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Simple Summary: The genomic estimated breeding value (GEBV) using data from Brangus heifers
were obtained from genomic selection (GS) methods associating the single nucleotide polymorphisms
(SNP) marker genotypes with phenotypic data for economically important growth (birth, weaning,
and yearling weights) and carcass (depth of rib fat, and percent intramuscular fat and longissimus
muscle area) traits using the linkage disequilibrium (LD) between SNP markers and quantitative
trait loci (QTL) and/or the genomic relationship between animals. The heritability estimates were
found similar across genomic best linear unbiased prediction (the GBLUP), and the Bayesian (BayesA,
BayesB, BayesC and Lasso) GS methods for k-means and random cluster. The Bayesian methods
resulted in underestimates of heritabilities and overestimates of accuracy of GEBV. However, the
GBLUP method resulted in more reasonable estimates of heritabilities and accuracies of GEBV for
growth and carcass traits of heifers from a composite population.

Abstract: The predictive abilities and accuracies of genomic best linear unbiased prediction (GBLUP)
and the Bayesian (BayesA, BayesB, BayesC and Lasso) genomic selection (GS) methods for eco-
nomically important growth (birth, weaning, and yearling weights) and carcass (depth of rib fat,
apercent intramuscular fat and longissimus muscle area) traits were characterized by estimating the
linkage disequilibrium (LD) structure in Brangus heifers using single nucleotide polymorphisms
(SNP) markers. Sharp declines in LD were observed as distance among SNP markers increased. The
application of the GBLUP and the Bayesian methods to obtain the GEBV for growth and carcass
traits within k-means and random clusters showed that k-means and random clustering had quite
similar heritability estimates, but the Bayesian methods resulted in the lower estimates of heritability
between 0.06 and 0.21 for growth and carcass traits compared with those between 0.21 and 0.35 from
the GBLUP methodologies. Although the prediction ability of the GBLUP and the Bayesian methods
were quite similar for growth and carcass traits, the Bayesian methods overestimated the accuracies
of GEBV because of the lower estimates of heritability of growth and carcass traits. However, GBLUP
resulted in accuracy of GEBV for growth and carcass traits that parallels previous reports.

Keywords: accuracy; GBLUP; Bayesian methods; genomic prediction; k-means clustering; growth
and carcass traits
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1. Introduction

The availability of high-density SNP genotypes from high-throughput genotyping
technologies [1–4] and the development of linear and nonlinear methods (such as the
GBLUP, BayesA, BayesB, BayesC, and Bayesian Lasso) [1,5,6] have made genomic selec-
tion applicable for the economically important traits in animal and plant breeding [7–14].
Genomic selection methods associate SNP marker genotypes with phenotypic data for
economically important traits to obtain the GEBV of animals based on the LD between SNP
and QTL and/or genomic relationship among animals. The accuracy of GEBV, important
for the genetic progress in GS, is influenced by many factors, including the level of LD be-
tween SNP and QTL, heritability of the trait, and the estimation methods of GEBV [15–17].
Habier et al. [18] reported that the accuracies of GEBV depend on LD among SNP and
QTL, and on genomic relationships among animals in the training and validation datasets.
Their findings indicated that the accuracy of GEBV of a selected animal decreased as the ge-
nomic relationship between selection animals (candidates) and training animals decreased.
Saatchi et al. [19] also showed that if the genetic relationships between animals in training
and animals in validation data were minimized as per the pedigree-base additive genetic
relationships among animals in the k-means clustering procedure, accuracies of GEBV of
animals in the validation data were less affected by their genomic relationships. Villumsen
et al. [20] also studied the effect of heritability on the accuracy of GEBV in GS using simu-
lated data and reported that the accuracy of GEBV increased about 17% as the heritability
increased from 0.02 to 0.30 in the GS study. Clark et al. [21] compared the accuracy of GEBV
from BLUP, the GBLUP, and the BayesB methods, finding that the accuracies of genomic
prediction from GS methods depended on the significant effect of QTL on the trait, and that
the small effect of QTL resulted in a non-significant difference between GBLUP and BayesB.

The objectives of this research were to characterize LD structure of Brangus heifers and
to compare the predictive ability and accuracy of the GBLUP and the Bayesian methods
for economically important growth (birth, weaning, and yearling weights) and carcass
(depth of rib fat, percent of intramuscular fat, and longissimus muscle area) traits using
BovineSNP50 Infinium BeadChip SNP markers (n = 54,001 SNP).

2. Materials and Methods
2.1. Phenotypes

Birth weight (BW), weaning weight (WW), and yearling weight (YW) were phenotypes
for growth traits, and depth of rib fat (FAT), percent intramuscular fat (IMF), and longis-
simus muscle area (LMA) were phenotypes for carcass traits from yearling ultrasound
evaluation. Phenotypes were collected from 738 Brangus heifers that were registered with
International Brangus Breeders Association [9,22,23]. Year of birth (2005 to 2007), season of
calving (spring or autumn), and age of dam were also obtained from the database of the
International Brangus Breeders Association. The descriptive statistics of these growth and
carcass traits are presented in Table 1.

Table 1. Descriptive statistics for growth and carcass traits in Brangus heifers.

Trait Mean ± SE * Minimum Maximum

Birth weight (BW), kg 34.48 ± 0.19 18.03 50.94
Weaning weight (WW), kg 377.98 ± 1.81 201.37 549.56
Yearling weight (YW), kg 540.67 ± 3.45 225.51 769.67
Depth of rib fat (FAT), cm 0.57 ± 0.01 0.02 1.40
Intramuscular fat (IMF), % 4.81 ± 0.04 2.02 9.77
Longissimus muscle area (LMA), cm2 62.31 ± 0.41 27.22 91.19

* SE: Standard error of mean.

2.2. SNP Marker Genotypes

BovineSNP50 Infinium BeadChips for 54,001 SNP markers were used to genotype
each heifer [2]. Genotypes of SNP markers were determined in the A/B allele format and
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coded as 0, 1, or 2, based on the number of B alleles at each locus. With this SNP marker
information and using the snpReady package in R-program [24], three filters were applied
for quality control in the following sequence: (a) Animals with > 50% missing data were
removed; (b) SNP markers with > 5% missing data or < 95% call rate were removed; and (c)
SNP markers with < 10% minor allele frequency were removed. After executing imputation
for missing SNP markers, the complete SNP genotype data included 35,351 SNP markers
from 738 animals. On each chromosome, the distribution of the number of SNP markers
within a 1 Mb window was determined by using the rMVP package in the R-program [25].

2.3. Linkage Disequilibrium

The success of GS and genome-wide association studies (GWAS) are dependent on
LD, which is a non-random association among SNP markers. LD is measured using the
square of correlation (r2) between SNP markers and ranges between 0 and 1. Linkage
disequilibrium is expressed as

r2
ij =

(pAB − pA pB)
2

(pA pa)(pB pb)
(1)

where pAB, pA = 1− pa and pB = 1− pb are the observed frequencies for haplotype AB and
alleles A and B at locus i and j, respectively. The estimates of LD for pairwise combinations
of all SNP markers were obtained from the pairwise LD function of the Synbreed package in
the R program [26,27].

2.4. Genomic Selection
2.4.1. Genomic Best Linear Unbiased Prediction (GBLUP)

The model for GEBV was:
y = Xb + Zg + e (2)

where y was a vector of BW, WW, YW, LMA, IMF, or FAT; X was a design matrix allocating
BW, WW, YW, LMA, IMF or FAT to the fixed effects of overall mean, contemporary groups
and dam age; Z was a design matrix allocating BW, WW, YW, LMA, IMF, or FAT to additive
genetic effects of animals; b was a vector of fixed effects of overall mean, contemporary
groups, and dam age; and g was a vector of additive genomic breeding values for animals
following a multivariate normal distribution g ∼ N

(
0, Gσ2

g

)
with genomic relationship

matrix (G) and the additive genetic variance (σ2
g ) among animals. e was a vector of residuals

following a multivariate normal distribution e ∼ N
(
0, Iσ2

e
)

with the residual variance (σ2
e ).

The G matrix indicating the realized relatedness among animals was calculated as

G =
WWT

2 ∑k
i=1 pi(1− pi)

(3)

where W = M− P, M was the (n× k) matrix of SNP markers for the n = 738 animals with
the k = 35, 351 SNP markers; P was the (n× k) matrix of the allele frequencies multiplied
by 2; pi was the allele frequency of SNP marker i; and the sum was, overall, loci [18,28].

The GBLUP used for the GEBV of animals was equivalent to solving the mixed
model equations: [

XTX XTZ

ZTX ZTZ + G−1 σ2
e

σ2
g

][
b
g

]
=

[
XTy
ZTy

]
(4)

where σ2
g and σ2

e were the additive genetic and residual variances and G−1 was the inverse

of the G matrix. Therefore, the heritability of the trait was defined as h2 = σ2
g /
(

σ2
g + σ2

e

)
.

The BGLR package (https://cran.r-project.org/web/packages/BGLR/index.html (ac-
cessed on 10 March 2022)) in the R program [6,26] was used to solve the mixed model

https://cran.r-project.org/web/packages/BGLR/index.html
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equations in Equation (4) for b and g by estimating the additive genetic and residual vari-
ances (σ̂2

g and σ̂2
e ). The estimate of heritability was then calculated as ĥ2 = σ̂2

g /
(

σ̂2
g + σ̂2

e

)
.

2.4.2. The Bayesian BayesA, BayesB, BayesC and Lasso Methods

The Bayesian (BayesA, BayesB, BayesC, and Lasso) methods were applied to estimate
the SNP effects for genomic prediction using cross-validation datasets of BW, WW, YW,
LMA, IMF, and FAT. The cross-validation data of BW, WW, YW, LMA, IMF, and FAT were
modeled as a function of the individual SNP effects:

y = Xb + Mm + e (5)

where y was a vector of BW, WW, YW, LMA, IMF, or FAT; X was a design matrix allocating
BW, WW, YW, LMA, IMF, or FAT to the corresponding fixed effects of overall mean,
contemporary groups, and dam age; M was a n × k matrix of SNP (0, 1 or 2); b was a
vector of fixed effects of overall mean and contemporary groups and dam age; and m was
a k× 1 vector of SNP effects assumed a priori to follow a multivariate normal distribution
m ∼ N(0, Ω) with Ω = diag

(
σ2

m1
, σ2

m2
, · · · , σ2

mk

)
the diagonal matrix and σ2

mi
the variance

of SNP i. The prior distribution of SNP effect mi depended on the SNP variance σ2
mi

and
the prior probability π that SNP i had zero effect:

mi

∣∣∣∣∣π, σ2
mi

{
= 0 with probability π

∼ N
(

0, σ2
mi

)
with probability (1− π).

(6)

where the parameter of π was defined between 0 and 1 [5]. The specifications for π and
the SNP variance σ2

mi
determined the methods of BayesA, BayesB, and BayesC. In BayesA

and the BayesB methods, the SNP variance σ2
mi

denoted the ith SNP variance, which had
a scaled inverse chi-square distribution (χ−2(ν, S)) with degrees of freedom ν and scale S
parameters. These specifications result in a univariate Student’s t distribution t(0, ν, S) for
the marginal distribution of the SNP effect mi| ν, S with the probability of the parameter of
(1− π) [5,6]. In BayesC, with the SNP variance σ2

mi
= σ2

m, prior distributions of the SNP
effects had a common variance distributed with χ−2(ν, S). Therefore, these specifications
resulted in a mixture of multivariate Student’s t distributions t(0, ν, IS) for the marginal
distribution of the SNP effect mi| ν, S with the probability parameter of (1− π) [5,6]. In
the BayesA method, the value of zero was assigned for the parameter of π, resulting in all
k SNP in the model. However, in the BayesB and the BayesC methods, the fixed value of
0.95 was assigned for the parameter of π, resulting in 5% of k SNP markers with none-null
variances in the model. In the Bayesian Lasso (BL), all k SNP (π = 0) were in the model,
as in the BayesA method, and each SNP marker variance σ2

mi
had a Laplace distribution

Exp
(

λ2

2

)
with λ parameter, which had a conjugate prior distribution of Gamma. These

specifications result in a Double Exponential (DE) distribution for the marginal distribution
of SNP effect mi

∣∣ λ2 with the probability the parameter of (1− π) [6,29]. The vector of e
represented normally distributed residuals (e ∼ N

(
0, Iσ2

e
)
) with the variance (σ2

e ), which
has a χ−2(νe, Se) with degrees of freedom νe and scale Se parameters. The BGLR package
(https://cran.r-project.org/web/packages/BGLR/index.html (accessed on 10 March 2022))
in the R program [6,26] was used to estimate SNP effects for BW, WW, YW, LMA, IMF,
and FAT.

2.4.3. K-Means and Random Clustering

The animals for cross-validation were divided into 10-fold data sets by using the
k-means clustering approach. K-means clustering maximizes genetic relatedness within
each cross-validation set and minimizes it between cross-validation datasets based on

https://cran.r-project.org/web/packages/BGLR/index.html
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the genetic dissimilarity (D) matrix among animals [19], which was calculated from the
pedigree numerator relationship (A) matrix [30]:

dij = 1−
aij
√aiiajj

= 1− rij (7)

where dij was a measure of genetic dissimilarity between individuals i and j, aij was
the additive genetic relationship between individual i, and j, aii (ajj) was the ith (jth)
diagonal element of the A matrix, which represented Wright’s coefficient of relationship
(rij) between individuals i and j. GeneticsPed package in the R-program [31] was used
to create the pedigree numerator relationship (A) matrix, and the factoextra package in
the R-program [32] implementing the Hartigan and Wong [33] algorithm was used for
k-means clustering.

For random clustering, the animals were randomly divided into 10-fold datasets for
cross-validation, and this procedure was replicated five times.

2.4.4. Accuracy of Genomic Prediction

The training process in the 10-fold cross-validation from k-means and random cluster-
ing approaches was performed by excluding one validation set to train on the remaining
nine validation sets, and then the GEBV of animas in the omitted validation set were ob-
tained. The predictive ability of the GBLUP and the Bayesian BayesA, BayesB, BayesC, and
Lasso methods in the 10-fold datasets for cross-validation were determined using Pearson’s
correlation coefficient (ry,ŷ) between the observed (y) and predicted (ŷ) phenotypic values
for BW, WW, YW, LMA, IMF, and FAT.

The accuracy of GEBV represented the correlation (rBV,GEBV) between the breeding
values (BV) and GEBV. However, the BV of animals are unknown, and the accuracy of
GEBV of animals for traits was calculated by pooling estimates from the 10-fold cross-
validation strategy. The accuracy of the GEBV of animals for traits was estimated using
Pearson’s correlation coefficient (ry,ŷ) weighted by the heritability (h2) of the traits in the
validation datasets [34]:

rBV,GEBV =
ry,ŷ√

h2
(8)

3. Results and Discussion
3.1. Distribution of SNP Markers and LD Analysis

We retained 35,351 SNP after filtering markers based on the quality-control criteria.
The distribution and density plots of SNP markers per chromosome are presented in
Figure 1A,B. The total length of the autosomal genome was 2509.0 Mb, with the shortest
chromosome (i.e., 25) being 42.9 Mb in length and the longest chromosome (i.e., 1) being
158.2 Mb in length. The length of chromosome X was 148.6 Mb. As seen in Figure 1A, there
was a decreasing trend in the number of SNP markers from chromosome 1 to chromosome
X and the SNP coverage ranged between 620 (1.78%) on chromosome 25 and 2194 (6.31%)
on chromosome 1. Chromosome 1 and 25 had the longest and the shortest chromosomes
with 158.49 Mb and 42.91 Mb in a study of Sahiwal cattle [35] with 157.78 Mb and 42.21 Mb
in Charolais, Limousine, and Blonde d’Aquitaine cattle [36], and with 158.03 Mb and
42.80 Mb in Vrindavani crossbred cattle in India [37]. Singh et al. [37] also reported that
since the distribution of SNP was related with the length of chromosomes, chromosome
1 had the highest number of SNP (2798) and chromosome 25 had the least number of
SNP (792). The largest distance between SNP markers was 3.26 Mb on chromosome 10,
and the shortest distance was 0.01 kb on chromosome 15. The average distance between
SNP markers was 57.24 kb. Lu et al. [38] reported that the total genome length for Angus,
Charolais, and Crossbred beef cattle in Canada was between 2534.98 and 2535.30 Mb, with
the shortest chromosome 25 being 42.72 Mb and the longest chromosome 1 being 158.09 Mb.
The distribution of the number of SNP differed from 2026 to 2176 for the chromosome 1 and
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from 580 to 607 for chromosome 28, and the overall average distance between two adjacent
SNP markers was 70 kb.
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Figure 1. Distribution and density plot of SNP markers on each chromosome. (A): Number of SNP
markers on each chromosome. (B): Density of SNP markers on each chromosome.

The density plot of SNP markers in Figure 1B showed the number of SNP markers
within a 1 Mb window on each chromosome. The horizontal axis of the density plot of SNP
markers indicates the length of chromosome (Mb). The different color shows SNP density
from 0 to 37 SNP markers on each chromosome. The distribution of SNP markers on the
autosomal chromosomes was not uniform and indicated a tendency of being clustered in
some regions. The colors on the chromosomes showed the variation in the density of SNP
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markers on each chromosome. The density of the SNP markers differed from 12.0 SNP/Mb
on chromosome 12 to 15.1 SNP/Mb on chromosome 19. For the X chromosome, density of
the SNP markers was 4.7 SNP/Mb. Chromosome 1 had a similar density pattern of SNP;
however, chromosomes 11, 14, 24, and 25 had higher density of SNP at the beginning of
the chromosomes compared to the rest of the chromosomes. The X chromosome was the
second largest chromosome, but green and grey colors indicated very sparse densities of
SNP markers. In addition, chromosome 6 had more SNP markers than chromosomes 3, 4,
and 5, and was shorter than those chromosomes; therefore, the density of SNP markers on
chromosome 6 (14.6 SNP/Mb) was higher than those on chromosomes 3 (14.1 SNP/Mb),
4 (13.3 SNP/Mb) and 5 (112.3 SNP/Mb).

Pairwise, LD between 35,351 SNP markers were assessed using the squared corre-
lation (r2) between SNP markers. The average LD (SD) and genetic distance (SD) were
0.125 (0.156) and 0.503 (0.285) Mb within an interval of 1 Mb pairs across all chromosomes.
The overall average for LD and genetic distances were 0.022 (0.054) and 29.060 (24.209)
Mb, respectively. The distribution of LD (r2) against the genetic distance (Mb) given in
Figure 2 indicated a sharp decline with increases of the genetic distance between SNP. The
association between the degree of decay in LD with the distance between SNP markers
indicated a clear decreasing exponential trend with an increasing genetic distance (Figure 2).
Higher LD values were obtained for SNP markers located in close proximity. For the SNP
markers less than 0.1 Mb apart, the mean LD (SD) was 0.195 (0.224), and 11.22% of SNP
marker pairs had an LD higher than 0.5. For the genetic distance between pairs of SNP
markers at ranges from 0 to 0.1, 0 to 0.2, and 0 to 0.5 Mb, 11.22, 8.73, and 5.67% of SNP
marker pairs showed a higher LD than 0.5, respectively.
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Figure 2. The linkage disequilibrium (r2) among SNP markers plotted against the genetic distances
(Mb) in Brangus heifers.

McKay et al. [39] and El Hou et al. [36] reported that most of the studies based on
bovine SNP data have shown that the average LD was close to zero for distances between
SNP greater than 500 kb. Lu et al. [38] reported rapidly decreasing LD from 0.29 to 0.23 to
0.19 in Angus, 0.22 to 0.16 to 0.12 in Charolais, and 0.21 to 0.15 to 0.11 in crossbred cattle
for the distances from 0–30 kb to 30–70 kb, and then to 70–100 kb, respectively. El Hou
et al. [36] also found that the average LD values between pairs of SNP markers ranged from
0.079 to 0.121 for Charolais, Limousine, and Blonde d’Aquitaine cattle, and the average
LD changed from 0.5 to 0.1 at distances from smaller than 15 kb to greater than 120 kb.



Animals 2023, 13, 1272 8 of 18

Singh et al. [37] also calculated the average LD of 0.43 for the distance of less than 10 kb,
and then it decreased to 0.21 for the distances of 25 to 50 kb for Vrindavani crossbred cattle.

3.2. Heritability Estimates from GBLUP, and the Bayesian (BayesA, BayesB, BayesC and Lasso)
Methods in K-Means and Random Training Datasets

Heritability estimates of growth (BW, WW, and YW) and carcass (FAT, IMF, and
LMA) traits from 10-fold k-means and random cluster training datasets were obtained
from the GBLUP and the Bayesian (BayesA, BayesB, BayesC, and Lasso) methods. In the
analyses of growth traits, the estimates of heritabilities across 10-fold k-means (random)
cluster training datasets ranged between 0.20 (0.20) to 0.26 (0.30) from the GBLUP and
between 0.05 (0.04) to 0.16 (0.16) from the Bayesian methods for BW; between 0.19 (0.17) to
0.24 (0.24) from the GBLUP; between 0.02 (0.02) to 0.13 (0.13) from the Bayesian methods
for WW; between 0.30 (0.31) to 0.36 (0.36) from the GBLUP; and between 0.09 (0.08) to
0.22 (0.29) from the Bayesian methods for YW. In the analyses of carcass traits, the estimates
of heritabilities across 10-fold k-means (random) cluster training datasets ranged between
0.28 (0.28) to 0.34 (0.33) from the GBLUP and between 0.09 (0.07) to 0.19 (0.19) from the
Bayesian methods for FAT; between 0.31 (0.30) to 0.37 (0.37) from the GBLUP, and between
0.15 (0.14) to 0.25 (0.26) from the Bayesian methods for IMF; and between 0.30 (0.32) to
0.38 (0.42) from the GBLUP, and between 0.11 (0.11) to 0.23 (0.29) from the Bayesian methods
for LMA (Table 2). Overall mean (±standard deviation) estimates of heritabilities for the
growth traits for 10-fold k-means (random) cluster training datasets in Figure 3 were
0.23 ± 0.02 (0.24 ± 0.02) from the GBLUP and 0.09 ± 0.03 (0.09 ± 0.02), 0.10 ± 0.02
(0.10 ± 0.03), 0.09 ± 0.01 (0.09 ± 0.01) and 0.15 ± 0.01 (0.15 ± 0.01) from BayesA, BayesB,
BayesC, and BL in the Bayesian methods for BW; 0.22 ± 0.02 (0.21 ± 0.02) and 0.06 ± 0.03
(0.06 ± 0.03), 0.07 ± 0.03 (0.06 ± 0.02), 0.06 ± 0.01 (0.06 ± 0.01), 0.13 ± 0.01 (0.12 ± 0.01)
for WW; 0.32 ± 0.02 (0.31 ± 0.03) and 0.16 ± 0.03 (0.16 ± 0.04), 0.16 ± 0.03 (0.15 ± 0.03),
0.15 ± 0.02 (0.15 ± 0.02), 0.17 ± 0.01 (0.17 ± 0.01) for YW, respectively.

Table 2. Mean [minimum, maximum] estimates of heritability of birth weight (BW), weaning weight
(WW), and yearling weight (YW) for growth traits, rib fat (FAT), intramuscular fat (IMF), and
longissimus muscle area (LMA) for carcass traits from 10-fold k-means and random cluster training
datasets across replications, using Genomic Best Linear Unbiased Prediction (GBLUP) and Bayesian
(BayesA, BayesB, BayesC, and Lasso (BL)) methods.

K-Means Cluster

THE GBLUP BayesA BayesB BayesC BL

Growth Traits
BW 0.23 [0.20, 0.26] 0.09 [0.05, 0.13] 0.10 [0.07, 0.13] 0.09 [0.06, 0.11] 0.15 [0.14, 0.16]
WW 0.22 [0.19, 0.24] 0.06 [0.02, 0.11] 0.07 [0.02, 0.11] 0.06 [0.05, 0.08] 0.13 [0.12, 0.13]
YW 0.32 [0.30, 0.36] 0.16 [0.11, 0.22] 0.16 [0.09, 0.20] 0.15 [0.11, 0.19] 0.17 [0.15, 0.18]

Carcass Traits
FAT 0.31 [0.28, 0.34] 0.13 [0.09, 0.19] 0.14 [0.09, 0.17] 0.13 [0.10, 0.17] 0.15 [0.14, 0.16]
IMF 0.34 [0.31, 0.37] 0.20 [0.16, 0.24] 0.21 [0.15, 0.25] 0.20 [0.16, 0.23] 0.19 [0.18, 0.20]
LMA 0.35 [0.30, 0.38] 0.18 [0.13, 0.23] 0.18 [0.11, 0.21] 0.18 [0.12, 0.21] 0.17 [0.15, 0.18]

Random Cluster

GBLUP BayesA BayesB BayesC BL

Growth Traits
BW 0.24 [0.20, 0.30] 0.09 [0.04, 0.15] 0.10 [0.04, 0.20] 0.09 [0.06, 0.13] 0.15 [0.14, 0.16]
WW 0.21 [0.17, 0.24] 0.06 [0.02, 0.17] 0.06 [0.02, 0.11] 0.06 [0.04, 0.09] 0.12 [0.11, 0.13]
YW 0.31 [0.26, 0.38] 0.16 [0.08, 0.29] 0.15 [0.08, 0.25] 0.15 [0.11, 0.21] 0.17 [0.15, 0.18]

Carcass Traits
FAT 0.30 [0.23, 0.35] 0.14 [0.07, 0.23] 0.14 [0.06, 0.23] 0.13 [0.09, 0.18] 0.15 [0.14, 0.16]
IMF 0.34 [0.29, 0.39] 0.21 [0.13, 0.28] 0.21 [0.13, 0.31] 0.20 [0.15, 0.25] 0.19 [0.17, 0.20]
LMA 0.35 [0.29, 0.42] 0.19 [0.11, 0.29] 0.18 [0.11, 0.28] 0.18 [0.13, 0.21] 0.17 [0.15, 0.18]
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Figure 3. Mean estimates of heritability of birth weight (BW), weaning weight (WW) and yearling
weight (YW) for growth traits from 10-fold k-means and random cluster training datasets using
Genomic Best Linear Unbiased Prediction (GBLUP) and the Bayesian (BayesA, BayesB, BayesC, and
Lasso (BL)) methods.

For the carcass traits, overall mean (±standard deviation) estimates of heritabilities
in Figure 4 were 0.31 ± 0.02 (0.30 ± 0.03) from GBLUP and 0.13 ± 0.03 (0.13 ± 0.03),
0.14± 0.03 (0.14± 0.03), 0.13± 0.02 (0.13± 0.02) and 0.15± 0.01 (0.15± 0.01) from BayesA,
BayesB, BayesC, and BL in the Bayesian methods for FAT; 0.34 ± 0.02 (0.34 ± 0.02) and
0.20 ± 0.03 (0.21 ± 0.04), 0.21 ± 0.04 (0.21 ± 0.04), 0.20 ± 0.03 (0.20 ± 0.02) and
(0.19 ± 0.01) (0.19 ± 0.01) for IMF; 0.35 ± 0.02 (0.35 ± 0.03) and 0.18 ± 0.03 (0.18 ± 0.04),
0.18 ± 0.03 (0.18 ± 0.03), 0.18 ± 0.02 (0.18 ± 0.02) and 0.17 ± 0.01 (0.17 ± 0.01) for LMA.

As presented in Figures 3 and 4, 10-fold k-means and random cluster training datasets
resulted in very similar heritability (h2) estimates for growth and carcass traits. The
comparison of methods suggested that the GBLUP methodology yielded almost double the
heritability (h2) estimates than the Bayesian (BayesA, BayesB, BayesC, and Lasso) methods
for growth and carcass traits within 10-fold k-means and random cluster training datasets.
Within the Bayesian (BayesA, BayesB, BayesC, and Lasso) methods, the BL method resulted
in higher estimates of heritability (h2) than BayesA, BayesB, and the BayesC methods for
growth traits; however, heritability (h2) estimates for carcass traits were similar across the
Bayesian methods. Peters et al. [9] reported the pedigree and genome-based estimates of
heritabilities for growth and carcass traits by conducting GWAS analyses using the BayesC
method and the SNP markers for the Brangus cattle of this study.

Pedigree-based estimates of heritabilities were similar with those from GBLUP for
growth traits, but were higher than those from the Bayesian (BayesA, BayesB, BayesC,
and Lasso) methods for growth and carcass traits. Genome-based (BayesC) estimates of
heritabilies for growth and carcass traits were lower than those from GBLUP, but were
similar with those from the other the Bayesian methods. The heritability (h2) estimates from
THE GBLUP for growth and carcass traits were in the range of heritability (h2) estimates
reported in the literature [9,40–44], and they suggested that GBLUP resulted in more
reasonable heritability estimates than the Bayesian (BayesA, BayesB, BayesC, and Lasso)
methods in the analyses using smaller subsets of the data [42].
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Figure 4. Means of heritability (h2) estimates of depth of rib fat (FAT), intramuscular fat (IMF), and
longissimus muscle area (LMA) for carcass traits from 10-fold k-means and random cluster training
datasets using Genomic Best Linear Unbiased Prediction (GBLUP) and the Bayesian (BayesA, BayesB,
BayesC, and Lasso (BL)) methods.

3.3. Comparison of Genome-Wide Prediction Ability

The GBLUP and the Bayesian methods were used to analyze growth (BW, WW, and
YW) and carcass (FAT, IMF, and LMA) traits. The means and standard deviations of Pear-
son correlations (ry,ŷ) between actual and predicted phenotypes for growth (BW, WW
and YW) traits in Figure 5 and those for carcass (FAT, IMF, and LMA) traits in Figure 6
indicate the performance of genomic prediction from the GBLUP and the Bayesian methods
when applied in the same 10-fold k-means and random cluster datasets for training and
validation, respectively. As seen in Figures 5 and 6, mean correlations for growth (BW,
WW and YW) and carcass (FAT, IMF and LMA) traits from k-means and random cluster
training data sets were similar across the GBLUP and the Bayesian methods. For growth
(BW, WW and YW) traits, Figure 5 showed that BL method (on average, 0.813 ± 0.005,
0.827 ± 0.005, 0.811 ± 0.005 and 0.814 ± 0.005, 0.827 ± 0.004, 0.811 ± 0.004) resulted
in higher Pearson’s correlations than GBLUP (on average, 0.747 ± 0.015, 0.745 ± 0.020,
0.801 ± 0.014 and 0.749 ± 0.020, 0.733 ± 0.024, 0.800 ± 0.020), BayesA (on average,
0.737 ± 0.044, 0.728 ± 0.075, 0.802 ± 0.029 and 0.746 ± 0.039, 0.729 ± 0.074,
0.808 ± 0.039), BayesB (on average, 0.751 ± 0.025, 0.733 ± 0.065, 0.799 ± 0.027 and
0.749 ± 0.043, 0.722 ± 0.058, 0.798 ± 0.033), and BayesC (on average, 0.747 ± 0.017,
0.743 ± 0.025, 0.799± 0.015 and 0.749± 0.022, 0.732± 0.028, 0.798± 0.020) methods within
the 10-fold k-means and random cluster training datasets. For carcass (FAT, IMF and LMA)
traits, Figure 6 showed that GBLUP (on average 0.812 ± 0.018, 0.814 ± 0.016, 0.827 ± 0.014
and 0.810 ± 0.022, 0.816 ± 0.015, 0.826 ± 0.021), BayesA (on average, 0.814 ± 0.029,
0.816 ± 0.018, 0.829 ± 0.028 and 0.820 ± 0.031, 0.822 ± 0.028, 0.834 ± 0.031), BayesB (on
average, 0.817 ± 0.022, 0.822 ± 0.024, 0.825 ± 0.025 and 0.813 ± 0.033, 0.822 ± 0.025,
0.826 ± 0.022), BayesC (on average, 0.812 ± 0.020, 0.817 ± 0.017, 0.825 ± 0.015 and
0.811 ± 0.021, 0.818± 0.016, 0.825± 0.015), and BL (on average, 0.827± 0.006, 0.810 ± 0.003,
0.816 ± 0.004 and 0.827 ± 0.005, 0.811 ± 0.004, 0.817 ± 0.004) methods produced similar
correlations ranging from 0.810 to 0.834 within the 10-fold k-means and random cluster
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training datasets; however, the correlations for carcass traits were higher than those for
growth traits.
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Figure 5. Predictive ability of Genomic Best Linear Unbiased Prediction (GBLUP) and the Bayesian
(BayesA, BayesB, BayesC, and Lasso (BL)) methods for birth weight (BW), weaning weight (WW) and
yearling weight (YW) for growth traits from 10-fold k-means and random cluster training datasets.

Predictive performance of the GBLUP and the Bayesian methods was explored by
using the correlations from 10-fold k-means and random cluster cross-validation datasets.
Figure 5 showed that GBLUP (on average, 0.193 ± 0.105, 0.103 ± 0.105, 0.253 ± 0.167 and
0.245 ± 0.132, 0.186 ± 0.086, 0.334 ± 0.113), BayesA (on average, 0.189 ± 0.104, 0.104 ±
0.107, 0.253 ± 0.167 and 0.239 ± 0.098, 0.172 ± 0.115, 0.328 ± 0.120), BayesB (on average,
0.193 ± 0.105, 0.102 ± 0.107, 0.248 ± 0.165 and 0.231 ± 0.136, 0.186 ± 0.119, 0.337 ± 0.104),
BayesC (on average, 0.192 ± 0.104, 0.102 ± 0.109, 0.250 ± 0.166 and 0.247 ± 0.093, 0.188
± 0.129, 0.327 ± 0.099), and BL (on average, 0.199 ± 0.109, 0.104 ± 0.104, 0.255 ± 0.164
and 0.244 ± 0.115, 0.204 ± 0.119, 0.337 ± 0.121) methods within the 10-fold k-means and
random cluster cross-validation datasets resulted in similar correlations for growth (BW,
WW and YW) traits. The ranges of the correlations within 10-fold k-means and random
cluster cross-validations were from 0.189 ± 0.104 to 0.199 ± 0.109 and 0.231 ± 0.136 to 0.247
± 0.093 for BW, 0.102 ± 0.107 to 0.104 ± 0.104 and 0.172 ± 0.115 to 0.204 ± 0.119 for WW,
and 0.248 ± 0.165 to 0.255 ± 0.164 and 0.327 ± 0.099 to 0.337 ± 0.121 for YW. The ranges
of correlations also indicated that the random cluster cross-validation resulted in a higher
correlation than k-means cluster cross-validation, minimizing the genetic relationships
among clusters. The trait of YW produced higher correlations than the traits of BW and
WW within growth traits.
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Figure 6. Predictive ability of Genomic Best Linear Unbiased Prediction (GBLUP) and the Bayesian
(BayesA, BayesB, BayesC, and Lasso (BL)) methods for depth of rib fat (FAT), intramuscular fat (IMF),
and longissimus muscle area (LMA) for carcass traits from 10-fold k-means and random cluster
training datasets.

Figure 6 indicated that GBLUP (on average, 0.227 ± 0.143, 0.325 ± 0.127, 0.253 ± 0.116
and 0.261 ± 0.117, 0.394 ± 0.104, 0.339 ± 0.114), BayesA (on average, 0.225 ± 0.140,
0.326 ± 0.128, 0.252 ± 0.117 and 0.260 ± 0.128, 0.389 ± 0.104, 0.344 ± 0.092), BayesB (on
average, 0.230 ± 0.134, 0.329 ± 0.126, 0.246 ± 0.115 and 0.272 ± 0.103, 0.396 ± 0.096,
0.352 ± 0.119), BayesC (on average, 0.228 ± 0.140, 0.326 ± 0.127, 0.251 ± 0.115 and
0.260 ± 0.118, 0.389± 0.092, 0.348± 0.115), and BL (on average, 0.230± 0.138, 0.327 ± 0.131,
0.255 ± 0.115 and 0.270 ± 0.114, 0.391 ± 0.097, 0.353 ± 0.103) methods within the 10-fold
k-means and random cluster cross-validation datasets produced similar correlations for car-
cass (FAT, IMF and LMA) traits. The ranges of the correlations within 10-fold k-means and
random cluster cross-validations were from 0.225± 0.140 to 0.230± 0.138 and 0.260 ± 0.128
to 0.272 ± 0.103 for FAT, 0.325 ± 0.127 to 0.329 ± 0.126 and 0.389 ± 0.104 to 0.396 ± 0.096
for IMF, and 0.246 ± 0.115 to 0.255 ± 0.115 and 0.339 ± 0.114 to 0.353 ± 0.103 for LMA.
The ranges of correlations from the random cluster cross-validation were higher than those
from the k-means cluster cross-validation. The trait of IMF produced higher correlations
than the traits of FAT and LMA within carcass traits.

The predictive performances for growth (BW, WW, and YW) and carcass (FAT, IMF,
and LMA) traits from k-means and random cluster training and validation datasets were
found different within the GBLUP and the Bayesian methods, which depends on the
genetic architecture of the traits. The similar predictive performances from the GBLUP and
the Bayesian methods for growth (BW, WW and YW) and carcass (FAT, IMF and LMA)
also suggested that the genetic structures of growth and carcass traits controlled by many
genes with small effects. The carcass traits also resulted in the higher heritabilities and
then higher predictive performances than growth traits. These results also revealed that
the 10-fold k-means and random cluster cross-validation datasets resulted in significantly
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lower correlations than training datasets for growth (BW, WW and YW) and carcass (FAT,
IMF and LMA) traits within the GBLUP and the Bayesian (BayesA, BayesB, BayesC, and
Lasso) methods. The decrease in mean correlations for growth (BW, WW, and YW) and
carcass (FAT, IMF, and LMA) traits ranged from 52% to 87% in the 10-fold k-means and
random cluster cross-validation datasets. In addition, k-means cluster minimizing genetic
relationship among cross-validation datasets produced lower correlations than the random
cluster and the ranges of the decrease were from 16% to 22% for BW, 40% to 49% for WW,
23% to 26% for YW as growth traits, and 12% to 15% for FAT, 16% to 18% for IMF, and 25%
to 30% for LMA as carcass traits across the GBLUP and the Bayesian methods.

The accuracies of GEBV from the GBLUP and the Bayesian methods were obtained
from Pearson’s correlations (ry,ŷ) between observed and predicted phenotypes divided
by the square root of the estimated heritabilities and given in Figure 7 for growth and in
Figure 8 for carcass traits within k-means and random cluster cross-validation datasets. As
seen in Figure 7 for growth traits, the accuracies from the GBLUP and the Bayesian (BayesA,
BayesB, BayesC, and Lasso) methods were 0.402 ± 0.033, 0.630 ± 0.033, 0.610 ± 0.033,
0.640 ± 0.033, 0.514 ± 0.034 within k-means clustering and 0.500 ± 0.042, 0.797 ± 0.031,
0.730 ± 0.043, 0.823 ± 0.029, 0.630 ± 0.036 within random clustering for BW; 0.220 ± 0.033,
0.425 ± 0.034, 0.386 ± 0.034, 0.416 ± 0.034, 0.288 ± 0.033 within k-means clustring
and 0.406 ± 0.027, 0.702 ± 0.036, 0.386 ± 0.038, 0.768 ± 0.041, 0.589 ± 0.038 within ran-
dom clustering for WW; and 0.447 ± 0.053, 0.633 ± 0.053, 0.620 ± 0.052, 0.645 ± 0.052,
0.618 ± 0.052 within k-means clustring and 0.600 ± 0.036, 0.820 ± 0.038, 0.870 ± 0.033,
0.844 ± 0.031, 0.817 ± 0.038 within random clustring for YW. As seen in Figure 8 for car-
cass traits, the accuracies from the GBLUP and the Bayesian (BayesA, BayesB, BayesC
and Lasso) methods were 0.408 ± 0.045, 0.624 ± 0.044, 0.615 ± 0.042, 0.632 ± 0.044,
0.594 ± 0.044 within k-means clustering and 0.477 ± 0.037, 0.695 ± 0.040, 0.727 ± 0.033,
0.721 ± 0.037, 0.697 ± 0.036 within random clustering for FAT; 0.557 ± 0.040, 0.729 ± 0.040,
0.718 ± 0.040, 0.729 ± 0.040, 0.750 ± 0.041 within k-means clustering and 0.676 ± 0.033,
0.849 ± 0.033, 0.864 ± 0.030, 0.870 ± 0.029, 0.897 ± 0.031 within random clustering for IMF;
and 0.428 ± 0.037, 0.594 ± 0.037, 0.580 ± 0.036, 0.592± 0.036, 0.618± 0.036 within k-means
clustering and 0.573 ± 0.036, 0.789 ± 0.029, 0.830 ± 0.038, 0.820 ± 0.036, 0.856 ± 0.033
within random clustering for LMA.

The averaged accuracies of GEBV over all methods were 0.559 (0.696) for BW, 0.347
(0.645) for WW, 0.593 (0.790) for YW, 0.575 (0.663) for FAT, 0.697 (0.831) for IMF, and 0.562
(0.774) for LMA in k-means (random) cluster cross-validation datasets. As seen in Figures 7
and 8, the random clustering approach resulted in higher accuracies of GEBV (24% for BW,
87% for WW, 33% for YW, 15% for FAT, 19% for IMF, and 37% for LMA) than the k-means
clustering approach because of the higher relationship between training and validation
datasets in random clustering. Habier et al. [45] executed the genome-wise analysis of milk
yield, fat yield, protein yield, and somatic cell score, and indicated that the accuracy of
GEBV decreased by reducing the genomic relationship between animals for the training
and validation datasets. Saatchi et al. [19] found the accuracies of 0.554 and 0.700 for BW,
0.333 and 0.534 for WW, 0.356 and 0.573 for YW, 0.603 and 0.793 for FAT, 0.690 and 0.817
for Marbling, and 0.601 and 0.694 for LMA in the k-means and random cross-validation
datasets from Angus cattle, and they suggested that minimizing the genetic relationships
between animals from training and validation sets using k-means clustering resulted in the
conservative accuracies of GEBV.

Daetwyler et al. [46] determined that the high accuracy of GEBV resulted from the
family relationships rather than LD between SNP and QTL in a multiple-breed sheep
population. Chen et al. [47] showed that individuals with close relatives in the training
population had a higher accuracy of GEBV. Kang et al. [48] also reported the decreasing
accuracy of GEBV with an increasing generation gap between the training and validation
datasets. Zhou et al. [49] studied the factors affecting GEBV accuracy and reported that
the genetic relationship between animals from cross-validation datasets created a more
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important effect than the LD between SNP and QTL on the accuracy of GEBV because the
decrease in the accuracy of GEBV happened even when the LD between SNP increased.
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The accuracies of GEBV from the GBLUP and the Bayesian (BayesA, BayesB, BayesC,
and Lasso) methods averaged over all k-means and random clustering were 0.451, 0.713,
0.670, 0.732, 0.572 for BW, 0.313, 0.563, 0.572, 0.592, 0.439 for WW, 0.524, 0.726, 0.745, 0.745,
0.718 for YW in the growth traits, 0.442, 0.659, 0.671, 0.677, 0.645 for FAT, 0.617, 0.789,
0.791, 0.799, 0.824 for IMF, and 0.500, 0.692, 0.705, 0.706, 0.737 for LMA in the carcass
traits. As presented in Figures 7 and 8, the averaged accuracies of GEBV suggested that
GBLUP resulted in lower accuracies of GEBV than the Bayesian methods within growth
and carcass traits. The Bayesian methods exhibited quite similar accuracies of GEBV
and the BayesC method for growth traits, and the Bayesian LASSO method for carcass
traits provided higher accuracies of GEBV than other methods within the the Bayesian
methods, respectively. Sun et al. [50] compared the GBLUP and the Bayesian methods using
simulated data and found that the GBLUP had lower accuracy than BayesB and BayesCπ,
and the Bayesian methods resulted in quite similar accuracies. Gao et al. [51] also reported
that the Bayesian methods performed better accuracy of GEBV than the GBLUP methods
in the genome analysis of milk production traits of Nordic Holstein cows. However, Chen
et al. [52] reported that GBLUP performed better than Bayes B in the genomic analysis
of carcass traits from Angus and Charolais beef cattle. Hayes et al. [53] also found that
the GBLUP and the BayesB methods resulted in similar accuracies in a multibreed dairy
population. Additionally, Ostersen et al. [54] reported no difference among the GBLUP, the
Bayesian LASSO, and the Bayesian mixture methods based on 60,000 SNP data, and Ge
et al. [55] reported the similar predictive accuracy for the GBLUP and the Bayesian methods
for growth traits at weaning and yearling ages in Yaks. Although the predictive abilities of
the GBLUP and the Bayesian methods were quite similar for growth and carcass traits and
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k-means and random clusters (Figures 5 and 6) in the current study, the realized accuracies
of the GEBV of the GBLUP and the Bayesian methods were not similar (Figures 7 and 8)
because of the heritability estimates from the GBLUP and the Bayesian (BayesA, BayesB,
BayesC and Lasso) methods. As described by Rolf et al. [42] for the smaller subsets of
the data used in analyses, robust and reasonable heritability estimates can be obtained
from GBLUP methodologies compared to the Bayesian methods. The accuracies of GEBV
from the GBLUP in this study were then found in the range of the theoretical predicted
accuracies between 0.26 and 0.34 based on the heritability estimates of traits from 0.25 to
0.40 [56].
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4. Conclusions

In order to explore the translation of genomic prediction for growth and carcass
traits in Brangus cattle, the GBLUP and the Bayesian (BayesA, BayesB, BayesC and Lasso)
methods were used to estimate GEBV for growth (BW, WW and YW) and carcass (FAT,
IMF and LMA) traits within k-means and random clusters in this study. The heritability
estimates from k-means and random cluster were quite similar across genomic prediction
methods. The Bayesian methods underestimated the heritabilities between 0.06 and 0.21;
however, the heritability estimates from GBLUP were between 0.21 and 0.35 for growth
and carcass traits, and they parallel these types of estimates in the literature. Including
low-density SNP markers with low minor allele frequency would cause a poor performance
to estimate the heritabilities of traits with the Bayesian methods compared with GBLUP
using genomic relationship. K-means cluster appears to minimize the genetic relationships
among cross-validation datasets and yields lower correlations than in a random cluster.
These results of the current study suggested that the level of genetic relationship between
the training and validation data influences the prediction ability of genomic selection
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methods and the accuracy of GEBV. The prediction ability of the GBLUP and the Bayesian
methods within k-means and random clusters were quite similar for growth and carcass
traits; however, the Bayesian methods overestimated the accuracies of GEBV because of
the lower estimates of the heritability of growth and carcass traits. However, the GBLUP
resulted in more reasonable accuracy of GEBV for growth and carcass traits collected from
Brangus heifers.
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