized laying hen houses; in order to
prove the good applications of our results, data from two of the infected houses were used
in model training, and data of the third house was used in model testing. Furthermore, it
would be beneficial to apply the models to larger datasets collected from other endemic
areas in recent years.

Once the animal suffers from a disease, the production performance usually changes
suddenly. Unlike time series cross-validation models, this study chose five time frames
with a fixed number of days rather than the accumulated days to predict H9N2 status.
Compared with ACC, RR, PR, and AUC of different models, the models of time frames with
more days generally showed worse and fluctuant performances in predicting H9N2 status
+ 0 and +1, which might be due to more additional and useless information introduced into
the model training. For the prediction of a binary outcome, imbalanced classification often
occurs when many outputs belong to one of two classes [45]. As shown in Figure 6, the
laying rate and mortality of day − 3 and day − 4 played small roles in each model, and
some features were even negligible. This finding was supported by the study indicating that
the more information introduced into the model, the more “don’t care values” would be
added into datasets, which was easy to form attribute noise affect model performance [46].
The feature with a higher value indicates its greater power to explain the variation of the
output and its key role in training the model [47]. Laying rate − 1 and laying rate − 2
ranking the first two were the top two important predictors in models with day − 2, −3,
−4 instead of laying rate + 0 as the key predictor in models with day + 0 and day − 1,
illustrating laying rate + 0 had the significant and stronger explanation for epidemic status.
Similarly, for H9N2 status + 2, the ACC and RR of all models were 84.62%, and their PRs
were 73.33% because their first 2 important features were laying rate + 0 and laying rate − 1
to show their similar explanation ability except day + 0 model, which only had 2 features
ranking by laying rate + 0 and mortality + 0 (Figure S1).

Furthermore, in XGBoost classification models, the laying rate had higher importance
than mortality features; this was consistent with the conclusions of the impact of H9N2
on poultry production [36], where the H9N2 mainly resulted in directly reducing egg
production or high indirect mortality associated with the co-infection with other pathogens.
In this study, XGBoost classification models of day + 0 and day − 1 to predict H9N2
status + 0 and H9N2 status + 1 were recommended for H9N2 occurrence and development
predicting. Besides, there were a lot of machine learning methods used in animal disease
predictions [12,48], and Gradient-Boosted Tree (GBT) was proven to be the most accu-
rate model (accuracy of 84.9%) than Deep Learning, Decision Tree, and RF in predicting
sub-clinical bovine mastitis [48]. XGBoost, as a quick implementation of GBT [49], was
proved to have more outstanding prediction accuracy and generalization ability than RF,
support vector machines (SVM), k-nearest neighbor (KNN), and back propagation neural
network (BPNN) in predicting the risk and outbreaks of human diseases [14,15,20,21],
due to its parallel processing [30], handle and capture missing values internally [50]. The
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results of our study also showed good application and performance in animal infectious
disease predictions.

4.3. Potential Applications

This study provided an acceptable and reliable framework to predict H9N2 status
from +0th to +2nd days with a high accuracy rate, recall rate and AUC within the cross-
validation. Different from the prediction generated by traditional production curves [51,52],
this framework was more dynamic and individual-house-oriented, which could support
many innovative applications. Basically, authorities or veterinarians may use XGBoost
classification models to communicate the risk of H9N2 occurrence and development to
farmers and stakeholders, and the warning rule could be described as Table 5 or revised
based on the veterinary’s criteria. The status of two consecutive days can be used to reflect
the occurrence and development of H9N2 and give the corresponding warning level to
remind and assist authorities or veterinarians in diagnosing and controlling the disease.
Therefore, precise treatment can be given, such as medicating, culling or temporary bans [4].
The same framework could also be applied to early warning and auxiliary diagnosis
of similar diseases that have impacts on production performance or other production
traits responded in advance, such as infectious laryngotracheitis [53] and fowlpox [54].
Alternatively, the applications of these XGBoost classification models can be integrated with
computer-based animal epidemic surveillance systems (e.g., the web-based FMD prediction
system of Thailand [12]) or farm management systems as an additional application for
H9N2 status prediction. The likelihood of an H9N2 outbreak for a particular laying hen
house can be determined through these models whenever the new real-time data are
recorded in the management system based on the judgment rule listed in Table 5 and
through the color of the indicator on the screen to intuitively reflect H9N2 status in laying
hen house.

Table 5. Warning rule of H9N2 status using XGBoost classification models.

Predicted H9N2 Status Warning
Level

Meaning H9N2
DevelopmentH9N2 Status + 0 H9N2 Status + 1

0 0 Green Safe None
0 1 Yellow Low warning Start
1 1 Red High warning Development
1 0 Yellow Low warning Nearly finish

Note: +0 = today, +1 = future 1st day.

At present, Python software used in this study is free and open access, which has
the ability to handle different types of data, from small to large datasets. Moreover, many
open-source machine learning platforms are available and easy to operate only if the users
have basic computer or statistical programming knowledge [11].

5. Conclusions

This study developed a framework using XGBoost classification models and demon-
strated that their abilities with different time frames were capable of predicting H9N2
status in individual laying hen houses in advance within a 3-day period. H9N2 status
prediction models worked well with accuracy and sensitivity ranging from excellent to
outstanding, of which an accuracy rate > 90%, a recall rate > 90%, a precision rate > 80%,
and an AUC ≥ 0.85 could be achieved. Among them, the models of day + 0 and day − 1
were highly recommended to predict H9N2 status + 0 and H9N2 status + 1 for direct
or auxiliary monitoring of the occurrence and development of H9N2. Authorities and
veterinarians may consider applying the XGBoost classification algorithm to the currently
used computer-based animal epidemic surveillance system or farm management system to
enhance its early warning capability. Furthermore, the framework utilized in this study
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may also be considered for application to data from other infectious diseases, which have
similar impacts on production performances.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13091494/s1, Codes S1: Python codes. Datasets S1: Part of the
collated datasets used in this study. Figure S1: Feature importance for H9N2 status + 0 (A), +1 (B), +2
(C) predictions in laying hen houses from the XGBoost classification models with time frames of day
+ 0 (a), day − 1 (b), day − 2 (c), day − 3 (d), and day − 4 (e). +2 = future 2nd day, +1 = future 1st
day, +0 = today, −1 = previous 1 day, −2 = previous 2 days, −3 = previous 3 days, and −4 = previous
4 days.
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