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Simple Summary: LMBV is an important pathogen in the breeding process of largemouth bass,
but there is no effective control method for it. This study developed oral vaccines for LMBV. The
vaccines can significantly increase the activity of immune-related enzymes, upregulate the expression
of immune genes, and stimulate the production of neutralizing antibodies in serum in largemouth
bass. In addition, the vaccines can reduce the mortality of LMBV infection. These results indicate that
the vaccines are expected to be candidate vaccines for controlling LMBV infection.

Abstract: Largemouth bass ranavirus (LMBV) infects largemouth bass, leading to significant mortality
and economic losses. There are no safe and effective drugs against this disease. Oral vaccines that
directly target the intestinal mucosal immune system play an important role in resisting pathogens.
Herein, the B subunit of Escherichia coli heat-labile enterotoxin (LTB, a mucosal immune adjuvant) and
the LMBV main capsid protein (MCP) were expressed using Saccharomyces cerevisiae surface display
technology. The yeast-prepared oral vaccines were named EBY100-OMCP and EBY100-LTB-OMCP.
The candidate vaccines could resist the acidic intestinal environment. After 7 days of continuous oral
immunization, indicators of innate and adaptive immunity were measured on days 1, 7, 14, 21, 28, 35,
and 42. High activities of immune enzymes (T-SOD, AKP, ACP, and LZM) in serum and intestinal
mucus were detected. IgM in the head kidney was significantly upregulated (EBY100-OMCP group:
3.8-fold; BY100-LTB-OMCP group: 4.3-fold). IgT was upregulated in the intestines (EBY100-OMCP
group: 5.6-fold; EBY100-LTB-OMCP group: 6.7-fold). Serum neutralizing antibody titers of the
two groups reached 1:85. Oral vaccination protected against LMBV infection. The relative percent
survival was 52.1% (EBY100-OMCP) and 66.7% (EBY100-LTB-OMCP). Thus, EBY100-OMCP and
EBY100-LTB-OMCP are promising and effective candidate vaccines against LMBV infection.

Keywords: largemouth bass ranavirus; oral vaccine; Saccharomyces cerevisiae; yeast display technology;
mucosal immunization

1. Introduction

Largemouth bass (Micropterus salmoides), also known as California bass, have the
characteristics of fast growth, resistance to low temperatures, delicious meat, and easy
fishing [1]. Largemouth bass was introduced into China in the 1980s and has since become
an important freshwater aquaculture species [2]. However, with the expansion of the
breeding scale and the increased stocking density, problems related to bacterial, virus, and
parasite infections are becoming more prominent [3–5]. Among them, the disease caused
by Largemouth bass ranavirus (LMBV) infection is the most serious.
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LMBV, a strain of the Santee Cooper ranavirus, belongs to the genus Ranavirus of the
Iridoviridae family, comprising a naked or enveloped icosahedral virus with double-stranded
DNA [6,7]. LMBV was first reported to cause massive mortality of largemouth bass in the
1990s [8]. At present, LMBV has spread to many places (South Carolina, Texas, New York,
Arkansas, Guangdong, etc.) [3,9–12]. The disease caused by LMBV infection is difficult to
diagnose by signs and symptoms. Infected largemouth bass may lose their balance and
float on the water surface [8]. Some Asian strains of LMBV can cause extensive ulceration
of the fish body surface, muscle necrosis, and spleen and kidney swelling [3,13]. Healthy
fish generally carry LMBV, which can lead to extensive virus spread [14]. Among the
largemouth bass without signs of disease from 37 different locations in New York State,
samples from 13 locations carried LMBV [9]. Currently, there is no effective prevention or
treatment for LMBV infection.

Vaccination is considered an important means of controlling aquatic animal dis-
eases [15]. The LMBV main capsid protein (MCP) has virus-specific surface antigens.
The MCP is often used as a target protein for vaccine research in the laboratory [16,17].
Using the MCP gene as the target sequence, a DNA vaccine for LMBV was constructed
and inoculated by pectoral fin base injection, which could induce a significant immune
response in largemouth bass [18]. The vaccine prepared by expressing the LMBV MCP
protein in Pichia pastoris resulted in a relative percent survival (RPS) of 41.6% against LMBV
infection [19]. These results indicated that the expression of LMBV MCP could protect
largemouth bass against LMBV infection.

Saccharomyces cerevisiae is the most commonly used yeast for recombinant protein
production [20]. Recombinant drugs derived from eukaryotic microorganisms approved
by the American Food and Drug Administration (FDA) and the European Medicines
Agency (EMEA) are almost all produced by S. cerevisiae [21], such as the Hepatitis B vaccine
(HBV) commercial vaccine Recombivax HB (Merck and Co., Inc., Whitehouse Station,
NJ, USA) and the human papillomavirus (HPV) commercial vaccine Gardasil (Merck
and Co., Inc.) [22–24]. Immune adjuvants can markedly increase vaccine efficacy [25].
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) is considered a potent oral
adjuvant that boosts immune responses when co-administered with antigens [26]. The
main mechanism of its immune adjuvant activity is binding to ganglioside GM1 of mucosal
epithelial cells [27]. In this study, the MCP gene and an ltb-MCP fusion gene were expressed
separately in S. cerevisiae to prepare oral vaccines. To evaluate the immune effect of the oral
vaccines, we measured the activity of immune-related enzymes and detected the expression
levels of immune-related genes. The serum neutralizing antibody titers and the RPS after
LMBV challenge were evaluated. The aim was to provide a safe and effective solution for
the prevention of LMBV infection.

2. Materials and Methods
2.1. Virus, Cell Lines, and Fish

LMBV and epithelioma papilloma cyprinid (EPC) cells were obtained from the Yangtze
River Fisheries Research Institute, Chinese Academy of Fishery Sciences (Wuhan, China) [28].
EPC cells were maintained at 25 ◦C in M199 medium (Hyclone, Logan, UT, USA) supple-
mented with 10% fetal bovine serum (FBS). Healthy largemouth bass (25 ± 5 g) without
LMBV were purchased from a certified largemouth bass farm in Wuhan City, Hubei Province,
China. Fish were temporarily reared in our laboratory’s recirculating aquaculture system.
During the breeding period, fish were fed with commercial feed (≥48% protein, ≥6% fat,
≤12% water, ≤12% ash, Tongwei, Chengdu, China) at 9 a.m. and 6 p.m., and the feeding
amount was 2% of the body weight of the fish. The water temperature was 26–28 ◦C,
and the water was changed every other day. All animal experiments were approved
by the Animal Experimental Ethical Inspection of Laboratory Animal Centre, Yangtze
River Fisheries Research Institute, Chinese Academy of Fishery Sciences (ID Number: YFI
2022-zhouyong-07-3).
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2.2. Strains and Plasmids

Escherichia coli DH5α (Takara, Taejin, Japan) cultured in Luria-Bertani (LB) medium
(Solarbio, Beijing, China) at 37 ◦C was used for vector construction. Saccharomyces cerevisiae
EBY100 (Invitrogen, Carlsbad, CA, USA) was grown in yeast peptone dextrose adenine
(YPDA) medium at 30 ◦C (Biosharp, Beijing, China). Recombinant yeasts were screened on
minimal dextrose plates (MDP) containing 2% glucose (0.67% amino-free yeast nitrogen
source medium (YNB), 0.01% leucine) (Biosharp) at 30 ◦C. Positive transformants were cul-
tured at 30 ◦C on YNB-CAA medium (0.67% YNB, 0.5% acid-hydrolyzed casein) containing
2% glucose (Biosharp). Recombinant protein expression was induced on the YNB-CAA
medium containing 2% galactose at 20 ◦C in the dark. The pYD1 vector (Invitrogen) was
used to express proteins in yeast cells. The pCR2.1-LTB expression vector to amplify the ltb
gene was stored in our laboratory [29].

2.3. Codon Optimization and Gene Synthesis

The MCP gene sequence of LMBV (GenBank: MK836319.1) was codon-optimized for
S. cerevisiae expression using the online software Java Codon Adaptation Tool (JCat) server
(https://www.jcat.de/, accessed on 21 February 2022) [30]. The optimized parameters
mainly included the codon adaptation index (CAI) and GC content. The optimized MCP
gene was named OMCP. The OMCP sequence was synthesized by Huayu Gene Company
(Wuhan, China).

2.4. Construction of the Recombinant Plasmids

OMCP was amplified using OMCP primers with EcoR I (forward primer) and Not
I (reverse primer) restriction enzyme sites (NEB, Beijing, China). The amplified product
was inserted into the pYD1 vector using recombinase (Vazyme, Nanjing, China) to obtain
pYD1-OMCP. The ltb primers containing Acc65 I (forward primer) and BamH I (reverse
primer) restriction enzyme sites were designed according to the ltb sequence (GenBank:
M17874.1). The ltb sequence was amplified from the pCR2.1-LTB plasmid and inserted
into pYD1-OMCP to obtain pYD1-LTB-OMCP. The correct recombinant plasmids were
identified using PCR. The primers used are shown in Table 1.

Table 1. Primers used in the study.

Name Sequence (5′-3′) Size (bp) Reference Usage

pYD1 F-AGTAACGTTTGTCAGTAATTGC
399 Designed PCRR-GTCGATTTTGTTACATCTACAC

OMCP
F-GGATCCAGTGTGGTGGAATTCATGAGTAGCGTAACAGGC

1389 Designed PCRR-GCCCTCTAGACTCGAGCGGCCGCCACAAAATAGGAAAGCCC

ltb
F-GGATCCAGTGTGGTGGGTACCCCTCAGTCTATTACAGAGC

306 Designed PCRR-TGAATTCCACCACACTGGATCCGTTTTCCATACTGATTGCCG

TNF-α
F-ACTTCGTCTACAGCCAGGCA

105 [18] qRT-PCR
R-AGTAACGCGAGACCCTGTGG

IL-1β
F-TGGTGGAAAACAGCATGGAGC

95 [18] qRT-PCR
R-AGGGTGCACGTAGTTCGACA

IgM F-GACTGGAGTGGCGGAAAGTGGAGG
133 [31] qRT-PCR

R-TTTCATCTTCTACAAACGCAGACAACGG

IgT F-GAAGGTCAACAACGCTGAGTG
248 [32] qRT-PCR

R-TGTTGCTGGTCACATCTAGTCC

β-actin F-CAGGATGCAGAAGGAGATCACA
151 [18] qRT-PCR

R-CTCCTGCTTGCTGATCCACAT

Notes: Red front: restriction sites; underline: homologous arm sequence. OMCP, optimized major capsid protein;
LTB, heat-labile enterotoxin; TNF-α, tumor necrosis factor alpha; IL-1β, interleukin 1 beta; IgM, immunoglobulin
M; IgT, immunoglobulin T; qRT-PCR, quantitative real-time reverse transcription PCR.

https://www.jcat.de/
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2.5. Screening and Induction of Expression in Vaccine Strains

Recombinant plasmids pYD1-OMCP and pYD1-LTB-OMCP were transformed into
S. cerevisiae competent cells using electroporation [33]. Competent cells were plated on
MDP and cultured at 30 ◦C (CIMO, Shanghai, China) for 2–3 d until colonies appeared. A
single colony was picked, placed in 50 µL of distilled water, and then boiled for 10 min.
The boiled colony suspension was used as a template for PCR analysis. After identification
via PCR, the positive colony was inoculated into 10 mL 2% glucose YNB-CAA medium
and sharking cultured at 30 ◦C and 220 rpm (New Brunswick Scientific, Edison, NJ, USA).
When the optical density at 600 nm (OD600nm) of the yeast reached 2–5, the yeast cells were
collected by centrifugation (1000× g, 5 min) (Eppendorf, Hamburg, Germany). The cells
were then suspended in 2% galactose YNB-CAA medium, and the OD600nm was adjusted
to 0.5–1. The yeast was cultured at 20 ◦C in dark (220 rpm, 48 h).

2.6. Immunofluorescence Analysis

The expression of EBY100-OMCP and EBY100-LTB-OMCP was induced by galactose
in the dark. A total of 1 mL of yeast (OD600nm = 1) was harvested by centrifugation (4 ◦C,
3000× g, 5 min). The yeast cells were washed three times with sterile phosphate-buffered
saline (PBS; Hyclone, Logan, UT, USA). After centrifugation (4 ◦C, 3000× g, 5 min), we
added 500 µL murine 6 × His-tag antibody (1:1000) (ab18184, Abcam, Cambridge, UK) to
the cells and incubated them at room temperature for 2 h. The cells were centrifuged again
and washed three times with sterile PBS plus 0.05% Tween 20 (PBST). Then, 500 µL of goat
anti-mouse IgG-H&L (Alexa Fluor 594) secondary antibody (1:500) (A-11005, Invitrogen)
was added, and the cells were incubated in the dark for 1 h at room temperature. Yeast
cells were washed three times with sterile PBST and resuspended in PBS. A small amount
of the yeast suspension was coated on a sterile glass slide. Slides were subjected to confocal
microscopy (Olympus, Tokyo, Japan) for imaging.

2.7. Detection of Recombinant Yeast in the Intestines

The recombinant yeast in the second intestinal segment (midgut) of the largemouth
bass was detected using immunohistochemistry. Fish received 100 µL of recombinant yeast
EBY100-OMCP or EBY100-LTB-OMCP (OD600nm = 1) via gastric gavage (n = 5). After 24 h,
the midgut of the fish was excised under anesthesia with MS222 (100 mg/L, Sigma, St.
Louis, MO, USA) and fixed in 4% paraformaldehyde universal tissue fixative (Servicebio,
Wuhan, China). Frozen sections were prepared according to a previous publication [34].
Intestinal frozen sections were incubated overnight at 4 ◦C with primary antibodies (1:500,
anti-murine 6 × His-tag) (ab18184, Abcam) and then incubated in the dark at room tem-
perature for 2 h with secondary antibodies (1:500, Alexa Fluor 594) (A-11005, Invitrogen).
4′,6-diamidino-2-phenylindole (DAPI) (Sigma) was then used for nuclear staining. Finally,
the yeast cells were observed under a fluorescence microscope (Olympus).

2.8. Oral Immunization and Sample Collections

The recombinant yeasts EBY100-OMCP and EBY100-LTB-OMCP were induced to
express the recombinant proteins in large quantities. Yeast cells were harvested using
centrifugation (4 ◦C, 3000× g, 5 min). We then added 5% (w/v) skimmed milk powder and
50% (v/v) water to the yeast cells; 5% (w/v) starch was used as a binder. Fully mixed yeast
and feed (1 × 107 colony forming units (CFU)/g) were dried overnight in a freeze dryer
(SCIENTE, Ningbo, China) to obtain the oral feeding vaccines. Healthy largemouth bass
were randomly divided into four groups, namely the control (ordinary feed), EBY100-pYD1
(empty vector yeast feed), EBY100-OMCP (MCP vaccine), and EBY100-LTB-OMCP (LTB-
MCP vaccine). For each group of 180 fish, the feeding amount was 2% of the body weight of
the fish, twice a day, for continuous oral immunization for 7 days. The sampling time points
were 1, 7, 14, 21, 28, 35, and 42 days post-immunization (dpi). At each sampling time point,
largemouth bass (n = 5) were anesthetized using MS222. Blood samples were taken from
the tail vein, placed overnight at 4 ◦C, and then centrifuged at 4 ◦C, 5000× g, for 10 min.
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The obtained supernatant (serum) was stored at −80 ◦C for subsequent neutralization
antibody titer determination and enzyme activity assessment. The intestinal mucosa of
the midgut was excised and preserved at −80 ◦C for enzyme activity determination and
immune-related gene analysis. In addition, different intestinal parts (foregut, midgut, and
hindgut) were sampled at 21 dpi and placed in a 4% paraformaldehyde universal tissue
fixative for histological observation. The vaccination and sampling schedule are shown
in Figure S1.

2.9. Vaccine Safety Evaluation

The foregut, midgut, and hindgut tissue sections of largemouth bass at 21 dpi were
observed using an ordinary optical microscope at 20× magnification (Olympus). The
tissues were fixed in 4% paraformaldehyde universal tissue fixative, followed by dehy-
dration, transparent, wax penetration, paraffin embedding, and sectioning at 5 µm. After
hematoxylin-eosin (H&E) staining and neutral resin sealing, the sections were observed
and analyzed under the microscope. During immunization, the feeding and activity of the
fish in each group were observed daily.

2.10. Determination of Immune-Related Enzyme Activity

The activities of superoxide dismutase (SOD), alkaline phosphatase (AKP), acid phos-
phatase (ACP), and lysozyme (LZM) in the serum and intestinal mucosa of the largemouth
bass were determined according to the instructions of the enzyme activity kits (Jiancheng,
Nanjing, China). The intestinal mucosa was collected according to a previously described
method [35]. The intestinal mucosa was weighed and diluted with sterile PBS to a 1%
tissue homogenate concentration and centrifuged at 4 ◦C, 5000× g, for 20 min. The ob-
tained supernatant was used for subsequent enzyme activity determination. Based on the
Bradford method, bovine serum albumin (BSA) was used as the standard to determine the
total intestinal protein content [36]. Each group of samples was repeated three times.

2.11. Expression of Immune-Related Genes

Total RNA was extracted from the head kidney and intestine of largemouth bass using the
Trizol reagent (Invitrogen). cDNA was synthesized from the RNA using a reverse transcription
kit (TransGen Biotech, Beijing, China) and stored at−20 ◦C. The qPCR reactions for four immune
genes (TNF-α (encoding tumor necrosis factor alpha), IL-1β (encoding interleukin 1 beta), IgM
(encoding immunoglobulin M), and IgT (encoding immunoglobulin T)) in all samples were
completed using a qPCR instrument (Corbett, Sydney, Australia). The reaction program was
95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 30 s and 60 ◦C for 30 s. The reaction system
comprised 2 µL of diluted cDNA sample, 10 µL of Hieff qPCR SYBR Green Master Mix (Yeasen,
Shanghai, China), 0.8 µL of forward primer and reverse primer (10 M), and 6.4 µL sterile H2O.
Gene expression analysis was performed using the 2−∆∆CT method, with the β-actin gene as the
internal control gene for cDNA normalization [37]. The primers used are shown in Table 1. All
the experiments were repeated three times.

2.12. Serum Neutralization Antibody Assay

Serum neutralizing antibody titers were determined using LMBV and EPC cells [38].
The serum samples were defrosted at 4 ◦C and then heated at 56 ◦C for 30 min. The serum
was then serially diluted (1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 1:640, and 1:1280) with M199
medium (without FBS). A total of 50 µL of serum at different dilutions and 50 µL of 103

TCID50/mL LMBV virus were mixed in 96-well plates. Six duplicate wells were set for each
serum dilution concentration, and positive and negative control wells were also set. After
gentle mixing, the 96-well plates were placed in an incubator at 25 ◦C (SANYA, Osaka,
Japan). The plates were mixed well every 20 min. After 2 h, 100 µL of EPC cell suspension
(106 cells/well) was added to each well and cultured at 25 ◦C for 48 h. In accordance with
the cytopathic effect (CPE) results, the serum neutralizing antibody titers were calculated
using the Reed–Muench method [39]. All experiments were repeated three times.
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2.13. LMBV Challenge

At 45 dpi, each group of largemouth bass (n = 20) was intraperitoneally injected with
100 µL of 3.47 × 106 TCID50/mL LMBV. In addition, healthy largemouth bass (n = 20) was
intraperitoneally injected with 100 µL sterile PBS as a control. The number of deaths in
each group was recorded daily for 10 days, and the dead fish were removed. The RPS of
the vaccine was calculated as follows: RPS = [1 − (inoculation group mortality%/control
group mortality%)] × 100. The experiment was repeated three times.

2.14. Data Analysis

Data were analyzed using one-way analysis of variance (ANOVA) in the SPSS software
(version 19.0; IBM Corp., Armonk, NY, USA). Significance was assessed using the Duncan
multiple range test, and differences were considered significant at p < 0.05.

3. Results
3.1. MCP Codon Optimization

The MCP gene sequence was optimized based on the S. cerevisiae expression system
codon preferences while maintaining the amino acid sequence; 69.76% of MCP codons were
optimized (marked in red in Figure 1). The optimized sequence was named OMCP. The CAI
of OMCP was 0.79 (that of MCP was 0.65), and the GC content was 42.98% (that of MCP was
55.32%). The alignment of the sequences before and after optimization is shown in Figure 1.
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3.2. The Recombinant Protein Was Displayed on the Surface of S. cerevisiae

Based on the a-agglutinin yeast display system [40], the expression vector pYD1 was
used to display recombinant proteins pYD1-OMCP and pYD1-LTB-OMCP on the surface of
S. cerevisiae. The OMCP and LTB-OMCP genes were cloned into the C-terminus of aga2 in
the pYD1 vector to obtain the expression vectors. After the vectors were transformed into
yeast cells, the yeast aga1 protein was connected to the aga2-OMCP or aga2-LTB-OMCP
through a disulfide bond (Figure 2A,C). Using the recombinant yeast EBY100-OMCP and
EBY100-LTB-OMCP as templates, respectively, the target fragments pYD1-OMCP (universal
primer: 1770 bp, specific primer: 1391 bp) and pYD1-LTB-OMCP (universal primer: 2076 bp,
specific primer: 1716 bp) could be amplified (Figure 2B,D). With 6 × His as the detection
antigen, the recombinant yeast EBY100-OMCP and EBY100-LTB-OMCP could be detected
via red fluorescence (Figure 2E,F)
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between AGA2 and AGA1. (B) EBY100-OMCP positive yeast was identified using PCR. M: marker
2000 bp; 1: pYD1 universal primers; 2: OMCP specific primers. (C) The pYD1-LTB-OMCP recombinant
protein was displayed on the surface of EBY100 yeast cells through the disulfide bond between AGA2
and AGA1. (D) EBY100-LTB-OMCP positive yeast was identified using PCR. M: marker 5000 bp; 1:
pYD1 universal primers; 2: LTB-OMCP-specific primers. (E) The expression of the EBY100-OMCP
recombinant protein was analyzed by immunofluorescence. Anti-mouse 6×His was used as the
primary antibody, and goat anti-mouse IgG-H&L (Alexa Fluor 594) was used as the secondary
antibody. EBY100-OMCP yeast appeared red under excitation light. Scale: 20 µm. (F) The expression
of EBY100-LTB-OMCP recombinant protein was analyzed by immunofluorescence. EBY100-LTB-
OMCP yeast appeared red under excitation light. Scale: 10 µm. LTB, heat-labile enterotoxin; AGA,
a-agglutinin.

3.3. Recombinant Yeast Was Detected in the Second Intestine

The vaccines and PBS were administered via oral gavage to largemouth bass. The
recombinant yeast was detected in the midgut using immunohistochemical staining. Red
fluorescence was detected in the intestines of the vaccine-treated fish (Figure 3B,C) but not
in the PBS-treated fish (Figure 3A).
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administered to largemouth bass separately. n = 3. After 24 h, the intestinal tissues were taken to
prepare frozen sections. Anti-6×His was used as the primary antibody, Alexa Fluor 594 was used as the
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3.4. Safety Evaluation of Oral Vaccine

The safety of the yeast vaccines was evaluated by the feeding behavior, death rate,
and intestinal microscopic observation of largemouth bass during immunization. During
the immunization period, the feeding and activity behaviors of each group were normal,
and no signs of disease or death occurred. The intestinal tissues of the largemouth bass
were observed under an optical microscope. As shown in Figure 4, no pathological changes
were observed.
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hindgut samples of each group were fixed in 4% paraformaldehyde universal tissue fixative. After
hematoxylin and eosin (H&E) staining, the intestinal tissue morphology was observed under an
optical microscope. n = 3. (A) Foregut; (B) midgut; (C) hindgut. Scale: 50 µm.

3.5. Detection of Immune-Related Enzyme Activity

Enzyme activities were determined using commercial kits. The T-SOD activity in
the serum and intestinal mucus are shown in Figure 5A,a. Compared with the control
group, the activity of T-SOD in the immunized groups was significantly higher (p < 0.05 or
p < 0.01). In the serum, the T-SOD activity of the EBY100-OMCP group was significantly
increased at 7 dpi (258.5 ± 24.4 U/mL) and then remained constant. The T-SOD activity in
the EBY100-LTB-OMCP group peaked at 28 dpi (345.1 ± 20.5 U/mL) and then decreased.
The AKP activities in the serum and intestinal mucus are shown in Figure 5B,b. The AKP
activity in the serum of the immunized group increased significantly at 7 dpi and peaked
at 21 dpi (EBY100-OMCP: 31.3 ± 1.95 U/100 mL; BY100-LTB-OMCP: 40.3 ± 1.86 U/100
mL). The AKP activity in the intestinal mucus reached a peak at 14 dpi (EBY100-OMCP:
338.6 ± 17.44 U/gprot; BY100-LTB-OMCP: 388.3 ± 17.00 U/gprot) and then gradually
decreased. The ACP activity in the serum and intestinal mucus began to decrease after
21 dpi in both vaccine groups (Figure 5C,c). The LZM activities are shown in Figure 5D,d.
In the serum, the LZM activity of the two vaccine groups increased steadily, with the
highest values of 512.8 ± 30 U/gprot (EBY100-OMCP group) and 696.6 ± 17.00 U/gprot
(EBY100-LTB-OMCP group). The LZM activity in the intestinal mucus of the two vaccine
groups began to decrease after 28 dpi. Throughout the immunization period, the immune
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enzyme activity of the EBY100-LTB-OMCP group was superior to that of the EBY100-OMCP
group, especially at 21 dpi, 28 dpi, and 35 dpi (p < 0.05 or p < 0.01).
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ACP, acid phosphatase, LZM, lysozyme.

3.6. Expression of Immune-Related Genes

The expression levels of immune genes in the head kidney and intestine were analyzed
using qRT-PCR, as shown in Figure 6. Compared with the control group, the expression
levels of the four genes (TNF-α, IL-1β, IgM, and IgT) in the immunized groups showed a
trend of increasing first and then gradually returning to the basic level. The expression
of TNF-α and IL-1β in the head kidney was the highest at 21 dpi (EBY100-OMCP group:
2.3-fold, 2.2-fold; BY100-LTB-OMCP group: 2.7-fold, 2.3-fold) (Figure 6A,B), and the highest
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expression in the intestine was at 28 dpi (EBY100-OMCP group: 4.8-fold, 4.0-fold; BY100-
LTB-OMCP group: 5.6-fold, 4.8-fold) (Figure 6a,b). The expression of IgM in the head
and kidney (EBY100-OMCP group: 3.8-fold; EBY100-LTB-OMCP group: 4.3-fold) was
higher than that in the intestine (EBY100-OMCP group: 2.6-fold; BY100-LTB-OMCP group:
3.2-fold), and the head kidney maintained a high level of IgM for a long time (28–42 dpi)
(Figure 6C,c). IgT was more highly expressed in the intestine (EBY100-OMCP group:
5.6-fold; BY100-LTB-OMCP group: 6.7-fold) than in the head kidney (EBY100-OMCP
group: 3.2-fold; BY100-LTB-OMCP group: 4.1-fold) (Figure 6D,d).
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Figure 6. Effects of oral vaccines on immune gene expression in largemouth bass (means ± SEM,
n = 5). The relative qRT-PCR gene expression analysis was performed using the 2−∆∆CT method.
(A–D) The expression levels of IL-1β, TNF-α, IgM, and IgT genes in the head kidney. (a–d) The
expression of IL-1β, TNF-α, IgM and IgT gene in intestine. Different superscript letters in each group
(a–c) denote significant variations according to the Kruskal–Wallis statistics at 95% significance,
followed by Dunn’s test with Bonferroni adjustment as the post hoc test (p < 0.05). TNF-α, tumor
necrosis factor alpha; IL-1β, interleukin 1 beta; IgM, immunoglobulin M; IgT, immunoglobulin T;
qRT-PCR, quantitative real-time reverse transcription PCR.
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3.7. Serum Antibody Levels

The specific immune response induced by the vaccines was evaluated using the serum
neutralization titer. The serum was mixed with the LMBV virus, and the mixture was
inoculated into EPC cells to observe the CPE. The serum antibody levels are shown in
Figure 7. For the immunized fish, the antibody titer peaked at 28 dpi. The antibody titer of
both vaccine groups was 1:85, which was significantly higher than that of the control group
and the pYD1 group (p < 0.05).
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significant variations according to the Kruskal–Wallis statistics at 95% significance, followed by
Dunn’s test with Bonferroni adjustment as the post hoc test (p < 0.05).

3.8. Oral Vaccine Protection against LMBV

Largemouth bass were infected with LMBV (3.4 × 106 TCID50/mL). The results of the
vaccine protection experiment are shown in Figure 8. The control group and EBY100-pYD1
group injected with LMBV began to die at day 2 post-infection, and death peaked on days
5, 6 and 7. The control group’s final survival rate was 20 ± 4.41%, while the EBY100-pYD1
group’s final survival rate was 26.67 ± 3.33%. The EBY100-OMCP group began to die at
2 days post-infection and remained stable after the 6th day. On day 10 post-infection, the
survival rate was 61.67 ± 2.89%. The EBY100-LTB-OMCP group mainly died 3–5 days after
infection, and the final survival rate was 73.33 ± 1.67%. The RPS of the EBY100-LTB-OMCP
group was as high as 66.66%, and the EBY100-OMCP group had a 52.10% protective effect.
The control fish injected with PBS did not die during this period.



Animals 2023, 13, 1183 13 of 18
Animals 2023, 13, x  16 of 22 
 

 
Figure 8. The survival rate of largemouth bass against LMBV infection. Each group was intraperito-
neally injected with 100 µL of PBS or LMBV (3.47 × 106 TCID50/mL). n = 20, with death recorded 
daily. After LMBV infection, the cumulative death in each group was calculated using the log-rank 
(Mantel–Cox) test (* p < 0.05, ** p < 0.01). 

4. Discussion 
Yeast surface display technology is a rapidly developing eukaryotic protein expres-

sion system [41]. As a general technology platform, it can be used to develop vaccines for 
pathogens such as bacteria, viruses, fungi, and parasites. When the hemolysin protein HL1 
of Vibrio harveyi was displayed on the surface of S. cerevisiae, the recombinant yeast had a 
significant protective effect on turbot (Scophthalmus maximus) and flounder (Pleuronecti-
formes) [42]. Displaying the full-length receptor binding domain (RBD) of the SARS-CoV2 
spike protein on the surface of S. cerevisiae EBY100 was found to be capable of inducing 
significant humoral and mucosal immunity in mice at the laboratory level [43]. In this 
study, vaccines were prepared by displaying the MCP protein of LMBV on the surface of 
S. cerevisiae. The MCP protein was directly exposed on the surface of yeast cells, which 
increased the opportunity for antigen recognition. 

The optimized (OMCP) CAI index and GC content are more suitable for yeast expres-
sion systems [38]. To improve the expression of MCP protein in yeast, the codons of MCP 
were optimized in this study. In addition, mucosal immune adjuvants can enhance the 
protective effect of vaccines. After the fusion of LTB and GFP, the ability of the carp (Cy-
prinidae) hindgut to take up foreign proteins was higher than that of GFP alone, and LTB-
GFP can exist in the large macrophages of the intestinal mucosa [44]. The LTB- NS1Δ63 
vaccine against the Japanese encephalitis virus (JEV) protected 90% of mice from death, 
much higher than that of the NS1Δ63 vaccine (55% of survival rate) [45]. In the present 
study, pYD1-LTB-OMCP was successfully constructed by fusing LTB and OMCP. To the 
best of our knowledge, this is the first report on the combination of S. cerevisiae display 
technology and mucosal immune adjuvant LTB. 

The second segment of the fish intestine is considered to be the main site of antigen 
uptake and plays a major immune role [46, 47]. To test whether the antigen can be deliv-
ered to the site of action, the marker antigen GFP was expressed in P. pastoris. After 

Figure 8. The survival rate of largemouth bass against LMBV infection. Each group was intraperi-
toneally injected with 100 µL of PBS or LMBV (3.47 × 106 TCID50/mL). n = 20, with death recorded
daily. After LMBV infection, the cumulative death in each group was calculated using the log-rank
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4. Discussion

Yeast surface display technology is a rapidly developing eukaryotic protein expression
system [41]. As a general technology platform, it can be used to develop vaccines for
pathogens such as bacteria, viruses, fungi, and parasites. When the hemolysin protein HL1
of Vibrio harveyi was displayed on the surface of S. cerevisiae, the recombinant yeast had
a significant protective effect on turbot (Scophthalmus maximus) and flounder (Pleuronecti-
formes) [42]. Displaying the full-length receptor binding domain (RBD) of the SARS-CoV2
spike protein on the surface of S. cerevisiae EBY100 was found to be capable of inducing
significant humoral and mucosal immunity in mice at the laboratory level [43]. In this
study, vaccines were prepared by displaying the MCP protein of LMBV on the surface of
S. cerevisiae. The MCP protein was directly exposed on the surface of yeast cells, which
increased the opportunity for antigen recognition.

The optimized (OMCP) CAI index and GC content are more suitable for yeast ex-
pression systems [38]. To improve the expression of MCP protein in yeast, the codons of
MCP were optimized in this study. In addition, mucosal immune adjuvants can enhance
the protective effect of vaccines. After the fusion of LTB and GFP, the ability of the carp
(Cyprinidae) hindgut to take up foreign proteins was higher than that of GFP alone, and
LTB-GFP can exist in the large macrophages of the intestinal mucosa [44]. The LTB-NS1∆63
vaccine against the Japanese encephalitis virus (JEV) protected 90% of mice from death,
much higher than that of the NS1∆63 vaccine (55% of survival rate) [45]. In the present
study, pYD1-LTB-OMCP was successfully constructed by fusing LTB and OMCP. To the
best of our knowledge, this is the first report on the combination of S. cerevisiae display
technology and mucosal immune adjuvant LTB.

The second segment of the fish intestine is considered to be the main site of antigen
uptake and plays a major immune role [46,47]. To test whether the antigen can be de-
livered to the site of action, the marker antigen GFP was expressed in P. pastoris. After
intragastric administration to stomachless teleost fish (Cyprinidae) and stomach teleost fish
(Oncorhynchus mykiss), it was observed that the GFP signal in the second intestine of teleost
fish with a stomach was lower than that of stomachless teleost fish [48]. Subsequently, a



Animals 2023, 13, 1183 14 of 18

study showed that the ORF131 protein of cyprinid herpesvirus 3 (CyHV3) expressed by
S. cerevisiae EBY100 could be detected in the second intestine of carp [49]. In this study, the
red fluorescence of the recombinant yeasts could be detected in the second intestine of the
immunized group. This indicated that S. cerevisiae EBY100 could deliver complete anti-
gens to the active site of the intestines, which is an important prerequisite for an effective
oral vaccine.

T-SOD, AKP, ACP, and LZM are generally selected as indicators to evaluate the im-
mune status and disease resistance of fish. Previously, it was reported that the oral double-
targeted DNA vaccine of Vibrio mimicus could significantly increase the activity of SOD and
LZM in the serum and intestinal mucus of grass carp (Ctenopharyngodon idella) [50]. The
oral Bacillus subtilis vaccine expressing VP56 of grass carp reovirus II (GCRVII) markedly
increased the activity of immune-related enzymes in the serum and intestine of immunized
grass carp [35]. Here, we examined the levels of T-SOD, AKP, ACP, and LZM in the serum
and intestinal mucus of largemouth bass. The vaccine group maintained a high level of
enzyme activity during immunization (7–35 dpi). AKP and ACP are involved in the process
of cell digestion of antigens [51]. T-SOD can eliminate superoxide radicals produced by
phagocytosis [52]. LZM can also activate leukocytes and phagocytic cells [53]. The general
increase in these four enzyme activities suggested enhanced phagocytosis in the body. The
vaccine containing the MCP antigen was swallowed, thereby improving the innate immune
level of the fish. In the study of an LMBV immersion vaccine, the increase in AKP activity
was not obvious [31]. However, in this study, the AKP activity of the vaccine group in-
creased significantly, and the AKP activity of the empty yeast control group (EBY100-pYD1)
also increased slightly (p > 0.05). Thus, the glucan and other components in the yeast cell
wall might play a role [54].

To further evaluate the immune effect of the vaccines, we focused on the genes of
innate immunity (TNF-α, IL-1β) and adaptive immunity (IgM, IgT). TNF-α and IL-1β are
important cellular inflammatory factors [55]. In this study, the mRNA levels of IL-1β and
TNF-α in the head kidney and intestine were significantly upregulated in the vaccine groups.
TNF-α was significantly upregulated earlier than IL-1β. It was possible that TNF-α, one of
the first cytokines produced in response to viral infection, could trigger pro-inflammatory
cascades, including IL-1β [34,56]. The expression of TNF-α and IL-1β in a previous LMBV
DNA vaccine report peaked at 7 dpi, earlier than the 21 dpi observed in this study [18].
This might be because injection inoculation could cause a faster immune response in
the body. Among the three immunoglobulins present in fish, IgM plays a major role in
systemic immunity [57], and IgT/Z plays a key role in mucosal immunity [32,58,59]. In this
study, IgM was significantly upregulated in the head kidney and intestine of largemouth
bass compared to controls. IgM expression was continuously high (28–42 dpi) in the
head kidney of the vaccinated groups. This was similar to the IgM expression in gibel
carp (Carassius auratus gibelio) induced by the cyprinid herpesvirus 2 (CyHV2) yeast oral
vaccine [60]. As for IgT, our results showed that the gene was highly expressed in the
head kidney and intestine of the immunized groups, as expected, and the expression
level was higher in the intestine. These results showed that oral vaccines could effectively
trigger intestinal mucosal immunity, represented by IgT upregulation [49]. The expression
level of IgT in the intestines of rainbow trout (Oncorhynchus mykiss) was stronger than
that in the head kidney after inoculation with the EBY100 yeast vaccine against infectious
hematopoietic necrosis virus (IHNV) [61], which was consistent with the results of this
study. Compared with the EBY100-OMCP group, the upregulation of immune genes in
the EBY100-LTB-OMCP group was more obvious, indicating that the presence of LTB was
important for producing a strong immune response [26].

Neutralizing antibodies play a central role in clearing pathogens [62]. In this study,
vaccination induced high titers of anti-LMBV antibodies (1:85) in largemouth bass serum.
Interestingly, compared with that produced by the ordinary vaccine EBY100-OMCP, the
antibody level induced by the EBY100-LTB-OMCP vaccine was not significantly higher
(p > 0.05), which differed from the results of previous studies [45,63]. However, serum
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antibody levels are not necessarily associated with vaccine protection [64]. In response to
LMBV infection, the RPS of the EBY100-LTB-OMCP vaccine reached 66.66%, which was
significantly higher than that of the EBY100-OMCP vaccine (52.10%) (p = 0.0379). Therefore,
mucosal immunity stimulated by LTB might play a significant role in the anti-LMBV effect.

5. Conclusions

In conclusion, this study described highly safe LMBV oral vaccines based on yeast
surface display technology. The vaccines could not only induce systemic immunity in
largemouth bass but also effectively promote the activation of intestinal mucosal immunity.
When challenged by LMBV infection, the mortality rates in the vaccine groups were
significantly reduced. The vaccine preparation method has broad prospects for preparing
oral vaccines for other pathogens. However, more samples are needed to verify the safety of
the vaccine. In order to prepare more effective vaccines, the parameters such as the immune
dose of the vaccine, the vaccination regimen, and the selection of immune adjuvants need
to be further explored. Cytokines (IL-1β, IL-8, G-SCF, IFN-γ, etc.) have been shown to
have adjuvant effects. The combination of multiple cytokine adjuvants may improve the
immune effect of a single adjuvant in this study.
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