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Simple Summary: Homocysteine is an organic compound that can be measured in the blood of
humans and animals. High levels of homocysteine in human blood are associated with an increased
risk of heart disease, diseases of blood vessels, formation of blood clots and brain damage. However,
the role of homocysteine in the health and disease of domestic animals is poorly understood. This
review critically appraises the literature concerning homocysteine in animals, focusing on horses.
It aims to clearly define the existing knowledge gap to path an avenue for future research into
homocysteine as a potential diagnostic marker of health and disease in this species.

Abstract: Homocysteine is an endogenous, non-protein sulfuric amino acid, an intermediate metabo-
lite formed by the methionine transmethylation reaction. Its elevated serum concentration in humans,
hyperhomocysteinemia, is a sensitive indicator and a risk factor for coagulation disorders, cardiovas-
cular diseases and dementia. However, the role of homocysteine in veterinary species has not been
unequivocally established. Although some research has been conducted in dogs, cats, cattle and pigs,
relatively few studies on homocysteine have been conducted in horses. So far, it has been established
in this species that homocysteine has an atherogenic effect, plays a role in early embryo mortality and
is responsible for the induction of oxidative stress. These preliminary findings support establishing
a reference range in a normal population of horses, including horses in training and merit further
investigations into the role of this amino acid in health and disease in this species.

Keywords: homocysteine; equine; antioxidant; stress; surrogate marker

1. Introduction

Homocysteine (Hcy) is an endogenous, non-proteinogenic, sulfur-containing amino
acid formed as an intermediate metabolite in the process of intracellular transmethylation
of an essential amino acid methionine to semi-essential cysteine (Figure 1) [1]. According
to the latest hypothesis, homocysteine and its thiolactone could have been involved in
protein synthesis at the origins of life on Earth [2]. Hcy is normally catabolized via the
transsulfuration pathway to cysteine, but it can also be recycled back to methionine via
(re)methylation [3,4]. The (re)methylation process takes place in the presence of a biologi-
cally active form of folic acid (vitamin B9), N5-methyl-tetrahydrofolate (N5-methyl-TH4) [5].
N5-methyl-TH4 is responsible for lowering Hcy concentrations, and its “sweeping” proper-
ties highlight the health benefit of dietary supplementation of folic acid [6–10]. A similar
relationship exists with other nutrients. Methionine synthesis requires riboflavin (vitamin
B2) and cobalamin (vitamin B12) as cofactors [11,12], whilst the transsulfuration of Hcy
to cysteine requires pyridoxine (vitamin B6) [13]. Deficiencies of vitamins B2, B6 and
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B12 contribute to harmful hyperhomocysteinemia, and their supplementation reduces its
effects [10,14–23].
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role in this pathway. 

In humans, increased serum Hcy concentration, hyperhomocysteinemia, is a 
sensitive marker and a risk factor for coagulation disorders, cardiovascular diseases, 
especially of thrombotic aetiology, neurodegenerative diseases and dementia [24–32]. Due 
to the coexistence of those medical conditions and hyperhomocysteinemia, particularly in 
older people, Hcy has been named by the medical profession as the cholesterol of the 21st 
century [33]. Recently, homocysteine has been investigated during COVID-19, chronic 
kidney disease, oncogenesis and infertility, emphasizing an interest in this biomarker 
within the medical and scientific community [34–39]. 

However, relatively little is known about the role of homocysteine in the health and 
disease of veterinary species. This review aims to critically appraise existing literature and 
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Figure 1. Schematic overview of homocysteine (Hcy) metabolism. Hcy is exclusively derived from
dietary methionine. It can be catabolised via a transsulfuration pathway to cysteine or remethylated
to methionine. Vitamins of the B-group (vit. B6; pyridoxine, vit. B2; riboflavin, vit. B12; cobalamin
and biologically active form of vit. B9, N5-methyl-tetrahydrofolate (N5-methyl-TH4) play a crucial
role in this pathway.

In humans, increased serum Hcy concentration, hyperhomocysteinemia, is a sensitive
marker and a risk factor for coagulation disorders, cardiovascular diseases, especially
of thrombotic aetiology, neurodegenerative diseases and dementia [24–32]. Due to the
coexistence of those medical conditions and hyperhomocysteinemia, particularly in older
people, Hcy has been named by the medical profession as the cholesterol of the 21st
century [33]. Recently, homocysteine has been investigated during COVID-19, chronic
kidney disease, oncogenesis and infertility, emphasizing an interest in this biomarker within
the medical and scientific community [34–39].

However, relatively little is known about the role of homocysteine in the health and
disease of veterinary species. This review aims to critically appraise existing literature
and clearly define the knowledge gap to pave the way for future research into serum
homocysteine as a potential biomarker of health and disease in horses.

2. Methods

This paper is a narrative review. Research studies were ascertained by searching
PubMed, The Web of Science, Google Scholar, and citation searching. Search terms included:
homocysteine, AND horses OR equine OR pets OR dogs OR farm animals. The arbitrary
start date for studies included in this review was not set. However, searches were completed
in January 2023.

3. Homocysteine in Pets and Farm Animals

The role of hyperhomocysteinemia has not been clearly understood in veterinary
medicine. However, a statistically significant increase in serum concentrations had been
demonstrated in dogs with heart disease, dogs with chronic enteropathy, dogs and cats
with kidney disease, and dogs with hypothyroidism [40–43].

During canine hypothyroidism, as in humans, the concentration of Hcy was negatively
correlated with the concentration of total thyroxine (TT4) [42,44,45]. It is partially explained
by the positive correlation between thyroid hormone levels and the activity of methylenete-
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trahydrofolate reductase (MTHFR), which is involved in the (re)methylation of Hcy to
methionine [46–49]. This relationship indicates a likely role of thyroid gland disorders in
developing homocysteine-dependent pathologies [44,50]. Therefore, any investigation of
Hcy disturbances should ideally involve concurrent measurement of the thyroid hormone
concentrations to assess their involvement.

Hcy has been studied in farm animals, but the evaluation of its serum concentra-
tion has not gained clinical application. The observations in pregnant and lactating sows
provide interesting but somewhat ambiguous conclusions [51]. In a study assessing the
effect of folic acid and vitamin B12 supplementation on the parameters of growth and the
immune status of their offspring, there was a positive correlation between the concentration
of Hcy and the growth performance of piglets, but on the other hand, a negative correlation
with some indicators of humoral and cellular immune responses [51]. Furthermore, it has
been demonstrated that a methionine-rich diet was correlated with serum hyperhomocys-
teinemia and predisposed pigs to atherogenesis [52]. Hcy has also been investigated in
cattle [53–56]. Its serum concentration was significantly higher than in healthy animals
during bovine theileriosis [53], and in moderate, long-term cobalt deficiency [54].

4. Homocysteine in Horses

The role of Hcy in disease pathogenesis has also been studied in horses, but to a
limited extent and only in some areas in this species (Table 1).

Table 1. Summary of studies (chronologically) on the role of Hcy in the disease pathogenesis in horses.

Keywords Publication Date Reference

Embryonic resorption; mare 2003 [57]
Vascular endothelium; laminitis 2004 [58]

Reactive oxidant species (dROMs); antioxidant barrier
(Oxy-adsorbent); thiol antioxidant barrier (SHp) 2009 [59]

Acute exercise; workload; serum lactate 2010 [60]
Cardiovascular; arrythmia; atrial fibrillation 2018 [61]

Cardio-renal biomarkers; parasitemia; Theileria equi 2020 [62]
Aspartate aminotransferase; creatine kinase; lactate

dehydrogenase; oxidative stress 2022 [63]

4.1. Cardiovascular Disease

The role of Hcy in the etiology of cardiovascular disease in humans is well under-
stood [64]. Hyperhomocysteinemia in humans has been associated with vascular inflam-
mation and atherosclerosis [65–72]. Therefore, inhibition of vascular thromboresistance in
hyperhomocysteinemia is of particular interest. Hcy increases the synthesis of thromboxane
A2 (TxA2), activates coagulation factor V, inhibits the synthesis of anticoagulants at the
DNA level, and suppresses the maturation of the endothelial matrix cells [73–79].

Furthermore, Hcy negatively affects the regeneration of already damaged vascular
endothelial cells because it strongly inhibits DNA and protein methylation [80–83]. For
example, Hcy inhibits the methylation of p21 Ras protein (p21ras) and decreases the ex-
pression of the gene encoding this protein [84]. This leads to a reduction in cellular DNA
synthesis and impaired tissue repair [81]. Hcy also has a negative effect on myocytes and
myocardial contractility [85].

The role of Hcy in horses in the course of laminitis is debatable. Although Hcy
interacted with vascular endothelial cells in vitro, there was no association between hyper-
homocysteinemia and the risk of laminitis [58].

However, a relationship between hyperhomocysteinemia, impaired chorionic angio-
genesis and early embryo mortality was demonstrated in mares [57]. Therefore, determin-
ing serum Hcy concentration may be useful in assessing the risk of the above-mentioned
fertility impairment in this species.
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Because of its involvement in the proliferation of endothelial cells and vascular smooth
muscle, Hcy affects the structure and function of the cardiovascular system. However,
no relationship between hyperhomocysteinemia and cardiac dysfunction has yet been
demonstrated in Equidae. In a study assessing horses with atrial fibrillation (AF), there
were no differences in serum Hcy concentration between horses with AF (n = 55) and
healthy animals (n = 27) [61]. Furthermore, there was no relationship between serum Hcy
concentrations and the likelihood of AF recurrence after successful cardioversion [61].

In another study assessing serum Hcy, cardiac (troponin I, creatinine kinase and d-
dimer) and renal biomarkers (urea, creatinine and cystatin-C) in horses naturally infected
with Theileria equi, all examined parameters, including cardiac ones significantly positively
correlated with the magnitude of parasitemia [62]. This may indicate the possible involve-
ment of Hcy in myocardial damage, although other causes, including oxidative stress and
the systemic response to parasitemia, are also possible.

Although based on small sample size, these observations emphasize a significant
variation in the disease pathogenesis between horses and other species and highlight the
differences in the potential utility of serum Hcy concentrations as a marker of cardiac
disease in Equidae.

As aforementioned, more research is needed to further assess Hcy as a risk factor for
vascular disease in horses.

4.2. Neurodegenerative Disease

Hyperhomocysteinemia in people leads to cognitive impairment and depression [86–92].
It is also a significant risk factor for Parkinson’s disease (PD) [93]. In a rat model of the
disease, hyperhomocysteinemia reduces the number of dopaminergic neurons, likely by
increasing their sensitivity to endogenous toxins [94,95]. In addition, Hcy contributes to
neuronal degeneration by inducing oxidative stress, enhancing mitochondria dysfunction,
DNA damage and apoptosis [96–99].

Amongst other neurodegenerative diseases, Alzheimer’s disease (AD), the most com-
mon cause of dementia in older adults, merits special consideration [100,101]. AD is primar-
ily characterized by the deposition of the β-amyloid peptide (Aβ) in the brain parenchyma
and cerebral blood vessels [102,103]. Although not entirely clear, hyperhomocysteinemia
has been implicated in the pathogenesis of AD and other types of dementia [30,104–109]. It
has also been demonstrated in a large meta-analysis that every increase of serum Hcy con-
centration by 5 µmol/L increases the risk of Alzheimer’s disease by as much as 12% [105]. It
is fascinating that apart from being involved in vascular changes, Hcy may also play a role in
the development of AD by antagonizing gamma-aminobutyric acid (GABA) receptors and
acting as a neurotransmitter competing with GABA [110–112]. In addition, Hcy has been
implicated in the pathogenesis of other neurological and psychiatric diseases in humans,
including autism, epilepsy, depression, bipolar disorder and schizophrenia [31,113–116].

There is no data on the role of Hcy in equine neurological diseases. However, the
involvement of Hcy in Parkinson’s disease (PD), which is pathogenetically similar to equine
pituitary pars intermedia dysfunction (PPID) [117], provides an exciting area for future re-
search into the role of Hcy in this disease entity in horses. Other potential research avenues
include the investigation of the role of Hcy in equine degenerative myeloencephalopathy
(EDM) and equine motor neuron disease (EMND) [118,119].

4.3. Physical Activity

Horses are exceptionally well-adapted athletes [120]. This adaptative behaviour
has been crucial in the species’ survival in the face of the threat from predators [121].
During exercise, a horse’s heart rate increases by more than eight times concerning resting
conditions [122]. Additional adaptative manifestations to increased physical load include
an increased ratio of lung capacity to body weight, the ability to double the number of
peripheral blood erythrocytes by splenic contraction in the initial phase of physical effort,
and even adaptation to hypercapnia under extreme exercise load [122–124].
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Nevertheless, despite the adaptation mechanisms, sports horses are subjected to ad-
verse effects of physical exertion. Apart from injuries, myopathies, post-exercise pulmonary
haemorrhage and other clinical conditions, strenuous exercise and increased oxygen con-
sumption generate oxidative stress, and free radical formation is responsible for numerous
metabolic disorders [125–128]. Furthermore, in humans, strenuous exercise has been
linked to cardiac injury by the induction of oxidative stress and systemic inflammatory
response [129].

It has been demonstrated that acute exercise increases Hcy levels in humans, and the
magnitude of those elevations depends on prior training preparation [130,131]. Although
the basal Hcy serum concentration is lower in people with regular physical activity, up to
47% of athletes develop hyperhomocysteinemia after exercise [132,133]. It raises concerns
for amateur runners participating in triathlons, marathons or ultramarathons. Prolonged
post-exercise oxidative stress and hyperhomocysteinemia may lead to vascular endothelial
damage in these individuals [131].

In one of the few studies evaluating the relationship between Hcy and strenuous
exercise in horses, animals were subjected to jumping over ten obstacles with a maximum
height of 140 cm over a distance of 350 m [60]. The serum Hcy concentrations were obtained
before, 30 and 60 min after the training, with a tendency for increased Hcy concentration
documented immediately after training [60].

The influence of strenuous exercise on the levels of antioxidants and vitamins is
significant as an increased breakdown of glycogen and an increased demand for B6 post-
training is well described [134]. Interestingly, post-exercise increase in serum Hcy levels
has been detected in humans with appropriate concentrations of folic acid and vitamin
B6 [131]. Hyperhomocysteinemia in those subjects has been explained by natural post-
exercise changes in glomerular filtration and plasma clearance of Hcy. None of those
relationships has been studied in horses.

Physical exercise can cause various biochemical changes that may affect horses’ oxida-
tive stress-dependent Hcy metabolic pathways. It has therefore been suggested to study the
physiological range of serum Hcy and its changes depending on the frequency, intensity
and duration of training [60].

4.4. Oxidative Stress

Hcy is an important inducer of prooxidative-antioxidative imbalance associated with
increased intracellular calcium ion concentrations and DNA damage [98,135]. Hcy con-
tributes to oxidative stress by reducing glutathione peroxidase activity and lowering the
level of vitamins A, E and C [136]. By reducing the de novo synthesis of glutathione, Hcy
also leads to the impairment of redox mechanisms [137]. Stimulation of the synthesis of
reactive oxygen species is one of the most important links between Hcy, particularly its
oxidized sulfhydryl groups, and the development of atherosclerosis [138]. Atherosclerosis
is also favoured by Hcy-induced hyperuricemia, which further promotes the formation of
reactive oxygen species and subsequent vascular endothelium dysfunction [85].

Oxidative stress contributes to increased uptake and use of methionine, which is
subsequently converted to Hcy. It has been demonstrated that the maximal physical
activity of racehorses over 1200, 1600 and 2000 m causes an increase in reactive oxygen
metabolites (dROMs) and serum Hcy concentration. The mentioned indices remained
positively correlated with each other also after strenuous physical activity [63].

In another study examining the relationship between Hcy and oxidative stress in
racing horses, there was a high positive correlation between the serum concentration of
Hcy and dROMs. The Hcy concentration increased immediately after exercise, returned to
resting values 30 min later, and remained stable until the end of observation (i.e., 180 min
after the race). The concentration of dROMs initially increased immediately after exercise,
then decreased. However, it remained higher concerning the resting value for the remainder
of the observation period. Post-exercise increases and decreases in serum Hcy concen-
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tration were also positively correlated with the antioxidative barrier (Oxy-Adsorbent), a
compensatory response to oxidative stress [59].

The effects of oxidative stress on serum biomarkers have already been identified in
racehorses, where an elevation in gamma-glutamyl transferase (GGT) associated with
training has been documented [139]. A relationship between poor performance and ele-
vated gamma-glutamyl transferase (GGT) beyond this anticipated increase has also been
identified. Although the exact mechanism responsible for the increase in GGT is not fully
understood, a poor response to oxidative stress (overtraining) has been proposed [139]. A
recent investigation to determine the potential role of infectious agents with elevated GGT
in a population of racehorses also supports the role of oxidative stress and, in addition,
identified a decrease in vitamin B6 in the horses with exercise-associated elevation in
GGT [140]. These data further support the investigation of Hcy in racehorses, particularly
in a subset of horses with poor performance and elevated GGT.

Those findings suggest that sports horses may be at risk of certain Hcy-related diseases
and, at the same time, provide the rationale for serum Hcy as a potential marker of redox
disorders in this species.

4.5. Reference Values and Hyperhomocysteinemia

Hyperhomocysteinemia in humans is defined as serum Hcy concentration exceed-
ing 15 µmol/L, while an increase of 2.5 µmol/L above this value increases the risk of
cardiovascular disease by 10% [141,142].

Currently, it is difficult to clearly define hyperhomocysteinemia in horses due to a lack
of established and standardized reference ranges for serum Hcy and a limited number of
studies on the role of this amino acid in disease pathogenesis. However, under physiological
conditions in horses, elevated post-training serum Hcy levels are usually short-lived, lasting
for around 60 min post-exercise [60]. Furthermore, some evidence suggests that the length
of post-exercise serum Hcy elevation in horses is directly proportional to the length of prior
strenuous exercise [131].

To the best of our knowledge, only three studies assessed normal serum Hcy con-
centration in horses. A study in ponies reported normal serum Hcy concentration in the
range of 1.3–14.7 µmol/L [58]. Another small research estimated average resting serum
Hcy at 6.16 µmol/L (SD 0.36), with interindividual variations likely caused by differences
in husbandry factors [60]. In a research of a more diverse group of 27 healthy horses, the
serum Hcy reference range was established at 1.5–7.8 µmol/L with an average value of
4.65 µmol/L [61]. More research is needed to reliably show the physiological range of
serum Hcy and its normal variation in horses.

4.6. Determination Methods

Serum Hcy concentration has been successfully and reproducibly determined in dogs
by chemiluminescent immunoassay incorporated in the ADVIA Centaur XP automated
system (Siemens, Munich, Germany) [42]. The correlation between the results obtained
by this method and the results obtained by high-performance liquid chromatography
(HPLC) is almost complete (r = 0.96, p = 0.0001) [143]. Similarly, an automated enzymatic
method (Homocysteine Cobas C INTEGRA 800 assay, Roche Diagnostics International
Ltd., Rotkreuz, Switzerland) has been reliably used to determine serum Hcy in horses [61].
Unlike previously utilised HPLC, both methods are rapid and easily available.

5. Conclusions

The involvement of Hcy in numerous pathogenetic processes in humans and animals
provides a solid ground for further research in horses. Investigations into the role of Hcy
in various diseases and physiological conditions, including physical exertion of varying
intensity, are warranted. Most importantly, however, developing a standardized, unified
and reliable reference range of serum Hcy in healthy horses is crucial. After meeting these
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criteria, serum Hcy will likely serve as a clinically useful surrogate marker for evaluating
redox disorders in this species.
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