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Simple Summary: The Varroa destructor mite is a severe problem for the development of beekeeping
in many parts of the world. The presented study concerns the control of this harmful nuisance mite
via a disease management protocol for the first time. Poor field conditions made it possible to evaluate
the protocol’s effectiveness against mites in a natural and uncontrolled way. “Personalised” (tailored)
applications consist of adjusting the number of control agents with different doses of amitraz to the
number of detected parasite females in a given colony, taking into account a specific brood of queen
bees (sisters) with a specific brood area. We showed that the number of treatments did not affect egg
laying (brood surface) by mother sisters. We confirmed that amitraz should be increased by more
than the number of mites found. The best results were obtained by repeating the procedure four
times. We confirmed that effectiveness depends on the degree of Varroa infestation in a given family
and the treatment of mites before the procedure. This procedure enables the protocol (personalisation)
to effectively control of the impact of parasites on the bee colony. In such a procedure, one of the
reasons for efficacy is the genetic conditions related to the reproductive potential of queens resulting
from the bee breed. Based on new research, the presented study may change the overall effects of
Varroa treatment in bee colonies.

Abstract: The requirement for the protection of bee colonies against Varroa destructor invasions
has been noted by many breeders and is included as an aspect of the development of beekeeping.
This research aimed to check the effect of the development of a colony exposed to laying eggs
(brood surface) by queen bees with similar chemical potential (sisters) on the effect of a preparation
combating V. destructor depending on the number of mites found in a given colony. We chose this
as a standard model of conduct that treats each bee colony as one organism subjected to individual
parasite control. For this purpose, we created a bee colony with a mother-of-one breeding line and
fertilised drones from one colony. Infection with V. destructor occurred naturally and uncontrollably.
Without interfering with the colony’s development, the frame insulator helped each colony’s brood
(mothers’ reproductive potential) and the initial and final individuals from the mites themselves.
The study was carried out in four species (two control species and two species with up to 20 and
over 21 mites, respectively). Treatments with amitraz to combat damage were divided into four
treatment subgroups: two treatments every four days or four treatments every two days. We observed
the number of individuals that were protected in all subgroups in the average brood area. The
reproductive potential of the sisters’ mothers did not change after the treatments with amitraz, which
indicated that amitraz did not affect the delegation of egg laying. The invasion rate was also tracked
relative to the control group, which allowed us to conclude that a two-time treatment with amitraz
reduced the frequency of mites and a four-time treatment checked the effectiveness. Tailoring the
control of V. destructor in bee colonies may be an effective measure in the fight against this parasite.
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1. Introduction

Personalised medicine, a disease treatment method, has gained popularity in the
modern world [1]. Recently, personalised medicine has also attracted the interest of vet-
erinary practitioners, and it is successfully used to treat canine neoplasia [2]. However,
the applicability of personalised medicine has never been studied in honey bees. Varroa
destructor mites pose the greatest threat to honey bee colonies [3]. These parasites harm
colony health and carry multiple bee viruses [4–11], compromising a colony’s survival.
Due to their impact on honey bees, V. destructor can be used as a colony collapse marker,
especially during winter losses [12,13]. Attempts to eliminate V. destructor by beekeepers
and scientists in Europe have been ongoing for forty years. Various methods of combating
the mites have been implemented during this period, but the problem still needs to be
solved. Linking genetic conditions; monitoring the parasite invasion, its biology, and
behavior in the bee colony; and the “personalisation”(tailoring) of control may influence
the modification of the treatment against the parasite [14].

Knowledge of a patient’s genome is crucial in personalised medicine. Genetic material
can influence the progression of disease and the patient’s response to treatment [15]. Mite
V. jacobsoni invasions in Asiatic honey bee (A. ceranae) colonies do not inflict significant
losses [16,17] because these bees have developed specific hygiene behaviours [18]. Differ-
ent subspecies of the Western honey bee have also developed behavioural adjustments,
such as improved hygiene, more frequent swarming, and a shorter brood development
phase [19,20], to combat invasions [21,22].

Various substances and protocols have been proposed for treating V. destructor inva-
sions. The most widely used compounds include amitraz, coumaphos, tau-fluvalinate,
thymol, oxalic, and formic acid [23]. Amitraz is arguably the most controversial treatment,
widely used in some countries and banned in others. Boncristiani et al. [24] demonstrated
that amitraz does not increase the expression of genes responsible for detoxication in bees.
Amitraz is fully decomposed within only 10 days [25] and does not exert toxic effects
on honey consumers or bee broods. However, multiple studies have shown that mites
increasingly resist the “hard” substances used for invasion control [26–28]. Amitraz can
also compromise bees’ immune response to viral infections [29]. Their grooming behaviour
may also be hindered by the use of amitraz [30].

In 2020, we conducted a preliminary study on the personalised treatment of varroosis
in 24 Western honey bee colonies. The study aimed to examine the effects of treatment on
colonies with a uniform genetic background that live under the same conditions. A per-
sonalised treatment was implemented by adjusting amitraz doses to the number of female
mites in brood cells and bee queens’ reproductive potential. Before and after treatment, the
queens were kept in isolators, and brood combs were removed to control varroosis.

2. Materials and Methods
2.1. Honey Bee Colonies

Bee colonies were kept in a 120-colony apiary in northern Poland between June and
September 2020. In the apiary, Bayvarol (Bayer) was used to control the most recent
V. destructor invasion in 2019. Twenty-four Western honey bee (A. mellifera carnica) packages
(each weighing 1.5 kg), certified as Varroa-free, were purchased in June 2020. Each package
was placed inside a Dadant bee hive with five frames with a wax foundation. Then,
A. mellifera carnica Sklenar queens were added to every colony. The queens were previously
inseminated with the semen of akin drones. The bee colonies were fed twice with 1 L of 1:2
sucrose–water solution. New frames were added according to need, but the bees were left
undisturbed otherwise. The bee colonies were naturally invaded by V. destructor.

2.2. Treatment

On 2 September, the hives were inspected, and uncapped brood frames were removed.
The queens were kept in isolators/clips for 12 days until the workers from the capped
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brood emerged. Subsequently, the queens were moved to a single frame. Chmara’s isolator
was used in scientific research.

After 12 days, the frames containing the broods from each hive were removed again.
The area occupied by the capped brood was measured (dm2), the caps were removed,
and mites were counted under a magnifier with a light source. We created 2 groups
of 12 colonies each based on mite counts: group I with less than 20 female mites per
brood cell on average, and group II with more than 20 female mites per brood cell on
average. Varroosis was treated with one Apiwarol (Biowet Puławy, Poland) fumigation
tablet (12.5 mg amitraz) per bee colony, applied past 6 p.m. for 30 min. The groups were
divided into subgroups of four colonies each, and each subgroup received a different
treatment. Subgroups Ia and IIA received Apiwarol twice within a four-day interval.
Subgroups Ib and IIB received Apiwarol four times in two-day intervals. Ic and IIC were
the control subgroups that did not receive any treatment. In all subgroups, the day after
the last treatment, the queens were again moved to a single frame. After 12 days, brood
frames were removed, brood area was measured, and mites were counted. The brood came
from a 1-frame isolator.

Screened open-bottom boards were placed inside every hive, and the colonies were
treated with one dose of Apiwarol. The boards were removed on the following day, and
mites were counted. A detailed treatment protocol is presented in Table 1.

Table 1. Treatment protocol.

June

• 24 packs, V. destructor (−)
• beehive with a Dadant frame with a wax foundation (5 frames)
• young mothers (sisters)
• without interfering with development

September

• elimination of open brood
• queen in a cage (release of V. destructor from capped brood)
• insertion of an isolator (wax foundation + mother) (cumulation of V. destructor and

reproductive force)

after 12 days • brood surface measurement (isolator)
• determination of the number of V. destructor (isolator)

formation of groups I 12 colonies (1–20 V. destructor) II 12 colonies (<21 V. destructor)

Personalised treatment

Apiwarol dose: 1 tab./colony/1 treatment/for 30 min. after 18 h

2 treatments every
4 days 4 colonies (a) 4 colonies (A)

4 treatments every
2 days 4 colonies (b) 4 colonies (B)

without treatment 4 colonies (c) 4 colonies (C)

after the last treatment

• open brood was removed
• queen in a cage (release of V. destructor from capped brood)
• Isolator inserted (wax foundation + mother) cumulative

V. destructor and reproductive force

after 12 days
• brood surface measurement (isolator)
• number of V. destructor (brood isolator)
• number of V. destructor on workers (bottom inserts + 1× Apiwarol)

The queens were kept in clips and in isolators to assess their brooding potential. It
should be noted that brood removal is also a method of varroosis control.
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2.3. Mathematical and Statistical Analyses

The calculations were performed in Microsoft Excel. Infestation levels were deter-
mined by dividing mite counts by brood area (dm2) in each hive. Average values and
standard deviation were calculated. Significant differences in brood area and mite counts
between subgroups were evaluated between and after treatments by multiple comparison
testing in ANOVA. Levene’s test was used to assess the equality of variances. Pairwise
comparisons were performed using Student’s t-test, and p values below 0.05 were regarded
as statistically significant.

3. Results

Brood area, mite counts, and infestation levels in group I are shown in Table 2. In
group I, the brood area was 12.5–18 dm2 before treatment and 16–20 dm2 after treatment. In
all subgroups, the average brood area significantly increased on the second brood removal
date: from 14.75 (±1.6) to 18.25 dm2 (±1.35) in subgroup Ia, from 15.13 (±2.07) to 18.75 dm2

(±1.03) in subgroup Ib and from 14.75 (±0.75) to 18.38 dm2 (±1.08) in subgroup Ic. After
treatment, average mite counts significantly increased from 14.5 (±4.27) to 26.75 (±3.83)
in subgroup Ia and from 16.75 (±1.48) to 40.5 (±6.42) in subgroup Ic, but decreased
from 15.25 (±3.83) to 13.75 (± 2.68) in subgroup Ib (Table 1). Consequently, infestation
levels increased from 1.00 (±0.37) to 1.47 (±0.32) in subgroup Ia and from 1.14 (±0.17) to
2.20 (±0.39) in subgroup Ic and decreased from 0.99 (±0.16) to 0.74 (±0.19) in subgroup Ib.

Table 2. Brood area (dm2) and mite counts in group I.

Subgroup Colony
Number

Brood Area (dm2) Mite Counts V/dm2

∆V/dm2
Mite Counts
on Screened

Bottom Boards
Before

Treatment
After

Treatment
Before

Treatment
After

Treatment
Before

Treatment
After

Treatment

Ia

1 14 18.5 12 22 0.86 1.19 0.33 46

2 12.5 16 17 30 1.36 1.86 0.50 32

3 16.5 19 9 31 0.55 1.63 1.08 63

4 16 19.5 20 24 1.25 1.23 −0.02 80

Av/SD 14.75
(±1.6)

18.25
(±1.35)

14.5
(±4.27)

26.75
(±3.83)

1.00
(±0.37)

1.47
(±0.32)

0.47
(±0.46)

55.25
(± 18.02)

Ib

5 14 18 11 18 0.79 1 0.21 21

6 16 17.5 18 12 1.13 0.69 −0.44 8

7 18 20 20 11 1.11 0.55 −0.56 34

8 12.5 19.5 12 14 0.96 0.72 −0.24 17

Av/SD 15.13
(±2.07)

18.75
(±1.03)

15.25
(±3.83)

13.75
(±2.68)

0.99
(±0.16)

0.74
(±0.19)

−0.25
(±0.34)

20
(± 9.35)

Ic

9 14.5 17 16 37 1.1 2.18 1.08 73

10 14 20 19 40 1.36 2 0.64 104

11 14.5 18 17 34 1.18 1.89 0.71 57

12 16 18.5 15 51 0.94 2.76 1.82 133

Av/SD 14.75
(±0.75)

18.38
(±1.08)

16.75
(±1.48)

40.5
(±6.42)

1.14
(±0.17)

2.20
(±0.39)

1.06
(±0.54)

91.75
(± 29.2)

Brood area, mite counts, and infestation levels in group II are shown in Table 3. The
brood area was 12.5–18 dm2 before treatment and 16–19.5 dm2 after treatment. Similar to
group I, a significant increase in brood area was observed in group II on the second brood
removal date, from 16.13 (±1.42) to 17.5 dm2 (±1.12) in subgroup IIA, from 14.25 (±1.25)
to 17.5 dm2 (±1.12) in subgroup IIB, and from 16.13 (±1.67) to 18.25 dm2 (±1.03) in
subgroup IIC. No significant differences in brood area were noted between subgroups. After
treatment, average mite counts significantly increased from 31.5 (±3.2) to 40.25 (±10.87)
in subgroup IIA and from 35.5 (±8.73) to 42.75 (±8.84) in subgroup IIC but decreased
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from 36 (±8.09) to 22.75 (±3.03) in subgroup IIB. Average infestation levels increased
from 1.97 (±0.29) to 2.27 (±0.57) in subgroup IIA and from 2.21 (±0.63) to 2.35 (±0.61) in
subgroup IIC, but decreased from 2.56 (±0.77) to 1.3 (±0.26) in subgroup IIB.

Table 3. Brood area (dm2) and mite counts in group II.

Subgroup Colony
Number

Brood Area (dm2) Mite Counts V/dm2

∆V/dm2
Mite Counts
on Screened

Bottom Boards
Before

Treatment
After

Treatment
Before

Treatment
After

Treatment
Before

Treatment
After

Treatment

IIA

1 16.5 17 33 37 2 2.18 0.18 56

2 14 16 29 24 2.07 1.5 −0.57 71

3 16 18 36 48 2.25 2.67 0.42 27

4 18 19 28 52 1.56 2.74 1.18 92

Av/SD 16.13
(±1.42)

17.5
(±1.12)

31.5
(±3.2)

40.25
(±10.87)

1.97
(±0.29)

2.27
(±0.57)

0.30
(±0.72)

61.5
(± 23.67)

IIB

5 12.5 16 41 24 3.28 1.5 −1.78 36

6 16 17 32 27 2 1.56 −0.44 75

7 14 18 25 19 1.79 1.06 −0.73 40

8 14.5 19 46 21 3.17 1.1 −2.07 12

Av/SD 14.25
(±1.25)

17.5
(±1.12)

36
(±8.09)

22.75
(±3.03)

2.56
(±0.77)

1.3
(±0.26)

−1.25
(±0.26)

40.75
(± 22.49)

IIC

9 16 17.5 50 57 3.13 3.26 0.13 84

10 18 19 31 39 1.72 2.05 0.33 31

11 13.5 17 27 33 2 1.94 −0.06 112

12 17 19.5 34 42 2 2.15 0.15 47

Av/SD 16.13
(±1.67)

18.25
(±1.03)

35.5
(±8.73)

42.75
(±8.84)

2.213
(±0.63)

2.35
(±0.61)

0.13
(±0.61)

68.5
(± 31.63)

The average brood area was somewhat smaller in group I (14.88 dm2 ± 1.65) than in
group II (15.5 dm2 ± 1.78) before treatment, but it was higher in group I (18.45 dm2 ± 1.23)
than in group II after treatment (17.75 dm2 ± 1.2). The average mite counts were higher in
group II (34.33 ± 2.47) than in group I (15.5 ± 1.15) before treatment and remained higher
after treatment (35.25 ± 10.9 and 27 ± 13.38 in groups II and I, respectively). Infestation
levels were significantly higher in subgroups Ia (∆ = 0.47 ± 0.46) and Ic (∆ = 1.06 ± 0.54)
than in subgroups IIA (∆ = 0.3 ± 0.72) and IIC (∆ = 0.13 ± 0.61). In contrast, infestation levels
were lower in subgroup Ib (∆ = −0.25 ± 0.34) than in subgroup IIB (∆ = −1.25 ± 0.26).

The number of V. destructor females on the screened bottom boards is presented in
Tables 1 and 2. The mites found on the screened bottom boards accounted for 66%, 56%,
and 68% of total mite counts in subgroups Ia, Ib, and Ic, respectively, and for 59%, 59%,
and 58% of total mite counts in subgroups IIA, IIB, and IIC, respectively. Mite counts were
highest in subgroups Ic (91.75 ± 18.02) and IIC (68.5 ± 31.63) and lowest in subgroups Ib
(68.5 ± 31.63) and IIB (40.75 ± 22.49). The differences were significant between subgroups
Ib and Ic but not between subgroups Ia and Ic or subgroups Ia and Ib. Similar results were
observed in group II, where mite counts significantly differed between subgroups IIB and
IIC but not between subgroups IIA and IIC.

The linear regression plots of mite counts and brood area (fixed factor) are shown in
Figures 1–8.
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Figure 8. Linear regression plots of brood area (fixed factor) and mite counts in subgroup IIC before
and after treatment.

4. Discussion

The honey bee genome was first published by the Honeybee Genome Sequencing
Consortium [31] and has been modified since [32,33]. Unlike relatives such as bumblebees,
honey bees have a very high recombination potential, and genomic differences are observed
within colonies [34]. Genetic diversity increases honey bees’ resistance against pathogens
and slows pathogen spread [35]. The use of queens from local breeders is connected to
sustainable productivity and decreased colony losses [36]. The genome of honey bees
analysed in the present study was unknown, and it could only be inferred from the
common origin of mothers–sisters and drones–brothers. This study investigated the effects
of different treatment protocols on closely related colonies living under the same conditions,
characterised by similar breeding potential and similar V. destructor infestation levels. After
treatment, no significant differences in breeding potential were found between subgroups of
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group I (Ia vs. Ib, Ia vs. Ic, and Ib vs. Ic) or group II (IIA vs. IIB, IIA vs. IIC, and IIB vs. IIC).
Different types of treatment did not induce significant differences in the breeding potential
of the corresponding subgroups of groups I and II either. These results suggest that
Apiwarol did not negatively or positively affect honey bee reproduction.

The queens were isolated on a single frame to assess breeding potential, which was
assumed to be similar in all colonies (no significant differences). Before treatment, the
mean brood area was greater in colonies infested by more than 20 female mites (group II),
which could be expected because a higher number of brood cells is likely to attract a higher
number of female mites. After treatment, the mean brood area was larger in group I than in
group II, but the observed differences were insignificant. However, the statistical analysis
results could be flawed due to the small size of the subgroups. The impact of amitraz on
queens’ breeding potential has not been examined to date. Varroa destructor itself does not
appear to influence breeding in honey bee colonies. According to Rusert et al. [37], these
parasites do not compromise honey bees’ mating success either.

According to the manufacturer’s instructions, Apiwarol should be administered two
or three times over four to six days. After treatment, mite counts and infestation levels
increased in subgroups Ia and IIA, where Apiwarol was applied twice. After four treatments
(subgroups Ib and IIB), infestation levels significantly decreased relative to those of the
control group. These results suggest that Apiwarol should be administered more than twice
to obtain a satisfactory outcome, even in less-infested colonies. However, when applied
four times in two-day intervals, the treatment effectively reduced infestation levels.

Screened bottom boards were used in the study to estimate the number of mites
remaining on the workers. After treatment, the mite counts on boards were positively
corelated with the mite counts in brood cells. Regardless of the applied treatment, mite
counts were higher on the boards than in brood cells in all subgroups. The proportion of
mites found on screened boards in total mite counts did not significantly differ between
control subgroups (Ic, IIC) and the subgroups that received treatment (subgroups Ia, Ib,
IIA, and IIB were fumigated once with Apiwarol at the end of the experiment).

Based on the present findings, the correlation between brood area and infestation levels
could not be clearly established (Figures 3–8). The results noted in groups I and II before
treatment (Figures 1 and 2) indicate that greater brood area was associated with higher
mite counts in colonies infested with less than 21 female mites. In contrast, in group II,
brood area was smaller in colonies with higher mite counts. The linear regression analysis
was not performed separately for each subgroup due to the small number of colonies.

In addition to the genome, the queens’ breeding behaviour can also be influenced by
age because younger queens lay more eggs [38]. In a study by Gregorc and Planinc [39],
colonies were fumigated once with three drops of 12.5% amitraz solution. The average mite
count on screened bottom boards was determined to be 50.61(±36.11) per colony, similar to
the results noted in the present study. Similar mite counts were observed after two thymol
treatments (Apiguard and Thymovar). Sammataro et al. [27], Mathieu and Faucon [40],
and Sajid et al. [41] assessed the efficacy of fluvalinate, flumethrin, amitraz, formic acid,
and oxalic acid in reducing mite infestation levels in adult honey bees.

5. Conclusions

The removed brood was a reliable source of knowledge about V. destructor infestation,
and brood removal proved to be an effective treatment protocol. Recent studies have
shown that drone brood removal can also increase honey production because more workers
are available for foraging. Further research into the genome of the honey bee is needed
to develop an effective method of varroosis control. The results of the present study
suggest that mite counts should be determined before treatment because a drug’s efficacy
depends on infestation levels. In addition, Varroa monitoring should be emphasised.
The consequence of personalised control of V. destructor in bee colonies, especially when
using preparations in the form of smoke, spray, or hanging strips several times during
the beekeeping season, is likely a reduction in the number of control treatments. It is also
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essential to avoid the reported drug resistance of this mite to many substances and to
eliminate the residues of these substances in bee products.
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