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Simple Summary: The objective of the present study was to develop a tool to detect mildly lame
cows by combining already existing data from sensors, automated milking systems (AMSs), routinely
recorded animal and farm data and other phenotypes. Ten dairy farms were visited every 30–42 days
from January 2020 to May 2021, and locomotion scores (LCSs) and body condition scores (BCSs) were
assessed at each visit. For each farm, a lameness incidence risk was calculated. Further, the impact of
lameness on the derived sensor parameters was inspected. Finally, random forest models for lameness
detection were fit by including different combinations of influencing variables and compared for best
results. The best performing model achieved an accuracy of 0.75 with a sensitivity of 0.72 and specificity
of 0.78 for predicting an LCS ≥ 2. We conclude that the combination of data from an available sensor
device with routinely available AMS data, animal and farm information, and performance records can
provide promising results for the detection of mild lameness in dairy cattle.

Abstract: This study aimed to develop a tool to detect mildly lame cows by combining already
existing data from sensors, AMSs, and routinely recorded animal and farm data. For this purpose,
ten dairy farms were visited every 30–42 days from January 2020 to May 2021. Locomotion scores
(LCS, from one for nonlame to five for severely lame) and body condition scores (BCS) were assessed
at each visit, resulting in a total of 594 recorded animals. A questionnaire about farm management
and husbandry was completed for the inclusion of potential risk factors. A lameness incidence
risk (LCS ≥ 2) was calculated and varied widely between farms with a range from 27.07 to 65.52%.
Moreover, the impact of lameness on the derived sensor parameters was inspected and showed no
significant impact of lameness on total rumination time. Behavioral patterns for eating, low activity,
and medium activity differed significantly in lame cows compared to nonlame cows. Finally, random
forest models for lameness detection were fit by including different combinations of influencing
variables. The results of these models were compared according to accuracy, sensitivity, and specificity.
The best performing model achieved an accuracy of 0.75 with a sensitivity of 0.72 and specificity of
0.78. These approaches with routinely available data and sensor data can deliver promising results for
early lameness detection in dairy cattle. While experimental automated lameness detection systems
have achieved improved predictive results, the benefit of this presented approach is that it uses
results from existing, routinely recorded, and therefore widely available data.

Keywords: lameness; dairy cattle; automated monitoring sensors; automated milking system;
locomotion score; claw-position score; early detection of lameness
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1. Introduction

Digitalization and automatization have advanced rapidly in the agricultural and live-
stock sector over the past decades [1–3] benefiting both farmers and animals. Further, the
use of automated milking systems (AMSs) has increased globally within the dairy industry,
automatically and continuously providing farmers with various data outputs concerning
milk yield, milk quality, and animal activity [4–7]. Moreover, sensor technologies are
increasingly applied on dairy farms, such as the use of accelerometers for detecting cows in
heat [8]. However, progress in breeding and milk performance resulted in high yielding
dairy cows with the need for solid herd management to ensure health maintenance. This
rapidly highlighted the potential of these technical devices regarding the health monitoring
of dairy herds. Nowadays, the use of these sensor data outputs is routinely applied in
precision livestock farming. Various sensors are available, and they are either attached to
the collar, the ear, leg-mounted as pedometers, or even carried in intraruminal boluses,
measuring the rumen’s pH, temperature, and activity [9–12]. With the aid of these devices,
sensor manufacturers have made clear advances in the detection of metabolic and infectious
diseases in dairy cows [13].

Alternatively, products to detect lameness routinely and automatically in dairy cattle
are still not available on the market. In recent years, many investigators have focused on
the development of such systems, but most prototypes are only applied on an experimental
setup [14–17]. Nevertheless, in Austria, lameness is the third most common cause for
premature culling of dairy cows with a prevalence of 7.4%, after reproductive problems
and mastitis [18]. Furthermore, farmers are expecting an automated lameness detection
system associated with low costs and high detection performances. These preconditions
must be met before such a tool becomes applicable in practice [17,19,20].

Lameness prevalence in Austria varies greatly between farms, ranging from <5% to
approximately 78% with a mean of 36% at the herd level [21–23]. However, in most cases,
only animals with a LCS of ≥3 (severely lame) are counted as lame, resulting in an even
higher lameness prevalence when including mildly lame (LCS = 2) cows [21–23]. Lameness
in dairy cattle is mainly caused by claw and digital disorders [24], and therefore, lameness
has a high impact on animal welfare [25,26]. Painful claw and digital disorders affect the
cow’s ability to move around and eat, resulting in a drop in performance. Thus, lameness
is often associated with a reduced milk production due to a drop in feed consumption, as
well as an impaired fertility, and often leads to premature culling [27,28].

Lameness is commonly detected via visual observation by the farmer and is therefore
widely depending on the farmer’s available time and detection skills alongside structural
preconditions in the existing barn and work routine [29,30]. However, a visual observation
of cows for lameness detection is time-consuming and prone to subjective bias, which
impairs the reliability of these data [31,32]. In particular, mild lameness cases at an early
stage are easily overlooked by untrained personnel [29,33]. Trying to overcome this issue,
systems for automated lameness detection have been developed. Noncontact locomotion
scoring systems, working with either force/pressure-sensitive platforms [17,34], or 2D/3D
cameras [35,36], deliver objective results without animal interference [37,38]. However,
varying detection rates are noted due to walking speed and leg position on platforms [17,39].
A combination with thermal infrared cameras improved detection rates during early
lameness stages by capturing the higher temperature from the increasing blood flow [40].
Nevertheless, data processing in this context is complex and time consuming. While these
attempts deliver very good results, routine use is still hesitant as farmers are reluctant to
invest in such additional and expensive devices [17,41,42].

In contrast, other research approaches focus on automated lameness detection us-
ing devices already available on dairy farms. For example, sensors which are directly
attached to the cow are frequently used for health monitoring nowadays, by recording
behavioral patterns such as rumination, eating, or lying down, relying on the change of
these movements for disease detection [2,16,43,44]. Various studies revealed a significant
effect of lameness on the cows’ eating time, i.e., the time to secure sufficient dry matter
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intake, daily milk yield, the number of daily visits to the AMS, and the number of cows
that had to be fetched to the AMS, resulting in a higher workload [4,5,45]. A study from
Miguel-Pacheco et al. [46] carried out in farms equipped with an AMS showed a significant
negative association between total feeding time and lameness as well as the frequency
of feeding bouts and lameness. Furthermore, these researchers observed a significant
difference in AMS visits between lame and sound cows, with lame animals being 0.33 times
less likely to visit the AMS between 00:00 and 06:00. In summary, results from these studies
showed that lameness was significantly affecting feeding behavior and AMS visits. All
these impacts are likely to have negative consequences for farm profitability, but also for
animal health and welfare [25,26,46,47].

The present study was part of the D4Dairy project (https://d4dairy.com/ (accessed
on 1 June 2022)), which stands for digitalization, data integration, detection, and decision
support in the dairy industry. The primary goal of this project was to integrate data from
technology systems already present on dairy farms to build a basis for digital advances in
dairy herd management and to enhance animal welfare and sustainable strategies regarding
the use of antibiotics, thus ensuring food safety. The aim of the present D4Dairy pilot study
was to combine data from animal sensors, AMSs, milk performance testing and farm risk
factors to develop a decision support tool for the detection of early stage lameness in dairy
cows.

2. Materials and Methods

This study was conducted according to the guidelines and institutional ethics of
the COMET-Project D4Dairy (project number: 872039) and was discussed and approved
by the institutional ethics and animal welfare committee of the University of Veterinary
Medicine Vienna on 11 July 2019 in accordance with GSP guidelines and national legislation
(ETK-125/07/2019).

2.1. Farm Selection

Ten dairy farms located in the Austrian provinces of Lower Austria, Upper Austria,
and Styria participated in this trial with a total of 594 cows. Farms were chosen by the
following criteria: free stall barns with an AMS and commercially available sensors (Sense-
Hub™, MSD Animal Health, Rahway, NJ, USA). Cows were either already equipped with
SenseHub™ dairy sensors or devices were provided by the manufacturer for the study
period if the farms were not yet equipped with these sensors. Both the ear tag and collar tag
version of sensors were used. Furthermore, participation in the national milk performance
recording (Landeskontrollverband—LKV; https://lkv.at/ (accessed on 1 June 2022)) was
mandatory.

2.2. Animal Data

The LKV provided additional data about animals of these ten farms. Records included
animal and farm identification in an anonymized form, age, lactation number, breed, heat
events, insemination dates, calving dates, calving difficulty, dry-off date, pedigree, and
milk testing records containing milk yield, percentage of fat and protein as well as urea
in milk. With the provided fat and protein contents, the fat–protein ratio was calculated.
Days in milk (DIM) and the age at first calving were calculated and animals were regarded
as purebred cows if the proportion of a single breed exceeded 75%. Breeds comprised
four categories including: Fleckvieh (dual-purpose Simmental) (n = 368), Brown Swiss
(n = 50), Holstein Friesian and Red Friesian combined (n = 86), and mixed breed (n = 90;
crossbreed ≥ 25%).

2.3. On Farm Data Collection

Employees of the LKV visited each farm every 30 to 42 days from January 2020 to
May 2021 during routine milk performance testing. They recorded the locomotion score
(LCS) as described by Sprecher et al. [31] and the body condition score (BCS) according to

https://d4dairy.com/
https://lkv.at/
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Edmonson et al. [48] (details in Section 2.3.2). These scores were recorded from all cows in
milk, dry cows, and heifers during late pregnancy. In addition, all ten farms were visited
twice by the first author between November 2020 to March 2021 with 14 days between
the first and second visit. During these visits, the LCS and BCS were recorded, and the
claw-position score (CPS) was assessed [49,50]. Furthermore, information about farm
husbandry, management, and risk factors was documented.

2.3.1. Farm Management and Husbandry

During the first visit, farmers were asked to answer a questionnaire (shown in the
Table S1) to assess risk factors including questions on the following topics: general farm
information (e.g., conventional or organic) and information on feeding such as feed analyses
and calculations of rations. In this context, the level of feed structure and the management
of changes in the ration were assessed, i.e., how many days does the farmer allow to ensure
the rumen adjustment to new feed rations when changing silage. Furthermore, information
about the vitamin and mineral supply of youngstock, dry cows, and lactating cows was
recorded. The access to paved outdoor areas was also documented, as well as access to
grazing and alpine pasture. Furthermore, the availability of ventilators and other cooling
systems in barns was recorded. The integration management of new cows was also a
matter of interest, including the presence of calving pens and areas for sick cows. Since
all farms were equipped with AMSs, the AMS type was recorded as well as the quality
of teat cleansing during the visit. Preventive measurements regarding ketosis, milk fever,
and lameness (e.g., routine hoof trimming, hoof trimming intervals, application of foot
baths) were noted as well as the number of additional livestock purchases from other
farms. Finally, the dimensions of the farm facilities including barn alleys and cubicles were
measured and the bedding types, decubital lesions on cows, damages, and slip-resistance
of the floors as well as steps or obstacles within the barn were evaluated.

2.3.2. Visual Animal Scorings

In this study, the LCS according to Sprecher et al. [31] was used. Cows were scored
from January 2020 to May 2021 during routine milk performance testing while standing
and walking to assess back posture and then assigned to a score from 1 to 5 (nonlame to
severely lame).

Furthermore, the BCS was calculated using the method described by Edmonson et al. [48]
with a scale from 1 to 5, using 0.25-unit increments and therefore resulting in a 17-point
scoring system. The BCS was assessed for each cow individually at every visit by a visual
examination from the back. A score of 1 indicated an emaciated condition, and a score of
5 referred to an obese animal. The same chart was used for dual-purpose and dairy breeds.

The claw-position score (CPS) is a parameter describing the angle formed by the
imaginary interdigital line of each claw pair of the hind limbs and the median line of
the cow’s body (the line along the vertebral column) [49,50]. Scoring is done by a visual
assessment from the back while the cows stand still, preferably in the feed fence. The
angle is caused by differing heel heights between medial and lateral claws on each limb—
the higher the heel height of the lateral claw is, the higher the CPS, indicating a greater
imbalance of weight distribution between the claws and resulting in a higher risk for the
development of claw horn disruption lesions and subsequent clinical lameness. Depending
on the angle between the interdigital line and the midline of the body, three scores are
differentiated. Score 1 (0–16◦) implies a physiological weight distribution between claws; a
score of 2 (17–22◦) indicates hoof trimming is advised; and a score of 3 (>23◦) can be seen
as an indicator for subclinical lameness, where hoof trimming is urgently needed before
clinical lameness develops [49,50].

2.3.3. Interobserver Reliability

All LKV employees were part of previous studies and were well trained in assessing
the LCS and BCS [22,23,51]. To ensure the interobserver reliability for this study, all of
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them participated in a training on a commercial dairy farm in October 2019 and within
two weeks thereafter completed an online video test where different video scenarios of
nonlame (LCS 1) and lame cows (LCS 2–5) were presented. For assessing the interobserver
reliability, weighted Cohen’s Kappa values were calculated using two different approaches
for LCS scoring. First, the 5-level scoring system described above was applied in three
testing rounds resulting in a mean weighted Cohen’s Kappa value of 0.65, with a minimum
value of 0.55. Reducing the lameness score to a 3-level scale (LCS 1, LCS 2 + 3, LCS 4 + 5),
improved Kappa values to a mean of 0.69 (min: 0.55). Combining LCS 1 + 2, LCS 3, and
LCS 4 + 5 gave the best results, with a mean weighted Kappa value of 0.72 (min: 0.61).
However, the authors refrained from merging nonlame cows with mildly lame cows as this
study aimed at the detection of lameness during its early stages with the aid of behavioral
differences registered by sensors. Therefore, LCS 1 was further referred to as LCS-G 1,
LCS 2 and 3 were combined to LCS-G 2, and LCS-G 3 comprised LCS 4 and LCS 5 scorings.
Weighted Cohen’s Kappa values >0.6 are considered to indicate a high agreement, values
between 0.6 and 0.4 indicate a moderate agreement, and values below 0.4 indicate a low
interobserver agreement [52].

For the BCS, two test rounds were performed and overall, a good agreement between
all participating LKV employees was determined, resulting in a mean weighted Kappa of
0.81 (min: 0.61) in round 1 and 0.78 (min: 0.61) in round 2.

2.4. AMS and Sensor Data Collection and Transfer

The data from the AMSs (Lely Astronaut A4 and Lely Astronaut A5, Lely International
N.V., Maassluis, The Netherlands; DeLaval VMS, DeLaval, Tumba, Sweden; GEA Monobox,
GEA Farm Technologies, Bönen, Germany) were provided by the manufacturers. After
validation for missing records and implausible milk quantities, the final AMS dataset
included the total daily milk yield (DMY), number of milkings per day, milking interval, and
the average milk production per hour. AMS parameters that were regarded as significant
for lameness occasions in other studies were not included in the transferred dataset by
the AMS data providers. Examples included refusals (visits at the AMS without milking),
concentrate left-overs, and milking duration.

Sensor data from the SenseHub™ dairy system were available for eight farms during
the whole observation period from July 2020 to May 2021. The other two farms only
provided 6–8 months of sensor data due to a delay in the installation during COVID-19.
The SenseHub™ dairy sensors are automated monitoring sensors administered via ear
or collar tags which record cow activities and transmit them via an installed antenna
every 20 min. Sensor data were then preprocessed by the manufacturer and provided
by MSD Animal Health. The dataset included the parameters ‘Rumination’, ‘Eating’,
‘Walking’, ‘Rest’, ‘Activity_Mid’, ‘Activity_High’, ‘Over_Heat’ and ‘Reserved’ and were
stated for every hour as minutes per hour. The parameter ‘Rest’ registers low activity,
such as lying down. ‘Activity_Mid’ comprises behavior with medium activity levels, for
example drinking, using the cow brush, walking around, interacting with other cows.
‘Activity_High’ identifies running around or intensive movements during heat. ‘Walking’
was rarely detected in our dataset, with only 0 to 2 min per hour. ‘Over_Heat’ records heat
stress via heavy breathing. ‘Reserved’ is associated with animal behavior that has not been
defined up to this study. Further, the calculated index ‘Activity_Trend’, which combines
the duration and intensity of activity, was transmitted.

2.5. Annual Milk Yield and Lactation Numbers

Overall, ten dairy farms participated in this study with a total of 594 cows. The annual
herd milk performance in 2020 was 9001 kg with a range from 6367 kg to 10,496 kg. The
number of dairy cows on each farm ranged from 46 to 84 with a mean of 59.40 cows per
farm. In total, 61.95% of animals were Fleckvieh, 14.48% Holstein Friesian, 8.42% Brown
Swiss, and 15.15% of participating cows were of mixed breed.
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Lactation numbers varied between first and tenth lactation, with 29.34% of records
after first calving, 26.55% after the second, 15.54% in third lactation, 11.18% during fourth
lactation, and 17.39% during fifth and higher lactation. The lactation number was highly
significant (p < 0.0001) when comparing LCS groups, as well as the age of the animals
(p < 0.0001). Furthermore, the number of days in milk was not significant for lameness
events (p = 0.635). The age of the dairy cows at first calving ranged from 19 to 43 months
with a mean of 29.13 months. Within LCS groups, the LS means for the age at first calving
were 29.0 (±0.09), 29.3 (±0.11), and 29.3 (±0.21) months for LCS-G 1, 2, and 3, respectively.
However, the age at first calving was not significant for lameness (p = 0.132).

2.6. Farm Management and Husbandry Conditions

According to the farmer questionnaires, all animals were kept in free-stall barns and
milked by AMSs (five De Laval VMS, two Lely Astronaut 4, one Lely Astronaut 5 and two
GEA Monobox). Nine farms were conventional, one farm was organic. Two farms were
equipped with slatted floors, one with partly slatted floors and partly solid concrete floor,
four farms with solid concrete floors, and three with solid concrete floors covered with
rubber mats. Eight facilities used straw for cubicle bedding, two farms used separated
manure with one of them also offering a lying area with compost. Only one farm offered
pasture for their milking cows and four facilities for their dry cows. Cows had permanent
access to outdoor areas in four herds. Youngstock was kept on seasonal pasture on five
farms, three of them also offering alpine grazing. Six barns were equipped with cooling
systems for dairy cattle, such as ventilators or showers. Hoof trimming by professional
hoof trimmers was performed twice a year on all farms on all cows in milk and on one
farm also on lame youngstock. If acute lameness cases occurred between these visits, they
were treated by the farmer and/or hoof trimmer.

On four operations, damaged flooring was noted, as well as slippery floors in two
farms. In eight farms, obstacles and steps within the barn, especially around the AMS,
were observed. Feeding alleys had a mean width of 436.50 cm ranging from 320 to 600 cm.
Additional walking alleys were measured at mean of 325 cm (250–450 cm). On each
farm, the dimensions of four different cubicles were measured including the cubicle bed
length (mean: 189.15 cm), cubicle width (mean: 125.00 cm), height of the neck rail (mean:
115.00 cm), neck rail diagonal (mean: 193.60 cm), brisket board (mean: 22.67 cm), curb
(mean: 23.85 cm), and bedding height (mean: 8.79 cm).

2.7. Statistical Analyses

Prior to the analysis, all data were cleaned, preprocessed, and further anonymized by
ZuchtData EDV-Dienstleistungen GmbH (Vienna, Austria) to guarantee data privacy, as
agreed on by all project partners. Further data processing, descriptive statistics and statistical
modelling were executed in R Statistical Software (v4.1.2, R Core Team, Vienna, Austria) [53].

2.7.1. Lameness Incidence Risk

Locomotion scoring was done every 30 to 42 days during milk performance testing.
Therefore, every record of lameness during these scorings was qualified as a newly diseased
animal. The lameness incidence risk was calculated by dividing the sum of all new cases
of lameness during the study period by the total number of scored cows during the
whole study period. The total lameness incidence risk was calculated by including all
animals, regardless of their equipment with additional sensors or without. In addition,
the correlation between the LCS and CPS was calculated using the Spearman’s correlation
coefficient rs for ordinal data.

2.7.2. Impact of LCS on Sensor and AMS Parameters

According to the results of the interobserver reliability assessment, the five levels of
locomotion scores were combined to the three levels as described in Section 2.3.3.
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The sensor parameters ‘Reserved’, ‘Walking’, ‘Over_Heat’, and ‘Activity_High’ were
removed from further analysis due to irrelevance or low detection rate. The remaining
sensor parameters were ‘Rumination’, ‘Eating’, ‘Activity_Mid’, ‘Rest’, and ‘Activity_Trend’.
Hourly activity parameters were summed up for each day, and for the index ‘Activ-
ity_Trend’, the daily mean was calculated. Subsequently, sensor records from the day of
locomotion scoring were used for further analysis.

The sensor and AMS parameters were analyzed by linear models (R package lsmeans
(v2.30-0) [54]), including the following effects: farm, breed, lactation number, lactation
stage, age at first calving, and LCS-G. Furthermore, the least-squares (LS) means and
standard errors (SE) for each LCS-G were calculated. A Tukey–Kramer post hoc test was
then performed to calculate the p-values for each LCS-G comparison.

Furthermore, the animal behavior was graphically presented as a function of daytime
to inspect the hourly impacts of lameness on the recorded sensor parameters (shown
in Figure S1). Lame cows tend to avoid conflicts over resources and therefore behave
contrarily to sound cows [55]. A previous study by Miguel-Pacheco et al. [46] showed
significant differences in AMS visits between healthy and lame cows between 00:00 and
06:00. In line with these results, time between 08:00 to 20:00 was considered daytime and
sensor parameters were explicitly summed for these hours. Parameters during nighttime
were not considered separately, as all animals behaved similarly during the night.

2.7.3. Lameness Detection with Random Forest

Lameness detection was carried out with a machine learning approach using a ran-
dom forest approach [56–59]. This algorithm is implemented in the R packages ranger
(v 0.14.1) [60] and caret (v6.0-88) [61], which were used in this study. The idea of this
procedure is to improve the performance of a single decision tree by averaging multiple
individual decision trees to minimize their own errors [56–58]. To further improve the per-
formance of our models, a 10-fold cross-validated hyperparameter tuning was conducted.
By doing so, the best number of variables tried at each split was determined, with constant
values for the number of trees (n = 500) and minimum node size (n = 1).

Results for the different model approaches were evaluated by statistical performance
metrics including accuracy, sensitivity, and specificity. The mean and standard deviation
of these performance metrics were stated for all cross-validation procedures. Model per-
formance was then compared using the accuracy. Key figures were calculated as followed
with numbers of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN):

Sensitivity =
TP

TP + FN

Speci f icity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

Model Parameters

The desired outcome for our final model was a prediction of whether a cow was not
lame (LCS-G 1) or lame (LCS-G 2 + 3). Not all cows in the dataset were equipped with ad-
ditional sensors, thus the number of cows dropped from 593 to 374 with 2682 observations.
Overall, 52.27% of these records belonged to nonlame cows and 47.73% to lame cows,
resulting in a balanced dataset for disease detection. Therefore, no over- or undersam-
pling procedures were implemented. Scorings of dry cows and heifers were removed
from the dataset to only include records with AMS data. A detailed description of the
parameters used for the detection models is given in Table 1. The z-score for continuous
sensor parameters was calculated. The z-score is a standard score measuring by how many
standard deviations the initial record in our dataset differs from the overall mean of the
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herd. Furthermore, the parameters were also scaled to investigate how much the value on
scoring days differed from the mean of each individual animal during the study period.
Both scores were calculated for the daily sum of each parameter, as well as for the sum of
activity records during daytime. For the model calculation, the difference in BCS from one
scoring day to the previous scoring day was used.

Table 1. Parameters that were included in the final detection models.

Parameter Description

Animal data

age In months between date of birth and scoring date
breed Fleckvieh, Brown Swiss, Holstein Friesian, mixed breed

lac_num Lactation number 1, 2, 3, 4, 5+
DIM Days in milk

calving_age Age at first calving in months between date of birth and first calving

Routinely recorded performance data

milk_herd Annual herd milk performance of 2020
milk_protein Protein content in milk

milk_protein_prev Protein content in milk of previous performance testing
milk_urea Urea content in milk

milk_urea_prev Urea content in milk of previous performance testing
milk_fat_protein_ratio Fat–protein ratio in milk

milk_fat_protein_ratio_prev Fat–protein ratio in milk of previous performance testing
BCS_diff Difference in BCS from one scoring day to the previous scoring day

CPS Claw-position score from 1 to 3

AMS data

ams_DMY Daily milk yield in kg
ams_hourly_production Milk production per hour

ams_num_milkings Number of daily milkings
ams_interval_milkings Time between milkings

Sensor data

Rumination Total daily rumination time, scaled by mean of herd at scoring day
Eating Total daily eating time, scaled by mean of herd at scoring day
Rest Total daily time with low activity, scaled by mean of herd at scoring day

Activity_Mid Total daily time with medium activity, scaled by mean of herd at scoring day
Activity_Trend Calculated daily mean for index Activity_Trend, scaled by mean of herd at scoring day

Rumination_daytime Minutes spent ruminating during daytime, scaled by mean of herd at scoring day
Eating_daytime Minutes spent eating during daytime, scaled by mean of herd at scoring day
Rest_daytime Minutes with low activity during daytime, scaled by mean of herd at scoring day

Activity_Mid_daytime Minutes with medium activity during daytime, scaled by mean of herd at scoring day
Activity_Trend_daytime Mean Activity_Trend index during daytime, scaled by mean of herd at scoring day

Rumination_animal_daytime Minutes spent ruminating during daytime, scaled by mean of individual animal at study period
Eating_animal_daytime Minutes spent eating during daytime, scaled by mean of individual animal at study period
Rest_animal_daytime Minutes with low activity during daytime, scaled by mean of individual animal at study period

Activity_Mid_animal_daytime Minutes with medium activity during daytime, scaled by mean of individual animal at study period
Activity_Trend_animal_daytime Mean Activity_Trend during daytime, scaled by mean of individual animal at study period

Risk factors

Results from the farmer’s questionnaire were evaluated and risk factors were added to the analysis.
Remaining risk factors that were used in the model are shown in the Supplementary Materials (Table S1, Figure S1).

Lameness Detection Model with Animal-Based Split

In the first approach, an animal-based split [62] was chosen, meaning that all observa-
tions on an individual cow were either placed within the training dataset or test dataset.
The dataset was randomly split by animal into a training dataset containing 80% of the
records and a test dataset consisting of the remaining 20%. The model was then trained
on the larger training records, and disease detections were made for the test dataset. Five
different models were built with varying variable combinations, as shown in Table 2. A
fourfold cross validation was conducted for each model. For the training of model 5, only
days with LCS and CPS scorings performed by the first author were considered for cows in
milk, yielding 574 records.
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Table 2. Four different models with varying combinations of variables were built.

Model 1 Model 2 Model 3 Model 4 Model 5

Sensor data

Animal data
Milk

performance
records

Farm risk factors
AMS data

Animal data
Milk

performance
records

Farm risk factors
AMS data

Sensor data

Animal data
Milk

performance
records

Farm risk factors
AMS data

Sensor data
BCS difference

Animal data
Milk

performance
records

Farm risk factors
AMS data

Sensor data
CPS

Lameness Detection Model with Farm-Based Split

In the second approach, a farm-based split [63] was used. The dataset included the
same data and variables as in Model 3 of the animal-based split approach (Table 2) and
was split into ten sub-datasets according to the ten farms, as the idea was to develop a tool
that could detect lame cows for one farm based on training information from other farms,
even without additional recorded phenotypes such as the BCS and CPS. For each round,
nine farms were in one training data set, and predictions were made for one farm as the
test dataset, resulting in a 10-fold cross-validation. In the next step, the dataset was split
into three groups according to lameness incidence risk groups (<30% (4 farms), 30–50%
(3 farms), >50% (3 farms)). In each group, one farm was defined as the test data and the
remaining farms were used for model training. This procedure was repeated for every
farm, resulting in a 3- and 4-fold cross-validation, respectively. Performance metrics were
calculated for overall results as well as within certain lameness incidence risk groups (<30%
(4 farms), 30–50% (3 farms), >50% (3 farms).

3. Results

The number of farms participating in this study, the number of cows per farm, the
mean annual milk yield and the distribution of cows in terms of their lactation numbers
were mentioned earlier.

3.1. Lameness Incidence Risk

A total of 8285 locomotion scores were recorded over eleven months from July 2020 to
May 2021, including all dairy cows on the farms, either in milk or dry, as well as heifers
during late pregnancy. Combining all farms, 55.93% of records were LSC 1 (nonlame cows:
n = 4634), 3052 records (36.84%) belonged to LCS-G 2, and 599 records (7.23%) to LCS-G 3.
LCS groups by breed illustrated a numerically high occurrence of lame cows for the breed
Fleckvieh, which is the main breed in Austria and therefore also had the highest number of
lameness scorings in the dataset (Table 3). However, only 49.62% of the 5298 records were
LCS-G 1 during the whole observation period. In comparison, 71.53% of scorings for Brown
Swiss cows were LCS-G 1, 69.98% of Holstein cows and 61.97% for mixed breed cows.
For LCS-G 2, Fleckvieh cows also showed the highest incidence with 41.15%, followed by
mixed breed (34.29%), Holstein (27.19%) and Brown Swiss (23.56%) cows. A high rate of
Fleckvieh cows (9.23%) were distinctly to severely lame (LCS-G 3). Results for other breeds
regarding LCS-G 3 were comparatively low, ranging from 2.83% for Holstein to 4.91% for
Brown Swiss cows.

Lactation numbers were divided into one, two, three, four, and five or more lactations
(Table 4). A continuous increase of lame cows with rising lactation numbers was observed.
During the first lactation, 70.97% of the observations were LCS-G 1, during the second
lactation 60.54%, the third 48.58%, the fourth 45.39%, and during the fifth and higher
lactations, 34.11%. Similarly, a steady increase was determined for LCS-G 2, from 25.73%
after the first calving to 52.29% after the fifth or higher calving. LCS-G 3 records increased
from 3.30% to 13.60%. Apparently, the total number of observations was less for the
lactation number due to the exclusion of scorings before the first calving. The total number
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of cows was considerably higher, as most cows reached a higher parity during the study
period and therefore appeared in two categories.

Table 3. Lameness incidence risk on all 10 farms according to breed and for all animals; LCS-G 1–3:
locomotion score groups 1 to 3.

Breed Total Cows Total
Observations LCS-G 1 (%) LCS-G 2 (%) LCS-G 3 (%)

Fleckvieh 368 5298 49.62 41.15 9.23
Holstein 86 1096 69.98 27.19 2.83

Brown Swiss 50 713 71.53 23.56 4.91
Mixed breed 90 1178 61.97 34.29 3.74

All breeds 594 8285 55.93 36.84 7.23

In general, however, lameness incidences differed very much between farms (Table 5).
On four farms (A, B, F, H) the lameness incidence risk was quite similar with a high number
of nonlame cows (71.12–72.93%). The highest numbers for severely lame animals (LCS-G 3)
were recorded on farms C, E, and J with a range of 12.22–13.95%. The lowest value was
reached on farm I with 0.84%.

Table 4. Lameness incidence risk according to lactation number; LCS-G 1–3: locomotion score groups
1 to 3.

Lactation Number Total Cows Total Observations LCS-G 1 (%) LCS-G 2 (%) LCS-G 3 (%)

1 298 2394 70.97 25.73 3.30
2 289 2167 60.54 33.55 5.91
3 185 1268 48.58 42.43 8.99
4 122 912 45.39 45.51 9.10

5+ 124 1419 34.11 52.29 13.60

n = 1018 n = 8160

Table 5. Lameness incidence risks according to the ten farms; LCS-G 1–3: locomotion score groups 1
to 3.

Farm Total Cows Total
Observations LCS-G 1 (%) LCS-G 2 (%) LCS-G 3 (%)

A 65 790 71.27 23.92 4.81
B 58 665 72.93 24.67 2.40
C 55 913 51.00 35.33 13.67
D 46 525 34.48 60.76 4.76
E 84 1391 43.78 42.27 13.95
F 51 735 72.79 23.81 3.40
G 58 727 42.64 53.65 3.71
H 46 599 71.12 25.21 3.67
I 70 958 58.87 40.29 0.84
J 61 982 50.31 37.47 12.22

n = 594 n = 8285

3.2. Body Condition Scoring

A total of 8275 body condition scorings were recorded, using the same chart for all
breeds. The BCS distribution according to each LCS-G is presented in Figure 1.
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3.3. Claw-Position Scoring

During the first author’s farm visits, the CPS was assessed for 593 cows, resulting in a
total of 1186 observations. Table 6 shows the distribution of the CPS according to the LCS-G
of each observed cow. A steady decrease of CPS 1 was also reflected in higher locomotion
scores, thus, numbers for CPS 2 and 3 increased with LCS. Furthermore, Spearman’s
correlation coefficient rs for ordinal data was calculated and indicated a weak positive
correlation between LCS-G and CPS (rs: 0.394) with a high significance (p < 0.0001).

Table 6. Distribution of CPS according to LCS records; LCS-G 1–3: LCS-G 1–3: locomotion score
groups 1 to 3; CPS: claw-position scoring.

CPS in Total Numbers

LCS-G 1 2 3 n

1 451 132 5 588
2 190 202 17 409
3 54 116 19 189

3.4. LCS-G and AMS Data

Data from the AMS systems provided information about the animal ID, the day and
time of milking, and the amount of milk yield. The dataset was validated for missing
milking records prior to further preprocessing. The additional parameters average milk
production per hour and daily milk yield were calculated. The detailed results are shown
in Table 7.

The LS mean for the number of daily milkings for LCS-G 1 cows was 3.24 (±0.03),
3.14 (±0.03) for LCS-G 2 cows, and 2.93 (±0.06) for LCS-G 3 cows. The differences in daily
milking events differed significantly between LCS-G 1 and LCS-G 2 (p = 0.0291) as well as
LCS-G 2 and 3 (p = 0.0018) and were highly significant between LCS-G 1 and 3.
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Table 7. Detailed results for parameters derived from AMS data according to LCS groups; LCS-G 1–3:
locomotion score groups 1 to 3.

Effects p LS Means SE p-Values for LCS-G 1

Daily milkings (n)

LCS-G <0.0001
1 3.24 ±0.03 1 vs. 2 0.0291
2 3.14 ±0.03 2 vs. 3 0.0018
3 2.93 ±0.06 1 vs. 3 <0.0001

Farm <0.0001
Breed 0.1668

Lactation number <0.0001
Lactation stage <0.0001

First calving age 0.1880

Daily milk yield (kg)

LCS-G 0.1913
1 26.7 ±0.27 1 vs. 2 -
2 26.5 ±0.31 2 vs. 3 -
3 25.7 ±0.57 1 vs. 3 -

Farm <0.0001
Breed <0.0001

Lactation number <0.0001
Lactation stage <0.0001

First calving age 0.0253

Milking interval (minutes)

LCS-G <0.0001
1 587 ±4.85 1 vs. 2 0.0128
2 603 ±5.39 2 vs. 3 0.0001
3 643 ±9.99 1 vs. 3 <0.0001

Farm <0.0001
Breed 0.1215

Lactation number <0.0001
Lactation stage <0.0001

First calving age 0.0112

Average milk production per hour (kg)

LCS-G 0.3300
1 1.23 ±0.01 1 vs. 2 -
2 1.23 ±0.01 2 vs. 3 -
3 1.20 ±0.02 1 vs. 3 -

Farm <0.0001
Breed <0.0001

Lactation number <0.0001
Lactation stage <0.0001

First calving age 0.0290
1 Based on Tukey–Kramer test.

The mean daily milk yield was 26.7 kg (±0.27 kg) for nonlame cows, 26.5 kg (±0.31 kg)
for LCS-G 2 cows, and 25.7 kg (±0.57 kg) for LCS-G 3 cows. This resulted in no significant
differences for DMY (p = 0.1913). Significant results (p = 0.0128 and p = 0.0001) were
obtained for the comparison between LCS-G 1 and 2 as well as LCS-G 2 and 3 for the
parameter milking interval. p values for nonlame cows and severely lame cows were highly
significant. No significant differences between LCS groups were observed for hourly milk
production (p = 0.3300).

3.5. LCS-G and Sensor Parameters

The results from the linear models for the sensor variables are shown in Table 8.
Overall, no significant differences for ‘Rumination’ were observed between LCS groups,
with an LS mean for rumination time for nonlame cows of 560 min per day, 561 min for
mildly lame cows, and 561 min for severely lame cows. The sensor parameter ‘Eating’
delivered significant results for total daily eating time for all comparisons. Sound, nonlame
cows spent on average 281 min per day eating, mildly lame cows 268 min, and severely



Animals 2023, 13, 1180 13 of 22

lame cows 245 min. Hence, lameness resulted in a drop in eating time by approximately 13
or 36 min, respectively.

Table 8. Detailed results for sensor parameters according to LCS groups; LCS-G 1–3: locomotion
score groups 1 to 3.

Effects p LS Means SE p-Values for LCS-G 1

Rumination (min/day)

LCS-G 0.95674
1 560 ±2.38 1 vs. 2 -
2 561 ±2.66 2 vs. 3 -
3 561 ±4.92 1 vs. 3 -

Farm <0.0001
Breed <0.0001

Lactation number <0.0001
Lactation stage 0.0097

First calving age <0.0001

Eating (min/day)

LCS-G <0.0001
1 281 ±2.66 1 vs. 2 0.0001
2 268 ±2.96 2 vs. 3 0.0001
3 245 ±5.49 1 vs. 3 <0.0001

Farm <0.0001
Breed <0.0001

Lactation number <0.0001
Lactation stage 0.1560

First calving age <0.0001

Rest (min/day)

LCS-G <0.0001
1 387 ±3.51 1 vs. 2 <0.0001
2 410 ±3.91 2 vs. 3 <0.0001
3 442 ±7.25 1 vs. 3 <0.0001

Farm <0.0001
Breed <0.0001

Lactation number <0.0001
Lactation stage <0.0001

First calving age 0.0473

Activity_Mid (min/day)

LCS-G <0.0001
1 148 ±2.34 1 vs. 2 0.0062
2 140 ±2.61 2 vs. 3 0.0426
3 128 ±4.83 1 vs. 3 0.0001

Farm <0.0001
Breed 0.0252

Lactation number <0.0001
Lactation stage 0.0081

First calving age 0.0016

Activity_Trend (min/day)

LCS-G <0.0001
1 305 ±1.74 1 vs. 2 <0.0001
2 291 ±1.94 2 vs. 3 0.0002
3 277 ±3.59 1 vs. 3 <0.0001

Farm <0.0001
Breed <0.0001

Lactation number <0.0001
Lactation stage <0.0001

First calving age 0.0314
1 Based on Tukey–Kramer test.

Records for the sensor parameter ‘Rest’ showed highly significant differences between
LCS groups: the mean for LCS-G 1 was 387 min per day, 410 min for LCS-G 2, and 442 min
for LCS-G 3 animals. Thus, time spent with low activities increased by 23 and 55 min for
LCS-G 2 and 3, respectively, when compared to nonlame cows.
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‘Activity_Mid’ is a sensor parameter consisting of activities with medium intensity,
such as walking, interacting with other cows, and using the cow brush. Nonlame cows
spent on average 148 min per day with medium intensity activities, LCS-G 2 cows 140 and
LCS-G 3 cows 128. p-values were significant for all LCS-group comparisons.

‘Activity_Trend’, an index for the duration and intensity of activity, was provided as
the mean value for the scoring day. Results were significant (p = 0.0002) to highly significant
for group comparisons.

3.6. Detection of Lameness Using a Random Forest Algorithm
3.6.1. Lameness Detection Model with Animal-Based Split

In the first model of this approach, only sensor parameters were used to detect lame
and nonlame animals. Results were comparatively low for all performance metrics with a
mean accuracy of 0.623 (±0.006), a mean sensitivity of 0.610 (±0.009), and a mean specificity
of 0.640 (±0.005).

In the second model, animal and farm data were combined with AMS data and perfor-
mance records with similar results for the accuracy (0.629 (±0.020)), a higher sensitivity
(0.657 (±0.022)), and a lower specificity (0.605 (±0.020)). However, better results were
achieved for the third model, combining farm and AMS data with sensor variables (ac-
curacy: 0.680 (±0.014), sensitivity: 0.695 (±0.030), specificity: 0.668 (±0.041)). Adding
BCS to the data in Model 4 resulted in a boost in specificity to 0.701 (±0.031), in sensitiv-
ity to 0.738 (±0.014), and an overall accuracy of 0.719 (±0.010). The highest accuracy of
0.753 (±0.046) was achieved with Model 5 (including CPS), resulting in a slightly lower
sensitivity of 0.725 (±0.090) and the highest specificity of 0.775 (±0.025) (Table 9).

Table 9. Mean ± standard deviation of model performance parameters from fourfold cross-validation.
Model 1 was trained on sensor data only; Model 2 included AMS data, animal, and farm information;
for Model 3 AMS, animal and farm data were merged with sensor records; and Model 4 additionally
included BCS data. In Model 5, the CPS was included.

Model 1 Model 2 Model 3 Model 4 Model 5

Sensitivity 0.610 (±0.009) 0.657 (±0.022) 0.695 (±0.030) 0.738 (±0.014) 0.725 (±0.090)
Specificity 0.640 (±0.005) 0.605 (±0.020) 0.668 (±0.041) 0.701 (±0.031) 0.775 (±0.025)
Accuracy 0.623 (±0.006) 0.629 (±0.020) 0.680 (±0.014) 0.719 (±0.010) 0.753 (±0.046)

3.6.2. Lameness Detection Model with Farm-Based Split

Training the random forest algorithm on a farm-based split of the dataset of Model 3
resulted in an overall accuracy of 0.605 (±0.060) with a maximum of 0.712 and a minimum of
0.522. Sensitivities ranged from 0.421 to 0.771 with a mean of 0.613 (±0.131) and specificities
ranged from 0.355 to 0.802 with a mean of 0.580 (±0.117).

Looking more closely at individual farms, results suggested that the model worked
best on farms with low lameness incidence risks (mean 27.97%), whereas farms with
high incidence risks of 49–65.52% had poorer predictive outcomes. Taking the lameness
incidence risk into account, performance records for each of the three lameness incidence
risk groups are stated in Table 10.

In the next step, model training was performed within these lameness incidence risk
groups. Therefore, farms were split into three sub-datasets according to their lameness
incidence risk (<30% (four farms), 30–50% (three farms), >50% (three farms)). Results are
shown in Table 11. By doing so, the model performance, as evaluated by the accuracy, was
improved for two categories (<30% and >50%) compared to the training on all farms.
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Table 10. Mean ± standard deviation of model performance parameters for the respective number of
cross-validations among the overall farm-based split under consideration of a low (<30%), medium
(30–50%), and high (>50%) lameness incidence risk including animal and farm data, AMS data, and
sensor records.

<30% 30–50% >50%

Sensitivity 0.743 (±0.021) 0.598 (±0.055) 0.454 (±0.034)
Specificity 0.486 (±0.088) 0.600 (±0.033) 0.685 (±0.117)
Accuracy 0.651 (±0.061) 0.599 (±0.022) 0.553 (±0.042)

Table 11. Mean ± standard deviation of model performance parameters for the respective number of
cross-validations among each sub-dataset with a low (<30%), medium (30–50%), and high (>50%)
lameness incidence risk including animal and farm data, AMS data, and sensor records.

<30% 30–50% >50%

Sensitivity 0.721 (±0.023) 0.585 (±0.048) 0.502 (±0.108)
Specificity 0.564 (±0.092) 0.603 (±0.047) 0.645 (±0.097)
Accuracy 0.687 (±0.020) 0.591 (±0.015) 0.574 (±0.064)

4. Discussion

In contrast to many other studies that chose an experimental approach [14,43,64,65],
the aim of the present study was to combine already existing data from different sources
(sensors, AMS, animal, and farm information) in dairy farms to identify cows during
early lameness stages. Furthermore, a locomotion score of two was considered because it
indicates mild lameness [31] and our objective was the detection of early lameness stages.
In other studies, however, cows with a mild lameness were often grouped in the ‘nonlame’
group and only cows with LSC ≥ 3 were used for statistical analyses [16,21,64–66].

The locomotion score records of all cows on the ten participating farms, including
cows in milk and dry cows, as well as heifers during late pregnancy, resulted in an overall
mean lameness incidence risk of 44.08% with a range from 27.07 to 65.52%. The lameness
incidence risk for Fleckvieh cows was overall high (50.38%) when also counting LCS 2 as
lame. In recent reports from Austria [22], including 144 herds, and from North America [67],
the mean lameness prevalence including LCS 2 ranged from 33.6% to 63.0%.

With a share of approximately 75%, Fleckvieh is the main breed in Austria [18,47]
and was therefore overrepresented in our study. Furthermore, it is the only dual-purpose
breed in this study. While Fleckvieh cows can reach milk yields similar to other breeds
involved [22], these cows are commonly much heavier than, for example, Holstein cows.
Moreover, Fleckvieh cows reached higher lactation numbers in our study and thus con-
tributed to the majority of cows with five or more lactations as compared to Holstein
cows [18,68]. Nevertheless, lameness incidence risks were high on most participating farms,
highlighting an ongoing issue in some dairy herds. However, this is not representative
for all Austrian dairy farms, as data from a recent benchmarking study for claw health
suggested that many dairy farms in Austria have a good claw health status and lameness
incidence rates of less than 24.6% for the herds in the 25th percentile [23].

Aside from the technical functionality of the provided automated monitoring sensors,
the transfer of data and processing is very important to consider [17]. These sensors are
originally used for heat detection and the sensing of metabolic or infectious diseases. Thus,
the data processing and algorithm training are designed for this purpose. For example,
sensors used in this study could not provide information about behavior such as walking
or lying down. As shown in other studies, the duration of lying bouts as well as total
lying time are significantly higher for lame cows [5,39,55,69]. Further, counting steps by
pedometers can also improve disease detection [8,16]. Moreover, the parameter ‘Reserved’
is compiled of various sensor records that could not be linked to a certain animal behavior
up to this day. Especially in this context, identifying certain movement patterns could be
crucial for the substantial improvement of automated lameness detection in an already
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implemented sensor system. Similar to findings by Garcia et al. [4], lame animals in the
present study showed a differing activity pattern during daytime as compared to nonlame
cows, but as opposed to their results, we recorded the lowest activities for lame cattle
during the early morning (5:00–6:00 am). As reported in other studies, total rumination
time did not differ between LCS groups [69,70], while time spent eating dropped by 13 and
36 min for LCS-G 2 and LCS-G 3, respectively, compared to nonlame animals. This can be
explained by an up to 40% faster eating rate for lame cows [70,71].

Transferred AMS records provided the number of daily milkings, milking interval, the
amount of milk, and the average milk production per hour to correct for missing values
and irregular milking patterns. However, the average milk production per hour ranged
from 1.20 to 1.23 and was not significant for lameness events in this study. On average,
nonlame cows visited the AMS 3.24 times per day. LCS-G 2 animals recorded a significant
(p = 0.0291) lower mean of 3.14. The difference for LCS-G 3 was noted as highly significant
with mean visits of 2.93 when compared to LCS-G 1. Similar to this, Miguel-Pacheco
et al. [46] found a significant reduction from 3.2 daily milkings to 2.8 milking events when
comparing nonlame and lame animals. Similarly, the milking interval was also significant
to highly significant for group comparisons.

A lameness detection approach using a random forest algorithm [56–59] was applied
in this study. Lameness detection solely relying on sensor parameters resulted in the
lowest accuracy of 0.623 (±0.005) with a sensitivity of 0.610 (±0.009) and a specificity of
0.640 (±0.030). A study by Borghart et al. [2] found similar results for lameness detection
using parameters from a different sensor system (MooMonitor+®, Dairymaster®, Causeway,
Ireland) with our model outperforming in terms of specificity (64% versus 53%).

Using animal and farm data combined with AMS data and performance measurements
resulted in an accuracy of 0.629 (±0.020), a sensitivity of 0.657 (±0.022), and a specificity of
0.605 (±0.020). However, detection results improved by combining all these available data
sources (accuracy = 0.680 (±0.014), sensitivity = 0.695 ± 0.030, specificity = 0.668 ± 0.041).
In the next step, the difference from body condition scores from one scoring day to the
previous scoring day was added. This boosted our model results to an accuracy of 72%,
a sensitivity of 74%, and a specificity of 70%. The findings by Borghart et al. [2] showed
a better sensitivity (78%) and specificity (78%). However, their final model included the
live body weight, while our study relied on an estimation of the cow’s condition using
the BCS. Further, in the study of Borghart et al. [2], only Holstein Friesian cows from one
single farm were used, while the present approach combined the data of ten farms with
dairy cows belonging to different breeds. In our case, the same chart was used to score all
cows. Especially on farms with Fleckvieh and Holstein Friesian cows, the dual-purpose
breed tends to be overestimated during the scoring of the body condition [72]. The best
detection model was obtained when the recorded phenotype CPS was added. The accuracy
amounted to 75%, the sensitivity to 72%, and the specificity to 78%. Although the sensitivity
was lower compared to that of Model 4, the specificity was distinctly raised. In the present
study, AMS data slightly contributed to improving the lameness detection. However, only
the time of milking and the amount of milk were provided in the original AMS dataset,
with available records containing DMY, number of milkings, time between milkings, and
average milk production per hour in the validated dataset. Other studies using AMS data
reached better results (sensitivity 79%, specificity 83%) by including animal refusals (times
the cow visits the AMS without being entitled to be milked), concentrate left-overs, milking
duration, and average milk flow [4,73]. As these parameters were not included in the
transferred AMS data, adding these records to the final dataset could potentially boost
prediction results. A study by Lasser et al. [74], using animal and farm data to predict
lameness in dairy cows, also highlighted the importance of appropriate machine learning
selection. They demonstrated that more advanced techniques (e.g., XGBoost [75]) did
not generally outperform other approaches. In their case, a logistic regression reached an
accuracy of 89%, a random forest model 87%, and XGBoost 81%. Therefore, the underlying
dataset and a suitable algorithm should always be evaluated [74].
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The highest specificity in the present study was achieved by including the CPS (speci-
ficity = 0.775 ± 0.025), albeit with a drop in sensitivity. However, the exclusion of cows
with no sensor equipment and dry cows resulted in only 574 remaining observations. Nev-
ertheless, the clinical trait CPS may improve the identification of cows that are at a higher
risk of becoming lame in the future due to an uneven weight distribution between lateral
and medial claws on the hind limbs. The CPS is applied in Austria by some veterinarians
and farmers routinely for monitoring subclinical lameness, but publications on this topic
are rare [49,50]. In a recent study evaluating alternatives to locomotion scoring for detect-
ing lameness, one of the applied indicators during the in-parlor scoring procedure was
‘overgrown’ hoofs, indicated by different heel heights of the lateral and medial claws [76].

Using a farm-based split instead of an animal-based split on Model 3 reduced the mean
accuracy to 0.605 (±0.060). This could be because an animal-based split can pass some
relevant information (e.g., herd management practices) from the training to the test set.
Therefore, a certain overfit cannot be excluded. This is in accordance with Lasser et al. [74],
where animal and farm-based splits were also compared. However, on some farms, accu-
racy yielded comparatively high values of 0.72, 0.67, and 0.65. On the other hand, values
decreased to 0.53 and 0.52 in other farms. Notably, poorer detection results for farm-based
splits occurred primarily on those farms with high lameness incidence risks (farms C, D, E,
G, I, J). The lameness incidence risk on these six farms had a mean of 53.15% with a range
of 41.13 to 65.52%. In contrast, the remaining four farms with good predictive results had a
mean incidence risk of 27.97%, with a minimal range of 27.07 to 28.88%. Results for farm G
were among the lowest in all approaches. However, this was the only organic farm in the
present study and operated with mostly different husbandry and management measure-
ments including low-input strategies (e.g., in comparison low concentrate intake, grazing,
high calving intervals from only sometimes presenting a breeding bull and no artificial
insemination, partly cow-bound rearing). Model training within the lameness incidence
risk groups slightly improved the results for disease detection in two categories. The accu-
racy for the lameness incidence risk <30% changed from 0.651 (±0.061) to 0.687 (±0.020),
for 30–50% from 0.598 (±0.022) to 0.591 (±0.015), and for >50% from 0.553 (±0.042) to
0.574 (±0.064).

Our results demonstrate that the performance of this approach depends on the similari-
ties of farm conditions in the training data with those of the test data. For improving disease
detection under different farm conditions, a further inclusion of various other data (e.g.,
differing management measurements regarding hoof trimming, data from conformation
scoring, varying husbandry conditions, data from organic farms with pasture), from these
farms would be necessary in the future. However, the bases for such big data analyses
were already implemented within the D4Dairy project (https://d4dairy.com/ (accessed on
1 June 2022)) by harmonizing data standards and creating interfaces for data integration in
the future.

Another challenge we faced during this study was the individual animal behavior in
connection with lameness as reported also by others [15,69]. On the one hand, individual
behavior (‘Rumination’, ‘Eating’, ‘Rest’, ‘Activity_Mid’, ‘Activity_Trend’) was scaled for
comparison with other animals; on the other hand, the deviation for each individual cow
was also considered. However, some moderately to severely lame cows reacted with a
visible change in movement patterns, while other cows seemed completely unphased by
painful digital disorders. Conversely, some animals with a prolonged lameness history did
not change their behavior visibly after successful treatment, which may be explained by
the presence of chronic lameness and induced pain memory [26,77].

Lameness incidence risk increased with the lactation number according to our data
and according to the literature [22,66,78]. Nevertheless, dairy cattle with higher lactation
numbers and higher milk yield recorded less differences in sensor parameters. This could
imply that farmers selected cows with a higher behavioral tolerance towards lameness
despite an increasing age, meaning that affected cows are still productive while being or
not successfully treated. This suggests that recorded aspects (especially ‘Eating’, ‘Rest’,
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‘Activity_Mid’, ‘Activity_Trend’) provided by sensors can add valuable information for
lameness detection but may be limited by individual behavioral reactions to painful digital
diseases [15,69].

There were also some limitations in this study. As not all cows on participating farms
were equipped with additional monitoring devices, sensor data were recorded from 374
cows only, instead of all 594 animals present on the farms. Farmers were allowed to
freely choose which animals to equip with these ear or collar tags. This aspect possibly
led to a biased selection of particularly valuable and high-yield cows. Moreover, as herd
sizes in Austria are comparatively small [18,21], farm selection criteria resulted in quite
similar husbandry and management circumstances. This led to an exclusion of many risk
factors that were regarded as highly correlated to lameness in other studies [79–81]. Other
approaches including the assessment of risk factors regarding feeding, housing, husbandry,
and management measures have made clear advances in lameness detection and may be
beneficial for a further combination of different data sources [81].

5. Conclusions

For identifying lame dairy cows during early lameness (mild) stages that may easily
be overlooked during daily routine, the records of a commercially available sensor device
(attached to the collar or ear) were combined with routinely available data (AMS data,
animal and farm information, performance records) and visually assessed animal scorings
(LCS, BCS, CPS). The best performing model achieved an accuracy of 75% (sensitivity: 72%,
specificity: 78%). Although specialized automated detection systems have achieved higher
detection rates in experimental setups, their practical implementation is rare. Instead, a
combination of these widely available data records can deliver satisfactory results for lame-
ness detection in dairy cattle. As automated monitoring sensors and AMSs are becoming
more frequent, the evaluation of a larger data collection with a wider variation of farms
could possibly improve this method for the detection of early stage lameness in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13071180/s1, Figure S1: Mean hourly activity values (in
minutes) for sensor parameter ‘Rumination’ showing no visible reduction for LCS-G 2 and LCS-G 3
cows; Figure S2: Mean hourly activity values (in minutes) for sensor parameter ‘Eating’ showing a
visible reduction for LCS-G 2 and LCS-G 3 cows; Table S1: Questionnaire on farm management and
husbandry conditions.

Author Contributions: Conceptualization and supervision of the study: J.K., C.E.-D. and B.F.-W.;
study design: L.L., J.K., C.E.-D., B.F.-W., K.S., K.L. and H.S.; data collection: L.L., K.S., M.S., K.L., M.P.,
M.M., F.S. and F.P.; statistical analyses: L.L., K.S., B.F.-W., H.S., M.M., F.S. and L.M.; data interpretation:
L.L., K.S., C.E.-D. and B.F.-W.; writing—original draft, L.L.; reviewing and editing: L.L., J.K., C.E.-D.,
B.F.-W., K.S., K.L., H.S., M.P., M.M., F.S., F.P. and L.M.; initiation of the D4Dairy project in general,
contribution to the conceptualization of this specific project within D4Dairy, and organization of the
funding and data access: C.E.-D.; All authors have read and agreed to the published version of the
manuscript.

Funding: This work was conducted within the COMET-Project D4Dairy (Digitalisation, Data integra-
tion, Detection and Decision support in Dairying, Project number: 872039) (https://d4dairy.com/
(accessed on 1 June 2022)) that is supported by BMK, BMDW, and the provinces of Lower Austria and
Vienna in the framework of COMET-Competence Centers for Excellent Technologies. The COMET
program is handled by the FFG (grant number 872039).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in the current study are not publicly available due to
privacy restrictions of the data provider and owner (LKV Austria Gemeinnützige GmbH; https:
//lkv.at/ (accessed on 1 June 2022)). Authors were provided with anonymized data according to
an authorized material transfer agreement. Supplementary data may be available upon reasonable
request from the corresponding author.

https://www.mdpi.com/article/10.3390/ani13071180/s1
https://www.mdpi.com/article/10.3390/ani13071180/s1
https://d4dairy.com/
https://lkv.at/
https://lkv.at/


Animals 2023, 13, 1180 19 of 22

Acknowledgments: The authors would like to thank all farmers and LKV employees for their
participation in this study and data collection, and MSD Animal Health for providing the sensor
technology. We would also like to thank Cameron R. McCulloch, for manuscript assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bell, M.J.; Tzimiropoulos, G. Novel Monitoring Systems to Obtain Dairy Cattle Phenotypes Associated With Sustainable

Production. Front. Sustain. Food Syst. 2018, 2, 31. [CrossRef]
2. Borghart, G.M.; O’Grady, L.E.; Somers, J.R. Prediction of lameness using automatically recorded activity, behavior and production

data in post-parturient Irish dairy cows. Ir. Vet. J. 2021, 74, 4. [CrossRef]
3. Barkema, H.W.; Von Keyserlingk, M.A.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.-P.; Leblanc, S.J.; Keefe, G.P.; Kelton, D.F.

Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [CrossRef]
4. Garcia, E.; Klaas, I.; Amigo, J.M.; Bro, R.; Enevoldsen, C. Lameness detection challenges in automated milking systems addressed

with partial least squares discriminant analysis. J. Dairy Sci. 2014, 97, 7476–7486. [CrossRef] [PubMed]
5. King, M.T.M.; Pajor, E.A.; LeBlanc, S.J.; DeVries, T.J. Associations of herd-level housing, management, and lameness prevalence

with productivity and cow behavior in herds with automated milking systems. J. Dairy Sci. 2016, 99, 9069–9079. [CrossRef]
6. Westin, R.; Vaughan, A.; de Passillé, A.M.; DeVries, T.; Pajor, E.A.; Pellerin, D.; Siegford, J.; Vasseur, E.; Rushen, J. Lying times of

lactating cows on dairy farms with automatic milking systems and the relation to lameness, leg lesions, and body condition score.
J. Dairy Sci. 2016, 99, 551–561. [CrossRef]

7. Tse, C.; Barkema, H.W.; DeVries, T.J.; Rushen, J.; Pajor, E.A. Effect of transitioning to automatic milking systems on producers’
perceptions of farm management and cow health in the Canadian dairy industry. J. Dairy Sci. 2017, 100, 2404–2414. [CrossRef]

8. Galon, N. The use of pedometry for estrus detection in dairy cows in Israel. J. Reprod. Dev. 2010, 56, S48–S52. [CrossRef]
9. Bewley, J.M.; Schutz, M.M. Recent studies using a reticular bolus system for monitoring dairy cattle core body temperature. In

Proceedings of the First North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010; pp.
218–219.

10. Banhazi, T.M.; Lehr, H.; Black, J.L.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision livestock farming: An
international review of scientific and commercial aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1–9.

11. Bikker, J.P.; van Laar, H.; Rump, P.; Doorenbos, J.; van Meurs, K.; Griffioen, G.M.; Dijkstra, J. Technical note: Evaluation of an
ear-attached movement sensor to record cow feeding behavior and activity. J. Dairy Sci. 2014, 97, 2974–2979. [CrossRef]

12. Rutten, C.J.; Kamphuis, C.; Hogeveen, H.; Huijps, K.; Nielen, M.; Steeneveld, W. Sensor data on cow activity, rumination, and ear
temperature improve prediction of the start of calving in dairy cows. Comput. Electron. Agric. 2017, 132, 108–118. [CrossRef]

13. Gusterer, E.; Kanz, P.; Krieger, S.; Schweinzer, V.; Süss, D.; Lidauer, L.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Drillich, M.; et al.
Sensor technology to support herd health monitoring: Using rumination duration and activity measures as unspecific variables
for the early detection of dairy cows with health deviations. Theriogenology 2020, 157, 61–69. [CrossRef]

14. Van Hertem, T.; Maltz, E.; Antler, A.; Romanini, C.E.B.; Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Lokhorst, C.; Berckmans, D.;
Halachmi, I. Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity. J. Dairy
Sci. 2013, 96, 4286–4298. [CrossRef]

15. Van Nuffel, A.; Zwertvaegher, I.; Van Weyenberg, S.; Pastell, M.; Thorup, V.M.; Bahr, C.; Sonck, B.; Saeys, W. Lameness detection
in dairy cows: Part 2. Use of sensors to automatically register changes in locomotion or behavior. Animals 2015, 5, 861–885.
[CrossRef]

16. Beer, G.; Alsaaod, M.; Starke, A.; Schuepbach-Regula, G.; Müller, H.; Kohler, P.; Steiner, A. Use of extended characteristics of
locomotion and feeding behavior for automated identification of lame dairy cows. PLoS ONE 2016, 11, e0155796. [CrossRef]

17. Alsaaod, M.; Fadul, M.; Steiner, A. Automatic lameness detection in cattle. Vet. J. 2019, 246, 35–44. [CrossRef]
18. ZuchtData Jahresbericht. Annual Report. 2021. Available online: https://www.zar.at/Downloads/Jahresberichte/ZuchtData-

Jahresberichte.html/ (accessed on 15 February 2023).
19. Van De Gucht, T.; Van Weyenberg, S.; Van Nuffel, A.; Lauwers, L.; Vangeyte, J.; Saeys, W. Supporting the development and

adoption of automatic lameness detection systems in dairy cattle: Effect of system cost and performance on potential market
shares. Animals 2017, 7, 77. [CrossRef]

20. Kaniyamattam, K.; Hertl, J.; Lhermie, G.; Tasch, U.; Dyer, R.; Gröhn, Y.T. Cost benefit analysis of automatic lameness detection
systems in dairy herds: A dynamic programming approach. Prev. Vet. Med. 2020, 178, 104993. [CrossRef]

21. Rouha-Mülleder, C.; Iben, C.; Wagner, E.; Laaha, G.; Troxler, J.; Waiblinger, S. Relative importance of factors influencing the
prevalence of lameness in Austrian cubicle loose-housed dairy cows. Prev. Vet. Med. 2009, 92, 123–133. [CrossRef]

22. Kofler, J.; Fürst-Waltl, B.; Dourakas, M.; Steininger, F.; Egger-Danner, C. Impact of lameness on milk yield in dairy cows in
Austria—Results from the Efficient-Cow-project. Schweiz. Arch. Tierheilkd. 2021, 163, 123–138. [CrossRef]

23. Kofler, J.; Suntinger, M.; Mayerhofer, M.; Linke, K.; Maurer, L.; Hund, A.; Fiedler, A.; Duda, J.; Egger-Danner, C. Benchmarking
based on regularly recorded claw health data of Austrian dairy cattle for implementation in the Cattle-Data-Network (RDV).
Animals 2022, 12, 808. [CrossRef] [PubMed]

http://doi.org/10.3389/fsufs.2018.00031
http://doi.org/10.1186/s13620-021-00182-6
http://doi.org/10.3168/jds.2015-9377
http://doi.org/10.3168/jds.2014-7982
http://www.ncbi.nlm.nih.gov/pubmed/25282423
http://doi.org/10.3168/jds.2016-11329
http://doi.org/10.3168/jds.2015-9737
http://doi.org/10.3168/jds.2016-11521
http://doi.org/10.1262/jrd.1056S48
http://doi.org/10.3168/jds.2013-7560
http://doi.org/10.1016/j.compag.2016.11.009
http://doi.org/10.1016/j.theriogenology.2020.07.028
http://doi.org/10.3168/jds.2012-6188
http://doi.org/10.3390/ani5030388
http://doi.org/10.1371/journal.pone.0155796
http://doi.org/10.1016/j.tvjl.2019.01.005
https://www.zar.at/Downloads/Jahresberichte/ZuchtData-Jahresberichte.html/
https://www.zar.at/Downloads/Jahresberichte/ZuchtData-Jahresberichte.html/
http://doi.org/10.3390/ani7100077
http://doi.org/10.1016/j.prevetmed.2020.104993
http://doi.org/10.1016/j.prevetmed.2009.07.008
http://doi.org/10.17236/sat00290
http://doi.org/10.3390/ani12070808
http://www.ncbi.nlm.nih.gov/pubmed/35405797


Animals 2023, 13, 1180 20 of 22

24. Murray, R.D.; Downham, D.Y.; Clarkson, M.J.; Faull, W.B.; Hughes, J.W.; Manson, F.J.; Merritt, J.B.; Russell, W.B.; Sutherst, J.E.;
Ward, W.R. Epidemiology of lameness in dairy cattle: Description and analysis of foot lesions. Vet. Rec. 1996, 138, 586–591.
[CrossRef] [PubMed]

25. Bruijnis, M.R.N.; Beerda, B.; Hogeveen, H.; Stassen, E.N. Assessing the welfare impact of foot disorders in dairy cattle by a
modeling approach. Animal 2012, 6, 962–970. [CrossRef] [PubMed]

26. Whay, H.R.; Shearer, J.K. The impact of lameness on welfare of the dairy cow. Vet. Clin. Food Anim. Pract. 2017, 33, 153–164.
[CrossRef]

27. Bruijnis, M.R.N.; Hogeveen, H.; Stassen, E.N. Assessing economic consequences of foot disorders in dairy cattle using a dynamic
stochastic simulation model. J. Dairy Sci. 2010, 93, 2419–2432. [CrossRef]

28. Charfeddine, N.; Pérez-Cabal, M.A. Effect of claw disorders on milk production, fertility, and longevity, and their economic
impact in Spanish Holstein cows. J. Dairy Sci. 2017, 100, 653–665. [CrossRef]

29. Beggs, D.S.; Jongman, E.C.; Hemsworth, P.H.; Fisher, A.D. Lame cows on Australian dairy farms: A comparison of farmer-
identified lameness and formal lameness scoring, and the position of lame cows within the milking order. J. Dairy Sci. 2019, 102,
1522–1529. [CrossRef]

30. Sadiq, M.B.; Ramanoon, S.Z.; Shaik Mossadeq, W.M.; Mansor, R.; Syed Hussain, S.S. Dairy farmers’ perceptions of and actions in
relation to lameness management. Animals 2019, 9, 270. [CrossRef]

31. Sprecher, D.J.; Hostetler, D.E.; Kaneene, J.B. A lameness scoring system that uses posture and gait to predict dairy cattle
reproductive performance. Theriogenology 1997, 47, 1179–1187. [CrossRef]

32. Flower, F.C.; Weary, D.M. Effect of hoof pathologies on subjective assessments of dairy cow gait. J. Dairy Sci. 2006, 89, 139–146.
[CrossRef]

33. Van Nuffel, A.; Zwertvaegher, I.; Pluym, L.; Van Weyenberg, S.; Thorup, V.M.; Pastell, M.; Sonck, B.; Saeys, W. Lameness detection
in dairy cows: Part 1. How to distinguish between non-lame and lame cows based on differences in locomotion or behavior.
Animals 2015, 5, 838–860. [CrossRef]

34. Dunthorn, J.; Dyer, R.M.; Neerchal, N.K.; McHenry, J.S.; Rajkondawar, P.G.; Steingraber, G.; Tasch, U. Predictive models of
lameness in dairy cows achieve high sensitivity and specificity with force measurements in three dimensions. J. Dairy Res. 2015,
82, 391–399. [CrossRef] [PubMed]

35. Viazzi, S.; Bahr, C.; Van Hertem, T.; Schlageter-Tello, A.; Romanini, C.E.B.; Halachmi, I.; Lokhorst, C.; Berckmans, D. Comparison
of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Comput.
Electron. Agric. 2013, 100, 139–147. [CrossRef]

36. Jabbar, K.A.; Hansen, M.F.; Smith, M.L.; Smith, L.N. Early and non-intrusive lameness detection in dairy cows using 3-dimensional
video. Biosyst. Eng. 2017, 153, 63–69. [CrossRef]

37. Pluk, A.; Bahr, C.; Leroy, T.; Poursaberi, A.; Song, X.; Vranken, E.; Maertens, W.; Van Nuffel, A.; Berckmans, D. Evaluation of step
overlap as an automatic measure in dairy cow locomotion. Trans. ASABE 2010, 53, 1305–1312. [CrossRef]

38. Van Nuffel, A.; Saeys, W.; Sonck, B.; Vangeyte, J.; Mertens, K.C.; De Ketelaere, B.; Van Weyenberg, S. Variables of gait inconsistency
outperform basic gait variables in detecting mildly lame cows. Livest. Sci. 2015, 177, 125–131. [CrossRef]

39. Chapinal, N.; de Passillé, A.M.; Weary, D.M.; von Keyserlingk, M.A.G.; Rushen, J. Using gait score, walking speed, and lying
behavior to detect hoof lesions in dairy cows. J. Dairy Sci. 2009, 92, 4365–4374. [CrossRef]

40. Lin, Y.C.; Mullan, S.; Main, D.C.J. Optimising lameness detection in dairy cattle by using handheld infrared thermometers. Vet.
Med. Sci. 2018, 4, 218–226. [CrossRef]

41. Van De Gucht, T.; Saeys, W.; Van Meensel, J.; Van Nuffel, A.; Vangeyte, J.; Lauwers, L. Farm-specific economic value of automatic
lameness detection systems in dairy cattle: From concepts to operational simulations. J. Dairy Sci. 2018, 101, 637–648. [CrossRef]

42. Poursaberi, A.; Bahr, C.; Pluk, A.; Van Nuffel, A.; Berckmans, D. Real-time automatic lameness detection based on back posture
extraction in dairy cattle: Shape analysis of cow with image processing techniques. Comput. Electron. Agric. 2010, 74, 110–119.
[CrossRef]

43. Barker, Z.E.; Vázquez Diosdado, J.A.; Codling, E.A.; Bell, N.J.; Hodges, H.R.; Croft, D.P.; Amory, J.R. Use of novel sensors
combining local positioning and acceleration to measure feeding behavior differences associated with lameness in dairy cattle. J.
Dairy Sci. 2018, 101, 6310–6321. [CrossRef] [PubMed]

44. Nechanitzky, K.; Starke, A.; Vidondo, B.; Müller, H.; Reckardt, M.; Friedli, K.; Steiner, A. Analysis of behavioral changes in dairy
cows associated with claw horn lesions. J. Dairy Sci. 2016, 99, 2904–2914. [CrossRef] [PubMed]

45. Bach, A.; Dinarés, M.; Devant, M.; Carré, X. Associations between lameness and production, feeding and milking attendance of
Holstein cows milked with an automatic milking system. J. Dairy Res. 2006, 74, 40–46. [CrossRef] [PubMed]

46. Miguel-Pacheco, G.G.; Kaler, J.; Remnant, J.; Cheyne, L.; Abbott, C.; French, A.P.; Pridmore, T.P.; Huxley, J.N. Behavioural changes
in dairy cows with lameness in an automatic milking system. Appl. Anim. Behav. Sci. 2014, 150, 1–8. [CrossRef]

47. Egger-Danner, C.; Fuerst-Waltl, B.; Obritzhauser, W.; Fuerst, C.; Schwarzenbacher, H.; Grassauer, B.; Mayerhofer, M.; Koeck, A.
Recording of direct health traits in Austria-Experience report with emphasis on aspects of availability for breeding purposes. J.
Dairy Sci. 2012, 95, 2765–2777. [CrossRef]

48. Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy
Sci. 1989, 72, 68–78. [CrossRef]

http://doi.org/10.1136/vr.138.24.586
http://www.ncbi.nlm.nih.gov/pubmed/8799985
http://doi.org/10.1017/S1751731111002606
http://www.ncbi.nlm.nih.gov/pubmed/22558967
http://doi.org/10.1016/j.cvfa.2017.02.008
http://doi.org/10.3168/jds.2009-2721
http://doi.org/10.3168/jds.2016-11434
http://doi.org/10.3168/jds.2018-14847
http://doi.org/10.3390/ani9050270
http://doi.org/10.1016/S0093-691X(97)00098-8
http://doi.org/10.3168/jds.S0022-0302(06)72077-X
http://doi.org/10.3390/ani5030387
http://doi.org/10.1017/S002202991500028X
http://www.ncbi.nlm.nih.gov/pubmed/26278403
http://doi.org/10.1016/j.compag.2013.11.005
http://doi.org/10.1016/j.biosystemseng.2016.09.017
http://doi.org/10.13031/2013.32580
http://doi.org/10.1016/j.livsci.2015.04.008
http://doi.org/10.3168/jds.2009-2115
http://doi.org/10.1002/vms3.104
http://doi.org/10.3168/jds.2017-12867
http://doi.org/10.1016/j.compag.2010.07.004
http://doi.org/10.3168/jds.2016-12172
http://www.ncbi.nlm.nih.gov/pubmed/29705427
http://doi.org/10.3168/jds.2015-10109
http://www.ncbi.nlm.nih.gov/pubmed/26874422
http://doi.org/10.1017/S0022029906002184
http://www.ncbi.nlm.nih.gov/pubmed/16978436
http://doi.org/10.1016/j.applanim.2013.11.003
http://doi.org/10.3168/jds.2011-4876
http://doi.org/10.3168/jds.S0022-0302(89)79081-0


Animals 2023, 13, 1180 21 of 22

49. Bulgarelli-Jiménez, G.; Dercks, K.; Van Amerongen, J.; Schukken, Y.H.; Nielsen, M. A hind feet position scoring system to monitor
subclinical lameness in Dutch Holstein-Friesian cows. In Proceedings of the 9th International Symposium on Disorders of the
Ruminant Digit and the International Conference on Lameness in Cattle, Jerusalem, Israel, 14–19 April 1996; p. 25.

50. Holzhauer, M.; Middelesch, H.; Bartels, C.J.M.; Frankena, K.; Verhoeff, J.; Noordhuizen-Stassen, E.N.; Noordhuizen, J.P.T.M.
Assessing the repeatability and reproducibility of the Leg Score: A Dutch claw health scoring system for dairy cattle. Tijdschr.
Diergeneeskd. 2005, 130, 440–443.

51. Fuerst-Waltl, B.; Egger-Danner, C.; Guggenbichler, S.; Kofler, J. Impact of lameness on fertility traits in Austrian Fleckvieh
cows—Results from the Efficient-Cow-project. Schweiz. Arch. Tierheilkd. 2021, 164, 721–736. [CrossRef]

52. Landis, J.R.; Koch, G.G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among
multiple observers. Biometrics 1977, 33, 363–374. [CrossRef]

53. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2021; Available online: https://www.R-project.org/ (accessed on 15 February 2023).

54. Lenth, R.V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [CrossRef]
55. Blackie, N.; Amory, J.; Bleach, E.; Scaife, J. The effect of lameness on lying behaviour of zero grazed Holstein dairy cattle. Appl.

Anim. Behav. Sci. 2011, 134, 85–91. [CrossRef]
56. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
57. Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning; Springer: Boston, MA, USA, 2012; pp. 157–175.
58. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282.
59. Han, H.; Guo, X.; Yu, H. Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest.

In Proceedings of the 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
26–28 August 2016; pp. 219–224.

60. Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw.
2017, 77, 1–17. [CrossRef]

61. Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; The R Core Team; et al.
Caret: Classification and Regression Training. R Package, Version 6.0-88. 2021. Available online: https://CRAN.R-project.org/
package=caret (accessed on 15 February 2023).

62. Coelho Ribeiro, L.A.; Bresolin, T.; Rosa, G.J.D.M.; Rume Casagrande, D.; Danes, M.D.A.C.; Dórea, J.R.R. Disentangling data
dependency using cross-validation strategies to evaluate prediction quality of cattle grazing activities using machine learning
algorithms and wearable sensor data. J. Anim. Sci. 2021, 99, skab206. [CrossRef] [PubMed]

63. Wang, Q.; Bovenhuis, H. Validation strategy can result in an overoptimistic view of the ability of milk infrared spectra to predict
methane emission of dairy cattle. J. Dairy Sci. 2019, 102, 6288–6295. [CrossRef]

64. Yunta, C.; Guasch, I.; Bach, A. Short communication: Lying behavior of lactating dairy cows is influenced by lameness especially
around feeding time. J. Dairy Sci. 2012, 95, 6546–6549. [CrossRef]

65. King, M.T.M.; LeBlanc, S.J.; Pajor, E.A.; DeVries, T.J. Cow-level associations of lameness, behavior, and milk yield of cows milked
in automated systems. J. Dairy Sci. 2017, 100, 4818–4828. [CrossRef] [PubMed]

66. Foditsch, C.; Oikonomou, G.; Machado, V.S.; Bicalho, M.L.; Ganda, E.K.; Lima, S.F.; Rossi, R.; Ribeiro, B.L.; Kussler, A.; Bicalho,
R.C. Lameness prevalence and risk factors in large dairy farms in upstate New York—Model development for the prediction of
claw horn disruption lesions. PLoS ONE 2016, 11, e0146718. [CrossRef] [PubMed]

67. Von Keyserlingk, M.A.G.; Barrientos, A.; Ito, K.; Galo, E.; Weary, D.M. Benchmarking cow comfort on North American freestall
dairies: Lameness, leg injuries, lying time, facility design, and management for high-producing Holstein dairy cows. J. Dairy Sci.
2012, 95, 7399–7408. [CrossRef]

68. Bell, M.J.; Wall, E.; Russell, G.; Roberts, D.J.; Simm, G. Risk factors for culling in Holstein-Friesian dairy cows. Vet. Rec. 2010, 167,
238–240. [CrossRef]

69. Weigele, H.C.; Gygax, L.; Steiner, A.; Wechsler, B.; Burla, J.B. Moderate lameness leads to marked behavioral changes in dairy
cows. J. Dairy Sci. 2018, 101, 2370–2382. [CrossRef] [PubMed]

70. Thorup, V.M.; Nielsen, B.L.; Robert, P.-E.; Giger-Reverdin, S.; Konka, J.; Michie, C.; Friggens, N.C. Lameness affects cow feeding
but not rumination behavior as characterized from sensor data. Front. Vet. Sci. 2016, 3, 37. [CrossRef]

71. Norring, M.; Häggman, J.; Simojoki, H.; Tamminen, P.; Winckler, C.; Pastell, M. Short communication: Lameness impairs feeding
behavior of dairy cows. J. Dairy Sci. 2014, 97, 4317–4321. [CrossRef]

72. Pothmann, H.; Erlen, A.; Pichler, M.; Drillich, M. Relationship and repeatability of body condition scoring and backfat thickness
measurement in dairy cows by different investigators. Berlin. Munch. Tierarztl. Wochenschr. 2015, 128, 319–325. [CrossRef]

73. King, M.T.M.; Sparkman, K.J.; LeBlanc, S.J.; DeVries, T.J. Milk yield relative to supplement intake and rumination time differs by
health status for fresh cows milked with automated systems. J. Dairy Sci. 2018, 101, 10168–10176. [CrossRef]

74. Lasser, J.; Matzhold, C.; Egger-Danner, C.; Fuerst-Waltl, B.; Steininger, F.; Wittek, T.; Klimek, P. Integrating diverse data sources to
predict disease risk in dairy cattle—A machine learning approach. J. Anim. Sci. 2021, 99, skab294. [CrossRef] [PubMed]

75. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. 13–17 August 2016; pp. 785–794.

http://doi.org/10.17236/sat00323
http://doi.org/10.2307/2529786
https://www.R-project.org/
http://doi.org/10.18637/jss.v069.i01
http://doi.org/10.1016/j.applanim.2011.08.004
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.18637/jss.v077.i01
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
http://doi.org/10.1093/jas/skab206
http://www.ncbi.nlm.nih.gov/pubmed/34223900
http://doi.org/10.3168/jds.2018-15684
http://doi.org/10.3168/jds.2012-5670
http://doi.org/10.3168/jds.2016-12281
http://www.ncbi.nlm.nih.gov/pubmed/28434734
http://doi.org/10.1371/journal.pone.0146718
http://www.ncbi.nlm.nih.gov/pubmed/26795970
http://doi.org/10.3168/jds.2012-5807
http://doi.org/10.1136/vr.c4267
http://doi.org/10.3168/jds.2017-13120
http://www.ncbi.nlm.nih.gov/pubmed/29290435
http://doi.org/10.3389/fvets.2016.00037
http://doi.org/10.3168/jds.2013-7512
http://doi.org/10.2376/0005-9366-128-319
http://doi.org/10.3168/jds.2018-14671
http://doi.org/10.1093/jas/skab294
http://www.ncbi.nlm.nih.gov/pubmed/34662372


Animals 2023, 13, 1180 22 of 22

76. Werema, C.W.; Yang, D.A.; Laven, L.J.; Mueller, K.R.; Laven, R.A. Evaluating alternatives to locomotion scoring for detecting
lameness in pasture-based dairy cattle in New Zealand: In-Parlour scoring. Animals 2022, 12, 703. [CrossRef] [PubMed]

77. Herzberg, D.; Strobel, P.; Ramirez-Reveco, A.; Werner, M.; Bustamante, H. Chronic inflammatory lameness increases cytokine
concentration in the spinal cord of dairy cows. Front. Vet. Sci. 2020, 7, 125. [CrossRef]

78. Jewell, M.T.; Cameron, M.; Spears, J.; McKenna, S.L.; Cockram, M.S.; Sanchez, J.; Keefe, G.P. Prevalence of lameness and associated
risk factors on dairy farms in the Maritime Provinces of Canada. J. Dairy Sci. 2019, 102, 3392–3405. [CrossRef]

79. Browne, N.; Hudson, C.D.; Crossley, R.E.; Sugrue, K.; Kennedy, E.; Huxley, J.N.; Conneely, M. Cow-and herd-level risk factors for
lameness in partly housed pasture-based dairy cows. J. Dairy Sci. 2022, 105, 1418–1431. [CrossRef]

80. Browne, N.; Hudson, C.D.; Crossley, R.E.; Sugrue, K.; Kennedy, E.; Huxley, J.N.; Conneely, M. Lameness prevalence and
management practices on Irish pasture-based dairy farms. Ir. Vet. J. 2022, 75, 14. [CrossRef] [PubMed]

81. Matzhold, C.; Lasser, J.; Egger-Danner, C.; Fuerst-Waltl, B.; Wittek, T.; Kofler, J.; Steininger, F.; Klimek, P. A systematic approach to
analyse the impact of farm-profiles on bovine health. Sci. Rep. 2021, 11, 21152. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/ani12060703
http://www.ncbi.nlm.nih.gov/pubmed/35327100
http://doi.org/10.3389/fvets.2020.00125
http://doi.org/10.3168/jds.2018-15349
http://doi.org/10.3168/jds.2021-20767
http://doi.org/10.1186/s13620-022-00221-w
http://www.ncbi.nlm.nih.gov/pubmed/35672794
http://doi.org/10.1038/s41598-021-00469-2
http://www.ncbi.nlm.nih.gov/pubmed/34707145

	Introduction 
	Materials and Methods 
	Farm Selection 
	Animal Data 
	On Farm Data Collection 
	Farm Management and Husbandry 
	Visual Animal Scorings 
	Interobserver Reliability 

	AMS and Sensor Data Collection and Transfer 
	Annual Milk Yield and Lactation Numbers 
	Farm Management and Husbandry Conditions 
	Statistical Analyses 
	Lameness Incidence Risk 
	Impact of LCS on Sensor and AMS Parameters 
	Lameness Detection with Random Forest 


	Results 
	Lameness Incidence Risk 
	Body Condition Scoring 
	Claw-Position Scoring 
	LCS-G and AMS Data 
	LCS-G and Sensor Parameters 
	Detection of Lameness Using a Random Forest Algorithm 
	Lameness Detection Model with Animal-Based Split 
	Lameness Detection Model with Farm-Based Split 


	Discussion 
	Conclusions 
	References

