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Simple Summary: In dairy ca�le, a cow’s productive life is an essential functional trait with great 

economic significance and is part of the breeding objectives and comprehensive selection indices. 

Thus, a highly reliable breeding value prediction is crucial to allow sufficient selection of animals 

with high genetic potential for survival. Suppose we proceed to evaluate survival in successive pe-

riods of an animal’s life. In that case, we encounter an unfavourable phenomenon where the earlier 

an animal is culled, the more the reliability of its breeding values is underestimated. We assume that 

this underestimation can be corrected by using a weighted analysis that balances the amount of 

information regardless of the number of survived periods. This paper a�empts to show the meth-

odological procedure for determining the weights and estimating the genetic parameters for the 

weighted analysis. 

Abstract: The genetic parameters for the survival of Holstein cows, analysed in nine consecutive 

time periods during the first three calving intervals, were estimated. The earlier the animals are 

culled, the more they are informationally underestimated. This undervaluing can be remedied by 

using a weighted analysis that balances the amount of information. If the method of estimating 

breeding values changes, the genetic parameters will also change. The Holstein ca�le dataset from 

2005 to 2017 used in this study included 1,813,636 survival records from 298,290 cows. The pedigree 

with three generations of ancestors included 660,476 individuals. Linear repeatability models esti-

mated genetic parameters for overall and functional survivability. Due to weights, heritability in-

creased from 0.013 to 0.057. Repeatability with weights was 0.505. The standard deviations of breed-

ing values were 1.75 and 2.18 without weights and 6.04 and 6.20 with weights. Including weights in 

the calculation increased the additive variance proportion and the breeding values’ reliabilities. We 

conclude that the main contribution of the weighted method we have presented is to compensate 

for the lack of records in culled individuals with a positive impact on the reliability of the breeding 

value. 
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1. Introduction 

In dairy ca�le, the length of a cow’s productive life is an essential functional trait 

with great economic significance [1–3] and is part of the breeding objectives and compre-

hensive selection indices [4,5]. Predicting future survival at an early age can reduce un-

profitable investment in an inferior animal [6]. A distinction is made between actual lon-

gevity as the number of days lived and functional longevity, i.e., the cow’s ability to delay 

involuntary culling due to health reasons. Longevity is strongly influenced by the 

breeder’s voluntary decision to cull an animal based on performance, so dairy cow 
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survival is corrected for milk yield when assessing functional longevity. Survivability in-

dicators used for dairy cows are, e.g., herd life, length of production life (from first calving 

to culling), and the number of lactations. The survivability indicator is used to assess or 

estimate the longevity of animals. The evaluation of individuals is intended to reflect how 

much of the selected period of life they have lived compared with other individuals reared 

under the same conditions [7]. For example, it expresses the ability to survive from the 

current lactation period to the next. Survivability is a complex trait, as cows may be dis-

carded from the herd for various reasons [8]. These reasons are low milk production, dis-

eases (mastitis, lameness, metritis, and others), injury, infertility, or death [9–12]. Surviv-

ability has a low heritability with a low but permanent response to selection [13]. 

For many years, there has been a global trend towards shorter cow lifespans [7,14,15], 

especially in countries with high milk yields [8,16]. Voluntary culling of cows is the deci-

sion of farmers. Cows may be culled during their first lactation period due to health prob-

lems and low production, which means an enormous loss of revenue for farmers [16]. 

Only a minority of cows survive until their fourth lactation period, meaning most are dis-

carded before reaching their maximum potential [17]. Taking functional traits (longevity, 

health traits, etc.) into account during breeding should lead to an increase in the produc-

tive life of cows [16]. Increasing cow longevity would reduce healthcare costs, increase 

profitability, and likely improve cow welfare and quality of life [18]. 

Depending on how longevity or survival is expressed, the heritability values differ. 

For short repetitive periods, which the animal survives over time, the heritability values 

of individual periods tend to be lower, but with more repeated observations than when 

considering a long period as a single indicator. For the short repetitive periods that the 

animal survives, the values of the heritability of individual periods tend to be lower if we 

compare them with the heritability of the whole period including these short periods. The 

evaluation of shorter recurrent periods is preferred, as it can be�er separate the observed 

data from systematic environmental effects such as herd–year–season (HYS). This is evi-

dent for all traits, for example for test-day models (TDM) for milk yield [19], where the 

heritability value of milk yield for a test-day is much lower than for the whole lactation 

period, or TDM for animal growth [20]. Van Pelt et al. [13] estimated a low heritability for 

productive lifespan (0.2% to 3.1%) measured at 1, 3, 6, and 12 months after the first calving. 

For life expectancy measured 72 months after the first calving, this estimate increased 

(from 11.5% to 14.9%). Similarly, low heritability was found for heifer survival (1%) and 

functional longevity in dairy cows (6%) [21]. Samoré et al. [22] estimated the heritability 

of functional longevity as 6%. Páchová et al. [23] found a heritability of 4.1% in Czech 

Holstein cows using survival analysis. Zavadilová and Štípková [24] reported heritability 

for the length of productive life measured in days at 3%, but 5% when measured as the 

number of lactations initiated. The low estimates of heritability result from low genetic 

and relatively high residual variability, which can be explained by the complexity of the 

traits and the sizeable influence of management [25]. However, low genetic variability 

may be a remnant resulting from different genetic causes of culling, which then falls into 

residual variability. In general, low heritability coefficients for longevity or survival are 

also the reason for the low success of selection to increase them. 

A standard procedure used for evaluating individuals is the survival analysis imple-

mented in software such as the “Survival kit” [26], which is based on nonlinear hazard 

functions using Weibull distributions. Other procedures include a linear model with re-

peatability [27], a linear model with repeatability augmented with random regressions 

[13,28], and the threshold model [29]. Heise et al. [30] showed that the genetic background 

of survivability varies across cows and genetic basis of survivability varies also within 

calving intervals. This leads to multi-trait linear statistical models in which the individual 

segments of the calving interval and lactation order are treated as genetically distinct traits 

(nine segments in total). The appropriateness of the individual assessment procedures 

also depends on whether only the first or subsequent lactations are used or whether over-

all or functional survivability is assessed. Correlations between breeding values (BVs) 
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according to different prediction methods ranged from 0.7 to 1 [27]. In the Czech Republic, 

a nationwide genetic assessment of longevity has been conducted using the survival kit 

method [31]. Incorporating molecular genetic data into an individual’s overall genetic 

evaluation is essential [32]. In the Czech Republic, the routinely used method for the ge-

netic evaluation of Holstein ca�le is the single-step genomic evaluation method 

(ssGBLUP). Methods for the genetic evaluation of different traits and their use in animal 

husbandry and breeding conditions are undergoing continuous development [33]. 

Generally, evaluating the genetic basis for survivability is complex because the actual 

phenotypic expression of the trait (herd life, production life, etc.) is only discovered later 

when the animal dies or is retired from breeding. Ways to predict survivability values at 

a young age are being sought. For example, selection indices include correlated external 

conformation and other traits [34]. When assessing repeated successive life periods, indi-

viduals previously discarded have fewer records in the datasets and, consequently, biased 

BV and reliabilities. The BV is a ‘regressed’ value, meaning that individuals with low re-

liability have a BV clustered around the mean, and the variability of the BV increases only 

with higher reliabilities. For individuals with a small number of records, the genetic eval-

uation of both themselves and their contemporaries is distorted, and the ranking may 

change (distortion of genetic breeding values). However, whether there is a following rec-

ord for an individual depends on the value of the binary traits received in the previous 

period. Record counts and survivability values are dependent variables, there are ‘non-

randomly’ different record counts per individual, and long-lived individuals have differ-

ent record counts than short-lived individuals. Culled cows receive a final decision and 

are not assessed further. Individuals who have not been culled are assessed further; their 

survival records for subsequent life periods increase, and the reliability of its assessment 

is also gradually increased. The reported reliability of the BV of a discarded individual 

should be at the same level as that of an individual with survival records for all segments 

over the entire evaluation period. One option to remove bias in assessing culled individ-

uals could be to assign ‘weights’ to individual observations. 

The inclusion of weights substantially increases the volume of information. At the 

same time, the variability and differences between individuals change. Therefore, new 

population genetic parameters for overall and functional survivability must be estab-

lished. The objective of this study was to estimate genetic parameters for the weighted 

analysis of survivability in dairy ca�le using a linear repeatability model and weights as-

signed to survival periods in Holstein cows. 

2. Materials and Methods 

Following the methodologies proposed by Heise et al. [30], we used nine consecutive 

periods covering the first three calving intervals, each divided into three periods. An in-

dividual goes through these nine periods during their life, which it will or will not survive. 

Survival is marked ‘100’ and non-survival ‘0’. At each period, the individual encounters 

contemporaries within the herd–year–season (HYS). Weights were determined on a small 

artificial set of 10 different individuals. The first individual did not survive the first period 

and had only one record; only the tenth individual survived all nine periods and had nine 

records. Each period of an individual’s life was in a different HYS period. The size of all 

HYSs was complemented to 20 individuals. 

Weights (Figure 1 and Table 1) were assigned to survival data in two different ways: 

w1: A weight based on the number of non-survived periods. For the all-survived pe-

riod, a weight of one was given. The record of the non-survived period was weighted by 

the number of periods in which the animal could no longer survive. An individual culled 

in the first period was given a weight of nine. An individual culled in the second period 

was given a weight of one for the first and eight for the second period. An individual 

culled in the eighth period received a weight of two for that period and 1 for periods 1 to 

7. Individuals who survived to the ninth period, whether culled or not, were weighted by 
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one for all periods. The weights for a sample of ten individuals successively culled were 

9, 8, 7, 6, 5, 4, 3, 2, 1, and 1. 

w2: Weight by the effective number of cases. 

 

Figure 1. Weight values by the number of periods survived. 

Table 1. Weights, breeding value, and reliability of breeding value for 10 different individuals. 

Method of Weighting * Without Weight w1 w2 

Individual 
Failure to Sur-

vive a Stage 
BV r2 Weight BV r2 Weight BV r2 

A 1 −0.73 0.02 9 −6.96 0.11 16 −10.09 0.15 

B 2 −0.60 0.04 8 −5.42 0.12 13 −7.63 0.15 

C 3 −0.47 0.05 7 −3.89 0.12 10 −4.95 0.15 

D 4 −0.34 0.07 6 −2.37 0.13 8 −2.76 0.15 

E 5 −0.21 0.09 5 −0.85 0.14 6 −0.42 0.15 

F 6 −0.09 0.10 4 0.69 0.14 5 1.07 0.15 

G 7 0.03 0.12 3 2.25 0.14 3 3.75 0.15 

H 8 0.15 0.13 2 3.84 0.15 2 5.34 0.15 

I 9 0.26 0.15 1 5.49 0.15 1 6.99 0.15 

J Survival 9 1.99 0.15 1 7.22 0.15 1 8.71 0.15 

* h2 = 0.02, survival = 100, non-survival = 0, w1 = weight by number of un-survived periods, w2 = 

weight by effective number of cases, BV = breeding values, r2 = reliability of breeding values. 

 

The assumption was to achieve by using weights the same reliability for BV of each 

of the ten individuals no ma�er how many periods they survived. The reliability of BV 

depends on the effective number of cases. Here, w depends on the number of contempo-

raries in each group. 

w = 1∗nv/(1 + nv), (1)

where w is the effective number of cases in each HYS effect level, and nv is the number of 

contemporaries in each HYS effect level. 

The sum of w for all known segments of the discarded individual is equal to the sum 

of the individual with all known periods (∑w). In the period where an individual was 

culled, the effective number of cases (wd) would be the sum of all periods (∑w) minus the 
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effective counts achieved by the individual in the previous periods. The weight of the rec-

ord is as follows: 

w = m∗wd/(m − wd), (2)

where w is the weight of the record at the period in which the individual is culled, m is 

the number of contemporaries in the given HYS, and wd is the effective number of cases 

in the culling period. 

The integer rounded weights for a sample of ten individuals who were successively 

culled were 16, 13, 10, 8, 6, 5, 3, 2, 1, and 1. 

For the weights calculation: The dataset was analysed using a simple linear model 

with repeatability, herd, year, season fixed effects (using HYS), and random genetic indi-

vidual effects (ANIg). 

Y = X.HYS + Z.ANIg + e (3)

where Y is the known vector of observed values (the dependent variable);  

X is the design matrix of fixed effects; 

Z is the design matrix of random effects;  

e is the vector of random errors. 

The ten individuals were unrelated. Based on the results published by Heise et al. 

[30], we modelled heritability = 0.02. The reliability of the BV of the individual (i) is based 

on the diagonal element of the inverse matrix of the system. 

r2i = 1 – k∗cii, (4)

where r2i is the BV reliability of individual I;  

k is the ratio (1 − h2)/h2; 

cii is the diagonal element for individual i from the inverse matrix of the system. 

Table 1 shows the BV values and their reliabilities for the sample of ten individuals, 

depending on the weighting method (w1; w2). 

Both weighting methods have essentially changed the differences among individu-

als, be�er reflecting their biological nature. Individual I (culled in the ninth period) should 

be genetically equal to individual J, which survived the ninth period. They show good 

survival with the same positive BV. Individual A did not survive the first period and 

should be very different from individual B that was culled in the second period and had 

a more negative BV. The above assumptions were met by weighted evaluation. Individu-

als I and J survived till period nine, had a weight of ‘1’ in all periods, and achieved an 

identical BV reliability of r2 = 0.15 in all three presented examples. There was also the same 

difference in BV among the three methods, at approximately 1.73. For other individuals, 

the BV reliabilities and differences between individuals varied depending on how the 

weights were used. Weighting changed the overall BV layout and equalised BV reliability. 

Higher weights (w2) yielded be�er results, and only w2 will be considered in the rest of 

the manuscript. 

The national population of Holstein ca�le up to 2017 was used to determine genetic 

parameters (5,039,625 records from 903,340 cows in the years 1992–2017). Survivability 

was monitored for nine consecutive periods during the first three calving intervals, which 

were divided into three periods according to Heise et al. [30]: the first period up to 49 days 

after calving, the second period 50–249 days after calving, and the third period above 249 

days after calving (the third, sixth, and ninth periods ended by subsequent calving). The 

third period is of varying length depending on the actual calving period of the cow. The 

average calving interval was 407 days, with a maximum of 500 days. In the dataset, the 

records of survival of a given period were marked ‘100’ and of non-survival ‘0’. There 

were one to nine records per cow, depending on the number of periods it survived. 

The dataset size was adjusted to make it possible for the calculation of genetic pa-

rameters, which were then estimated. The most recent data were used; cows born after 

2005 that first calved up to and including 2014 were used to allow them to survive all nine 
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periods when the data were retrieved in 2014 (we did not use censored data that could 

bias genetic parameters). HYS was chosen as the calendar quarter within the herd and the 

year. In HYS, cows from all nine periods were contemporaries of each other. Daughters 

from sires with fewer than 15 daughters and HYS with fewer than 15 cows were excluded. 

Editing was performed iteratively until the resulting numbers were stable. During culling, 

it was checked that each retained cow had an unbroken series of continuous records. The 

numbers of cases in the adjusted dataset are listed in Table 2. 

Table 2. Description of edited data. 

 
Statistical Model 

Without Weight With Weight (w2) 

Cow with records 298,290 

Individuals in the pedigree 660,476 

HYS, records Number 15,919, Mean size 113.93, Range 15 to 650 

Milk deviation in the herd (SD) Average 0.99 (0.21), Range 0.06 to 4.60 

Correlation survival rate x milk 0.13 0.22 

Period Frequency % Discarding % (SD) 
Weighted fre-

quency % 

Weighted discarding 

% (SD) 

Average  12.29 (32.8)  49.01 (50.0) 

1 16.45 3.64 (18.7) 14.78 37.68 (48.5) 

2 15.85 8.69 (28.2) 18.83 55.31 (49.7) 

3 14.47 18.67 (39.0) 22.55 69.66 (46.0) 

4 11.77 3.43 (18.2) 8.48 22.11 (41.5) 

5 11.36 12.74 (33.3) 10.82 46.71 (49.9) 

6 9.92 25.61 (43.6) 11.67 63.26 (48.2) 

7 7.38 5.35 (22.5) 4.75 14.49 (35.2) 

8 6.98 16.56 (37.2) 4.73 28.41 (45.1) 

9 5.83 28.60 (45.2) 3.39 28.60 (45.2) 

Number of survival records 1,813,636 

Average weight (w2)  1.72 

Sum of weights (w2)  3,119,557 

Frequency % and Weighted frequency % = frequency of surviving cows by period. Discarding % 

and Weighted discarding %= frequency of discarding cows by period. 

The dataset included 1,813,636 survivability records from 298,290 cow-daughters of 

2329 sires in 15,919 HYS. On average, there were 128.07 daughters per sire, with a range 

of 15 to 4696. On average, there were 113.93 records per HYS, ranging from 15 to 650. The 

weights (w2) were assigned to the survival records. On average, the weight was 1.72, and 

the sum of the weights in the entire dataset for all 1,813,636 records was 3,119,557. 

With regards to the proportion of records, 16.45% were in the first period of the total 

records. The share decreased by period order, with 5.83% of the records in the 9th (last) 

period. Survivability is an alternative trait with a binomial frequency distribution. The 

average ‘non-survival’ for all periods was 12.29%, with a standard deviation of 32.8. Sur-

vivability was lower in the second and third calving intervals than in the first period. Dur-

ing each calving interval, the culling rate rose sharply, and in the third period, it was sev-

eral times higher than that in the first. The standard deviations of survivability by period 

(in parentheses) ranged from 18.2 to 45.2, lowest in the first period of the calving interval 

and highest in the last period. 

For weights (w2), the proportions of the records for each period are different. It 

should be noted that the higher the weights were, the stronger the influence of the weights 

on the analysis. The non-survival rates were significantly different. The average survival 

rate was 49.01%, with a standard deviation of 50.0. The culling rate at particular periods 
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ranged from 14.49% to 69.66%. The differences in the culling rates between the periods 

decreased. The highest culling rate occurred in the first calving interval, and the lowest 

was in the third (without weights, the resulting situation was the opposite). The standard 

deviations of the survival rates by individual periods ranged from 35.2 to 49.9 when 

weights were considered. A pedigree of three generations of ancestors was linked to a 

dataset of performance traits that included 660,476 individuals. 

2.1. Statistical Model 

The analysed traits were survivability and functional survivability [SURV], func-

tional survivability [SURVm], weighted survivability [SURVw2], and functional weighted 

survivability [SURVmw2]. For functional survival (m), milk yield was included in the 

model to account for the effect of culling caused by milk production. 

Model equation: 

y = HYS + period + ANIg + PEcow + milk + e/w, (5)

where y—survival record of the period, alternative figure (survival = 100/non-survival = 

0); 

HYS—herd–year–season fixed effect;  

period—fixed period effect (nine periods);  

ANIg—random additive genetic effect; 

PEcow—random effect of the permanent environment with survivability records;  

milk—fixed regression on milk yield variation in the herd for functional survivability 

(Plemdat, 2020);  

e—random residual effect;  

w—weight, for weighted analysis. 

In a statistical model with repeats, all repeats are treated as the same trait, and indi-

viduals from different periods are contemporaries of each other in the HYS. Any differ-

ences between the periods were handled using a separate effect (period order). The eval-

uation was performed using the REML method and AIREMLF90 program [35] for un-

weighted and weighted data. The REML calculation involved a system with approxi-

mately 975,000 equations. The REML calculation was terminated when converging to 10−17 

(convergence criterion). Genetic parameters and effects in the model, including BV, were 

estimated. 

3. Results 

3.1. The Least-Squares Method Fixed Effects 

Individual fixed effects explained up to 12% of the variability using the least-squares 

method (LSM), which reduced the standard deviation of the records in the input dataset 

from 32.81 to a residual standard deviation of 30.94 (Table 3). HYS and period effects had 

similar importance at approximately 5%. The HYS + period explained 10% of the variabil-

ity. Including milk for functional survival increased the explained variability by 12%. The 

inclusion of sires in the fixed effects did not substantially affect the explained variability, 

although all effects, including sires, were statistically significant. Statistical significance is 

related to the dataset size, which was 1.8 million records in our case. We agree with Sewa-

lem et al. [36], who found a significant sire effect, even with a negligible effect on overall 

variability. In the least-squares method with weights, all fixed effects explained more var-

iability, up to 24%, and the standard deviation decreased from 49.99 to a residual of 43.72. 

In this case, the sire explained 1% of the variability. The effect on cow survival is strongly 

conditioned by the breeder’s decision [10], which is included in the HYS effect. The 

breeder can make systematic decisions [25].  
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Table 3. Fixed effects—explained variability and survival standard deviations. 

Effects Considered 
Without Weight With Weight (w2) 

SD R2 SD R2 

Simple records 32.81  49.99  

Effects of the herd–year–season least-squares 

method 
32.14 0.05 48.13 0.08 

Herd–year–season + period 31.26 0.10 45.26 0.18 

Herd–year–season + period + milk 30.99 0.12 43.88 0.23 

Herd–year–season + period + milk + sire 30.94 0.12 43.72 0.24 

SD = standard deviation, R2 = coefficient of determination, w2 = weight by effective number of cases. 

3.2. Components of Variance and Genetic Parameters 

The genetic parameters are presented in Table 4. The time and number of AIREML 

iterations required to reach a solution were smaller for models with weights (24 and 25 

iterations) than for models without weights (50 and 51 iterations). Convergence criteria, 

e.g., number of iterations, suggest the stability of the calculation. Lower numbers of itera-

tions mean a higher stability of the calculation. 

Table 4. Population genetic parameters (mean estimation errors in parentheses). 

Quantity 
Statistical Model 

SURV SURVm SURVSw2 SURVmw2 

s2r 
965.97 

(1.02) 

947.02 

(1.00) 

1545.40 

(1.35) 

1529.40 

(1.34) 

s2G 
12.46 

(0.02) 

14.60 

(0.03) 

181.26 

(7.56) 

166.81 

(6.94) 

sPE 0.00 0.00 
1397.70 

(6.76) 

1269.60 

(6.22) 

s2P 
978.43 

(1.02) 

961.62 

(1.00) 

3124.36 

(5.19) 

2965.81 

(4.78) 

h2 
0.013 

(0.0000) 

0.015 

(0.0000) 

0.058 

(0.0024) 

0.056 

(0.0023) 

r 
0.013 

(0.0000) 

0.015 

(0.0000) 

0.505 

(0.0009) 

0.484 

(0.0009) 

k = s2r/s2G 
77.52 

(0.1558) 

64.54 

(0.1302) 

8.536 

(0.3598) 

9.169 

(0.3856) 

SURV = overall survivability, SURVm = functional survivability, SURVSw2 = overall weighted sur-

vivability (weight by effective number of cases), SURVmw2 = functional weighted survivability 

(weight by effective number of cases), s2r = residual variance, s2G = genetic variance, sPE = permanent 

environmental variance, h2 = heritability, r = repeatability, k = variance ratio. 

Mixed model—see Equation (5). 

The mean errors of all parameter estimates were very small, except for the genetic 

component and the ratios with a genetic component (genetic variance s2G, heritability h2, 

variance ratio: k = s2r/s2G (residual variance/genetic variance)), where the mean errors were 

approximately 4% of the estimated value. The phenotypic variance s2P in Table 4 corre-

sponded to the standard deviation in Table 3 when fixed effects were considered. In the 

case without weights, the values of standard deviations were approximately equivalent 

(without milk: 31.28 compared to 31.26, and with regression to milk: 31.01 compared to 

30.99), but not in the case with weights (w2) (55.90 compared to 45.26 and 54.46 compared 

to 43.88). The inclusion of weights multiplies all variance components. Proportionally, the 

components for the individual’s permanent environment and the genetic component 
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increased the most. The heritability coefficients for the unweighted calculations were 1.3% 

and 1.5%, which are consistent with those obtained in studies by van Pelt et al. [13] and 

Pritchard et al. [21]. For calculations with weights, the heritability was higher—5.8%. 

Higher heritability of a trait results in a more accurate estimation of breeding value (an 

additive component of heritability). In the case of weights, an individual’s permanent en-

vironment is a significant component, which is essentially zero in cases without weights. 

Repeatability was 50.5% in the weighted case. An important indicator is the variance ratio 

k because it indicates the additive component of inheritance. The solution of the system 

of BLUP equations depends on the ratio of variances. In the statistical models with 

weights, k was 8.536–9.169, which is several times smaller (more favourable) than in the 

cases without weights. 

3.3. Variability of Effects in the Solution 

Table 5 shows the summary statistics of the results. These are approximate values 

where the significance of the effect is inferred from the standard deviations of the individ-

ual effects. In the unweighted case, the HYS effect was the strongest, with standard devi-

ations of 10.73 and 10.59 (standard deviations calculated between fixed effect levels). The 

cow’s survivability is strongly conditioned by the breeder’s decision [10,25]. In the model, 

the HYS classes could explain this effect. The standard deviations for the period were 8.81 

and 8.71 (Table 5). 

Table 5. Estimates and solutions of fixed and random effects from mixed-model analyses of un-

weighted and weighted survival of culling and involuntary culling. 

Effects 
Statistical Model 

SURV SURVm SURVw2 SURVmw2 

Herd–year–

season 

SD 10.73 10.59 18.37 17.94 

Min −88.08 −88.92 −105.62 −100.20 

Max 28.02 27.07 57.40 51.34 

Periods 

SD 8.81 8.71 19.98 19.65 

Min −13.25 −13.17 −30.48 −30.10 

Max 9.84 9.68 34.69 33.95 

Breeding 

values 

SD 1.75 2.18 6.20 6.04 

Min −10.64 −12.43 −38.79 −39.64 

Max 9.76 10.63 37.46 34.95 

Permanent 

environment 

SD - - 33.93 32.19 

Min - - −107.96 −137.79 

Max - - 85.18 86.68 

Milk regression - 20.13 - 31.22 

SD = standard deviation of value, Min = minimum value, Max = maximum value. 

The values for each period are listed in Table 6. The highest survivability values were 

for the periods at the beginning of each calving interval and the lowest were at the end 

calving interval. In absolute terms, the figures for the calculations with weights were 

higher. The BVs had standard deviations of 1.75 and 2.18 in the case without weights and 

6.20 and 6.04 in the case with weights (w2). Figure 2 shows the frequency distribution of 

breeding values according to the models for survivability [SURV], functional survivability 

[SURVm], weighted survivability [SURVw2], and functional weighted survivability [SUR-

Vmw2]. Although we are evaluating a binary trait, the results of the random effect of BV 

showed a continuous, near-normal frequency distribution.  
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Table 6. REML solution for period survival. 

Period 
Statistical Model 

SURV SURVm SURVw2 SURVmw2 

1 9.43 9.52 34.69 33.95 

2 4.48 4.61 19.28 18.86 

3 −5.15 −4.92 −6.29 −6.73 

4 9.84 9.68 14.80 14.85 

5 0.68 0.63 −7.71 −7.49 

6 −11.69 −11.45 −30.48 −30.10 

7 8.31 7.97 2.63 2.89 

8 −2.64 −2.88 −12.33 −12.16 

9 −13.25 −13.17 −14.58 −14.06 

SURV = overall survivability, SURVm = functional survivability, SURVw2 = overall weighted sur-

vivability, SURVmw2 = functional weighted survivability. 

 

Figure 2. Breeding values frequency distributions: calculations without SURV and SURVm weights 

and according to level (w2) SURVw2 and SURVmw2 weight. 

Models with weights were at the peak of the graph (individuals in the pedigree) 

closer to the mean, and the peaks reached lower values (up to 4%) than in the case without 

weights (more than 5% and 6%). 

The individual’s permanent environment had standard deviations of 33.93 and 32.19 

at w2. This shows that when weighting, the permanent environment has the strongest 

effect. Due to the effect of the weights, there is a substantial increase in the number of 

observations per individual. The number of records among individuals previously culled 

later is thus compensated for. The regression coefficient between survivability and milk 
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for functional survivability was 20.13 when calculated without weights and higher at 31.22 

when calculated with weights. Despite the fact that the inclusion of milk yield in the model 

appeared to have only a slight impact on the estimates of the other effects, the actual esti-

mate for this regression is not negligible. 

For effects with many levels, correlations among the different calculation methods 

were calculated for the entire dataset (Table 7). The correlations were generally high, ex-

cept for the correlation of breeding values between SURVm and SURVw2 (0.75). The high 

BV correlations among the methods are consistent with the cited data [27]. 

Table 7. Corelation among calculation methods in percent. 

 
Herd–Year–Season Breeding Values 

Permanent Envi-

ronment 

SURVm SURVw2 SURVmw2 SURVm SURVw2 SURVmw2 SURVmw2 

SURV 100 88 89 91 92 94  

SURVm  88 89  75 89  

SURVw2   99   96 99 

SURV = overall survivability, SURVm = functional survivability, SURVw2 = overall weighted sur-

vivability, SURVmw2 = functional weighted survivability. 

4. Discussion 

The presented analysis is limited to the first three parities. The trait under investiga-

tion is the cow’s survivability during lactation. In this context, we would like to point out 

that De Vries and Marcondes [11] stated that the average cow’s productive length of life 

ranges from 2.5 to 4 years in most developed countries. Despite the recent breeding focus 

on cow longevity, cows’ actual lifespans are becoming shorter [7]. A functional surviva-

bility definition is used in the presented analysis to account for voluntary culling by in-

cluding milk yield. The distinction between functional and actual survival seems to have 

become less critical. Maybe the main reason for this phenomenon is that only healthy cows 

can perform well and reproduce in the Holstein breed. As Schuster et al. [7] stated, more 

than milk yield, the farmer’s focus is now on the efficiency of the cow. We did not find 

expressive differences between results for survivability and functional survivability. The 

increased variability of 12% after including milk is due to increased information in the 

model. As can be seen in Table 6, there are no distinct differences between the solutions 

for the survivability and functional analysis. Furthermore, the correlations between the 

HYS, BV, or PE solutions for analyses with weight w2 are high, above 0.88, as shown in 

Table 7. 

If the survivability assessment is limited to the first three lactations, then there is also 

an implication for the early prediction of breeding values for the bulls. While the bulls 

breeding value for milk production is based on the milk production of his daughters in 

the first three lactations, the estimation of the breeding value for the length of productive 

life in days is despite the used method delayed because the older the bull’s daughters 

become, the later the breeding value for longevity is estimated with sufficient accuracy 

[7]. Therefore, the restriction to the first three lactations allows breeders to simultaneously 

obtain breeding values for survival during the first three lactations and production traits. 

In this context, it should be emphasised that the genetic background for survival changes 

during the lifetime of the animal, as pointed out by van Pelt et al. [13]. The development 

of the breeding value estimation for longevity has also moved in this direction. Sasaki et 

al. [37] analysed survival during subsequent lactations with a random regression model 

in Japanese dairy ca�le. Heise et al. [30] followed this up with survival during various 

periods of the first three parities with multiple-trait linear model analysis. Therefore, us-

ing three lactations for the genetic evaluation of survival is in line with the trend of eval-

uating so-called longevity in dairy ca�le. 
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Genetic parameters of longevity are low; the highest estimates are usually produced 

by the survival analysis (e.g., [23]; 0.041 on the original scale) and the lowest by the ran-

dom regression model ([13]; for month intervals 0.002 to 0.031). Although the presented 

aim of this study was to estimate genetic parameters, the introduction of the weighted 

analysis of survivability was a vital point of this manuscript. The method used proved to 

be a suitable procedure for increasing the heritability of the evaluated trait. The values 1.3 

% and 1.5 % for the unweighted calculations increased to 5.5% to 5.8% for the weighted 

analysis. The non-negligible increase of four percentage points was due to the use of 

weights and the subsequent increase in the number of observations. 

The zero variance of the permanent cow environment was due to the nature of the 

trait being evaluated. A cow culled in the early periods of its life has no further records (it 

does not repeat any other record). A cow that survived the first period will most likely be 

culled in the subsequent periods and therefore have the opposite value in the repeated 

entry. So, there is a low-variance component of an individual’s permanent environment. 

A zero permanent environment was also reported by van Pelt et al. [13], where the vari-

ance of the permanent environment was close to zero for productive lifespan and there-

fore the effect of the cow’s permanent environment was not included in the evaluation 

model. On the other hand, the weighted analysis yielded a substantial increase in the var-

iability of the permanent environment, as shown in Table 5. At the same time, the repeat-

ability coefficient and the k-ratio are strengthened. 

It is, therefore, clear that the weights used compensated for the information imbal-

ance between animals that were culled at different stages of the first three lactations eval-

uated. The earlier the animals are culled, the more they are informationally underesti-

mated without using weights. In this information compensation, we see the fundamental 

advantage of the presented method. 

5. Conclusions 

As already pointed out in the discussion, the main contribution of the weighted 

method is to compensate for the lack of records in culled individuals. The inclusion of 

weights partially removed bias from BV survival predictions, as individual differences 

were more consistent with the expected values. The weighting is multiplied by the varia-

bility and coefficient of heritability. As a result of weighting, the most substantial effect 

became the individual’s permanent environment, and the coefficient of repeatability ex-

ceeded 46%. Increasing the coefficient of heritability and taking a significant portion of the 

residual variability into the individual’s permanent environment changed the ratios be-

tween the variance components fi�ed into the BV prediction equations, thereby creating 

conditions for a more reliable genetic evaluation. Additionally, the number of REML iter-

ations in the estimation of genetic parameters was lower in models with weights than in 

models without weights, indicating higher data stability in groups of related animals and 

groups of fixed effects included in the statistical model. 

We used only a simple statistical model with repeatability, which makes it easier to 

understand why BV predictions are biased. This statistical model has the disadvantage of 

not fully capturing the genetic basis compared with more complex multi-trait procedures. 

However, it allows for higher numbers of contemporaries within the HYS, so the period 

of HYS formation can be shortened and thus be�er separate the input data from the sys-

tematic effect of the farm environment, which tends to have the most substantial effect in 

statistical models. Future research will focus on validating and assessing the suitability of 

different statistical models. 
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