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Simple Summary: The crustacean hepatopancreas was reported to play important roles in ovarian
maturation, providing not only energy but also essential fatty acids and cholesterol required for the
synthesis of steroid hormones. In addition, it is also an important site of vitellogenin synthesis in
crustaceans. The role of crustacean hepatopancreas in regulating ovarian maturation in crustaceans
has attracted more attention. However, the molecular mechanisms about the regulation are little
known in scientific research. Our data indicated the key proteins of carbohydrate metabolism, lipid
metabolism, amino acid metabolism, and lysosome pathways played important roles in hepatopan-
creas, as the ovaries developed to maturation in Macrobrachium nipponense. The results provide new
insight into regulatory mechanisms of hepatopancreas in crustacean reproduction.

Abstract: A TMT-based (Tandem Mass Tag) liquid chromatography-tandem mass spectrometry (LC-
MS/MS) proteomics approach was employed to explore differentially expressed proteins (DEPs) and
KEGG pathways in hepatopancreas of 5 ovary stages. In total, 17,999 peptides were detected, among
which 3395 proteins were identified. Further analysis revealed 26, 24, 37, and 308 DEPs in HE-I versus
HE-II, HE-II versus HE-III, HE-III versus HE-IV, and HE-IV versus HE-V, respectively (HE-I, HE-II,
HE-III, HE-IV, and HE-V means hepatopancreas sampled from ovary stage I to V.). Gene ontology
(GO) analysis indicated that DEPs were significantly enriched in “catalytic activity”, “metabolic
process”, and “cell” of 4 comparison groups in turn. Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment results showed that in hepatopancreas, as the ovaries developed to maturation,
carbohydrate metabolism, lipid metabolism, amino acid metabolism, and lysosome played important
roles in turn. The mRNA expression of 15 selected DEPs were consistent with proteome results
by qPCR analysis. Further mRNA expression investigation results suggested 4 proteins (fatty acid-
binding protein, NPC intracellular cholesterol transporter 1, Serine hydroxymethyltransferase, and
Crustapin) were involved in ovary maturation. These results enhance the understanding of the
regulatory role of hepatopancreas in M. nipponense ovary maturation and provide new insights for
understanding the crustacean regulation mechanisms.

Keywords: Macrobrachium nipponense; comparative proteomics; hepatopancreas; ovary maturation

1. Introduction

During vitellogenesis in crustaceans, the ovary accumulates many nutrients, such as
proteins and lipids, which are important energy and structural substances with vital roles in
the reproductive process, biochemistry, and substance metabolism [1–4]. Hepatopancreas
is the center of nutrients storage and metabolism in decapod crustaceans, and has an
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important role in ovarian lipid accumulation during ovarian development [5–8]. During
ovary maturation, the hepatopancreas continuously produces vitellogenin and transports
it via hemolymph to the ovary [9,10]. Once the yolk has reached a certain size, there is
a significant decrease in the content of protein and lipids related to the corresponding
increase of yolk in the hepatopancreas [11–15]. Although much is known about the role
of the hepatopancreas in regulating ovarian maturation in crustaceans, the molecular
mechanisms involved are less well understood.

Macrobrachium nipponense, also known as the oriental river prawn, is a commercial
species mainly distributed in most freshwater areas of China, except Tibet and Qinghai [16].
It is very popular in the eastern China and the Yangtze River basin because of its high
nutritional value and delicious taste. Pond-aquaculture of M. nipponense are prevalent with
production exceeding 240,000 tons in China in 2021 [17]. Adult female M. nipponense have
a short sexual maturity cycle [18]. During each breeding season, gonad maturation and
larval development of M. nipponense are accelerated by increases in water temperature.
This problem is particularly acute in female’s larva. Newborn female prawns develop to
sexual maturity and lay eggs within 45 days after hatching by early autumn (known as
“autumn reproduction”) [19]. Such rapid sexual maturation results in multiple generations
and reduces resilience and survival rates [18]. A large amount of energy is used for
such reproduction, resulting in significant decreases in the number of large-sized prawn,
especially the female, which seriously affected the prawn aquaculture [20]. Therefore, it is
urgent to carry out the mechanisms analysis of rapid ovary maturation providing insights
to help address these problems.

Our previous studies of five ovary developmental stages detected many ovary mat-
urations related genes with more dominant expression in the hepatopancreas compared
within ovaries, which provided strong evidence for regulating role of the hepatopancreas in
ovarian maturation [18–21]. Furthermore, comparative hepatopancreas transcriptomes of
five ovary developmental stages were established [22] to provide a new field for studying
fast ovary maturation in M. nipponense. In this study, a TMT-based (Tandem Mass Tag)
liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach
was employed to explore differentially expressed proteins (DEPs) in hepatopancreas of
5 ovary stages. The study aimed to detect potential functional proteins and signaling
pathways in M. nipponense hepatopancreas involved in regulating ovarian maturation. The
results will provide new insight into the regulatory mechanisms involved in the role of the
hepatopancreas in crustacean reproduction.

2. Materials and Methods
2.1. Experimental Samples Preparation

Adult female M. nipponense at 5 ovary stages (each stage contained 30 individuals,
body weight (BW) ± SD: 2.08 ± 0.35 g) were sampled from Freshwater Fisheries Research
Center Dapu Scientific Experimental Base (Wuxi, China). The different stages of ovarian
development were determined based on color according to previous study [23]. The detail
information of 5 ovarian development stages was listed in Table 1 and the histological ob-
servation was showed in Figure 1. For the experimental samples, each sample contained six
prawns of same ovarian maturation stage with three biological repetitions (18 individuals
per stage). The M. nipponense individuals selected were dissected after anesthesia with
methane sulfonate (MS222). The hepatopancreas tissues for each of the five ovary stages
were defined as HE-I, HE-II, HE-III, HE-IV, and HE-V respectively. Each hepatopancreas
was dissected on ice and then stored in liquid nitrogen and then was stored at −80 ◦C
until use.
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Table 1. Characteristics of 5 ovarian development stages.

Ovary Stages The Description of Characteristics

OI transparent, undeveloped stage
OII yellow, developing stage
OIII light green, nearly-ripe stage
OIV dark green, ripe stage
OV gray, spent stage
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2.2. Total Protein Extraction, Digestion and TMT Labeling

Lysis buffer was prepared as follows: 1 mL lysis buffer (40 mM Tris-HCl and 8 M
urea) containing 1 µL protease inhibitor (Thermo Fisher Scientific, Shanghai, China), 5 µL
phosphatase inhibitor, and 10 µL phenylmethylsulfonyl fluoride (PMSF) (Thermo Fisher
Scientific, Shanghai, China). Once prepared, the buffer was placed on ice for a few minutes
before use. Frozen hepatopancreas (100 µg) was lysed with ice-cold lysis buffer. The
mixture was centrifuged at 12,000× g at 4 ◦C for 20 min after sonicated for 5 min. The
supernatant was put in a pre-cooled tube, placed on ice for 10 min, and was violently
shaken 2–3 times. The homogenate was then centrifuged at 15,000× g for 10 min at 4 ◦C,
and the total protein was placed in a new pre-cooled tube. Finally, the protein concentration
was tested using the BCA Protein Assay Kit (Beyotime, Shanghai, China). The quality of
extracted proteins was tested by 12% SDS-PAGE (sodium dodecyl sulfate-polyacrylamide
gel electrophoresis). Then 100 µg protein per sample were digested using trypsin (Promega,
Madison, WI, USA) (trypsin ratio = 50:1) at 37 ◦C for 12 h and TMT reagents from TMT®

Mass Tagging Kits (Thermo Fisher Scientific, Karlsruhe, Germany) were used for peptide
labeling, following the manufacturer’s instructions.

2.3. Fraction Separation and LC-MS/MS Analysis

The labeled peptide was mixed and centrifuged at 20,000× g for 5 min. After that,
conventional HPLC under alkaline conditions (Waters XBridge Shield C18 RP column,
3.5 µm, 4.6 × 250 mm, Shimadzu LC20AD) was used for the reverse gradient separation.
About 60 fractions of the eluted peptide were combined in 12 fractions. They were drained
using a vacuum concentrator according to the peak range shown by UV light.

Each sample was dissolved in solvent A/B (A: 0.1% formic acid in water; B: 80%
acetonitrile with 0.1% formic acid) and centrifuged for 2 min at 20,000× g. The EASY-nLC™
1200 UHPLC system (Thermo Fisher Scientific, Karlsruhe, BW, Germany) was used for
sample separation. The flow rate was 250 µL/min with solvent B and the gradient was
0–6 min, 2–10%; 6–51 min, 10–20%; 51–58 min, 20–80%; 58–62 min, 80%; 62–63 min, 80–2%;
63–70 min, 2%. The peptides were then subjected to tandem mass spectrometry (MS)
using a Q-Exactive™ HF-X mass spectrometer (Thermo Fisher Scientific, Karlsruhe, BW,
Germany). The scanning range of the mass spectrometer was 350–1800 m/z.

2.4. Data Processing and Bioinformatics Analysis

The original data file was imported into Proteome Discovery 2.2 software (Thermo
Fisher Scientific, Karlsruhe, BW, Germany) for database retrieval and quantification of
spectral peptides and proteins. BLASTALL (V2.2.26, E-value ≤ 10−5) was used for protein
annotation against a reference genome and the RNA-sequencing results from the M. nip-
ponense database and protein function analyses (NCBI Accession No. ASM1510439v1,
BioProjects: PRJNA646023; accession No. SAMN27687877–SAMN27687891, Bioproject
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PRJNA830321) [22,24]. The proteins whose quantitation were significantly different in
the HE-I versus HE-II, HE-II versus HE-III, HE-III versus HE-IV, and HE-IV versus HE-
V groups (p < 0.05 and FC < 0.83 or fold change FC > 1.2) were defined as DEPs (dif-
ferentially expressed proteins). The fold change of each protein was calculate by us-
ing average protein levels and p value was calculated using t-tests and corrected by
the false discovery rate (p < 0.05).The principal-component analysis (PCAs) were per-
formed using gmodels R (https://cran.r-project.org/web/packages/gmodels/index.html,
accessed on 8 October 2021). Identified DEPs were annotated using the GO database
(Gene Ontology) (http://geneontology.org/, accessed on 8 October 2021), Swissprot
(http://www.uniprot.org/, accessed on 8 October 2021), COG (Clusters of Orthologous
Groups) (https://www.ncbi.nlm.nih.gov/COG/, accessed on 8 October 2021), and KEGG
pathways (www.kegg.jp, accessed on 8 October 2021) (E-value ≤ 10−5). DEPs were also
subjected to functional GO terms and KEGG pathway enrichment analysis.

2.5. Real-Time PCR Validation and Statistical Analysis

Fifteen DEPs identified in this study were randomly chose to validate the proteomics
analysis results by qPCR. The eukaryotic translation initiation factor 5A gene (EIF) was used
as a reference gene [25]. Furthermore, the mRNA expression profiles and tissue distribution
of four proteins across the five ovarian maturation stages were also analyzed. Tissues (H:
heart, G: gill, HE: hepatopancreas, O: ovary, M: muscle) were used for total RNA extraction.
The qPCR methods were followed by our previous study [26]. The relative expression levels
were analyzed using the 2−∆∆CT [27] and the amplification efficiency of all primers was
tested by establishing standard curve before the qPCR validation was performed (primers
with amplification efficiency above 90% were used for the further step of qPCR). Primers
were in Table S1. The quantitative data were described using mean ± standard deviation.
Statistical analyses were performed using SPSS 23.0 and one-way ANOVA was used to
analyze statistical differences.

3. Results
3.1. Proteins Identification and Analysis

In total, 17,999 peptides were detected in the M. nipponense hepatopancreas proteome.
Most peptides were 7 and 17 amino acids long (Figure 2A). Protein mass results indicated
that most proteins were either >100 kDa or 10–60 kDa (Figure 2B). In terms of the peptide
number, most of the unique peptides contained fewer than 11. The protein’s sequence
coverage results showed that 41.3% proteins had >10% sequence coverage and 23.74%
proteins showed >20% sequence coverage (Figure 2D). PCA results (Figure 2E) showed
the principal components of HE-I, HE-II, HE-III, and HE-IV groups were relatively con-
centrated, suggesting that there was no significant difference in the content and types of
proteins identified among the four groups. HE-V group showed significant differences
from the other four groups.

3.2. Comparison of Proteome Profiles and DEP Discovered

Comparison of the proteome profiles in HE-I versus HE-II, HE-II versus HE-III, HE-
III versus HE-IV, and HE-IV versus HE-V were performed to identify DEPs involved in
ovarian maturation (p < 0.05 and FC < 0.83 or fold change FC > 1.2) with the 3395 proteins
found. Further analysis revealed 26, 24, 37, and 308 DEPs in HE-I versus HE-II, HE-II
versus HE-III, HE-III versus HE-IV, and HE-IV versus HE-V, respectively. The HE-IV versus
HE-V group had 308 DEPs, which were significantly much more than other three groups.
The details of up- or downregulated information of all DEPs in different groups were listed
in Figure 3A. Identified DEPs were functionally annotated to the COG, GO, Swissprot, and
KEGG database and the results were displayed in Figure 3B. The volcano plots of each
group of DEPs are shown in Figure 4A–D. The top three most up/downregulated DEPs in
the four comparison groups were listed in Table 2.

https://cran.r-project.org/web/packages/gmodels/index.html
http://geneontology.org/
http://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/COG/
www.kegg.jp
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Table 2. Top 3 up/down regulated DEPs identified in hepatopancreas of M. nipponense in four
compared groups.

Comparison Group Description Regulation Fold Change

HE-I vs. HE-II Arylsulfatase up 2.37
Vanin-like protein 2 up 2.32

Fatty acid-binding protein up 1.70
sodium-dependent dicarboxylate transporter down 0.54

Protein Hook homolog down 0.62
Probable 3-hydroxyisobutyrate dehydrogenase down 0.65

HE-II vs. HE-III NPC intracellular cholesterol transporter 1 up 2.64
Pteridine reductase 1 up 2.36

Fibulin-1 up 1.74
Choline O-acetyltransferase down 0.55

GDP-mannose 4,6 dehydratase down 0.63
Arylsulfatase down 0.64
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Table 2. Cont.

Comparison Group Description Regulation Fold Change

HE-III vs. HE-IV Sarcosine oxidase up 2.33
Serine hydroxymethyltransferase up 2.13

Origin recognition complex subunit 1 up 1.95
sodium-dependent multivitamin transporter down 0.56

Myosin-VIIa down 0.59
ABC transporter C family member 10 down 0.70

HE-IV vs. HE-V Protein lgg-1 up 11.10
Epsin up 6.45

Aromatic amino acid aminotransferase up 5.59
NPC intracellular cholesterol transporter 1 down 0.04

Glyceraldehyde-3-phosphate dehydrogenase down 0.14
Vitellogenin down 0.20Animals 2023, 13, x FOR PEER REVIEW 7 of 20 
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3.3. GO Enrichment

GO enrichment was performed to functionally identify the DEPs (p < 0.05). All DEPs
were attributed to biological processes (BP), cellular components (CC) and molecular
functions (MF). In HE-I versus HE-II, there were 11, 4, and 13 GO terms in CC, MF, and BP,
respectively, “catalytic activity” had the most classification terms (14 DEPs) (Figure 5A).
There were 12, 4, and 13 GO terms in the three groups and “metabolic process” was
significantly enriched (10 DEPs) in the HE-II versus HE-III (Figure 5B). In HE-III versus HE-
IV comparison the three groups contained 10, 5, and 14 GO terms, respectively, and “cell”
had the most classification terms (21 DEPs) (Figure 5C). There were 14, 8, and 23 enriched
terms in CC, MF, and BP, respectively, in HE-IV versus HE-V group, and “cell” terms were
the highest classification terms (149 DEPs) (Figure 5D).

3.4. KEGG Enrichment

KEGG pathway enrichment was performed for all DEPs (Table 3). There were seven
enriched pathways in the HE-I versus HE-II group, and 85% of which were related to
carbohydrate metabolism (Figure 6A). “Various types of N-glycan biosynthesis” and “N-
glycan biosynthesis” were both significantly enriched (p < 0.05). There were 11 enriched
pathways in the HE-II versus HE-III group and 9 of the 11 KEGG pathways were related
to carbohydrate, amino acid, and lipid metabolism (Figure 6B). Among these, “Fatty acid
degradation” was the only significantly enriched pathway (p < 0.05). The HE-III versus HE-
IV group had 17 enriched pathways and 9 of which were involved in amino acid and energy
metabolism (Figure 6C). The other 8 mainly focused on a series of oxidation-reduction
reactions and transport such as “Peroxisome” and “Endocytosis”. “Glycine, serine, and
threonine metabolism” was the only significantly enriched pathway (p < 0.05). The HE-IV
versus HE-V comparison had the most enriched pathways (67), 40 of which were involved
in amino acid, carbohydrate, and lipid metabolism (Figure 6D). “Arginine biosynthesis s”
and “Lysosome” were significantly enriched (p < 0.05).
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Table 3. DEPs of KEGG enrichment pathways (p < 0.05).

Comparison
Group Pathways Pathway ID DEP Number Description Regulation Fold Change

HE-I vs. HE-II N-Glycan
biosynthesis map00510 1 Alpha-(1,6)-

fucosyltransferase up 1.21

Various types of
N-glycan

biosynthesis
map00513 1 Alpha-(1,6)-

fucosyltransferase up 1.21

HE-II vs. HE-III Fatty acid
degradation map00071 2 peroxisomal acyl-coenzyme

A oxidase 1 up 1.20

choline O-acetyltransferase down 0.55

HE-III vs.
HE-IV

Glycine, serine
and threonine

metabolism
map00260 2 sarcosine oxidase up 2.33

serine
hydroxymethyltransferase up 2.13

HE-IV vs. HE-V Arginine
biosynthesis map00220 4 aspartate aminotransferase up 1.49

Glutamine synthetase down 0.31
Argininosuccinate synthase down 0.54

argininosuccinate lyase down 0.74

Lysosome map04142 14 V-type proton ATPase
subunit d 1 up 2.84

Sphingomyelin
phosphodiesterase down 0.41

ceroid-lipofuscinosis
neuronal protein 7 up 1.31

Cystatin-1 up 3.01
NPC intracellular cholesterol

transporter 1 down 0.04

Crustapin down 0.32
AP-1 complex subunit

mu-1-I down 0.61

Arylsulfatase down 0.35
AP-3 complex subunit delta down 0.77
Mite group 2 allergen Lep d

2 down 0.33

Beta-galactosidase 1 down 0.45
legumain-like protein down 0.44

Cathepsin L down 0.52

3.5. DEP Validation

Fifteen DEPs with large expression quantitation fold change in four different compar-
ison groups (HE-I vs. HE-II, HE-II vs. HE-III, HE-III vs. HE-IV, HE-IV vs. HE-V) were
selected from Tables 2 and 3 for qPCR validation. They were: arylsulfatase, alpha-(1,6)-
fucosyltransferase, fatty acid-binding protein, NPC intracellular cholesterol transporter 1),
serine hydroxymethyltransferase, choline O-acetyltransferase, sarcosine oxidase, sodium-
dependent multivitamin transporter, protein 1gg-1, glutamine synthetase, glyceraldehyde-
3-phosphate dehydrogenase, vitellogenin, cystatin-1, crustapin, legumain-like protein. The
qPCR results were consistent with the data from proteomics (Figure 7) (p < 0.05).
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3.6. Key Proteins Involved in Ovary Maturation

We also analyzed the hepatopancreas and ovary transcription levels of the genes
encoding 4 proteins (FABP, Nct-1, Shf and Crp) in each of the five ovarian developmental
stages (Figure 8), which were randomly selected from 15 validated candidate key proteins,
one in each comparison groups. The mRNA expression results showed that there were two
distinct upregulated expressions of FABP in hepatopancreas and its expression of ovary was
upregulated significantly during ovarian development (Figure 8A). However, Nct-1 expres-
sions differed in hepatopancreas and ovary (Figure 8B). In hepatopancreas, its expression
was positively correlated and increased significantly with ovarian maturation, whereas,
in the ovary, its expression was negatively correlated with ovarian development. Shf and
Crp had similar expression patterns in the ovary and hepatopancreas (Figure 8C,D). The
highest expression of these two proteins in the ovary was observed during vitellogenesis
(stage III), whereas their highest expressions in the hepatopancreas occurred in stage II.

We also examined the tissue transcript distribution of FABP, Nct-1, Shf, and Crp
(Figure 9). All four proteins displayed extremely high expression levels in hepatopancreas
(p < 0.05). mRNA expression of FABP, Nct-1, Shf, and Crp was higher in the ovary than in
the heart, gill, and muscle (Figure 9A–D). The FABP and Nct-1 expression in the ovary was
slightly higher than in other tissues, although not significantly so (p > 0.05) (Figure 8A,B).
However, Shf and Crp expression in ovary was significantly higher than in other tissues
(p < 0.05) (Figure 9C,D).
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Figure 9. mRNA expression profiles of 4 proteins in different tissues. (A) FABP, (B) Nct-1, (C) Shf,
(D) Crp. H: heart, G: gill, HE: hepatopancreas, O: ovary, M: muscle. Data are shown as mean ± SD
(n = 3). Statistical analyses were performed with one-way ANOVA analysis. Lowercase letters on the
columns (a, b, c, and d) denote significant differences (p < 0.05) and same letters mean no significant
difference (p > 0.05).
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4. Discussion

The hepatopancreas in crustaceans is an important organ which plays a key mul-
tifunctional role in various physiological processes such as growth, immune response,
metabolism, and reproduction [28]. The ovarian development process in crustaceans is
very complex, including oogenesis, vitellogenesis, hormone secretion, and nutrient deposi-
tion [29,30]. During crustacean ovary development, the nutrients are transported to the
ovaries from the hepatopancreas and the content of protein and lipid in hepatopancreas
change regularly [31–35]. Hepatopancreas transcriptomes of 5 ovary stages were compared
to gain new insights into the role of the hepatopancreas in ovarian maturation in M. nippo-
nense. Changes in proteins identified in hepatopancreas will provide further information
for functional investigations of the molecular regulatory mechanisms involved crustaceans’
sexual maturation [22]. In present study, a TMT-based proteomics analysis was used to
identify key proteins and pathways during ovarian development of M. nipponense.

Ovarian development is a continuous, gradual process in crustaceans. Based on
the current results, there were relatively few DEPs between the HE-I versus HE-II, HE-II
versus HE-III, HE-III versus HE-IV. By contrast, the number of DEPs in the HE-IV versus
HE-V group was ten times that of the other comparisons. That was because the ovary
development underwent dramatic and complex physiological changes from maturation
(stage IV) to emptying (stage V). The GO enrichment results also supported the continuous,
gradual process of ovarian maturation. The results also showed that numerous DEPs were
mainly enriched in biological processes (BP) and cellular components (CC) suggested that
ovary development involved complex physiological and biochemical processes.

Based on our understanding of transcriptomes and metabolomics related to ovarian
development in M. nipponense, the five developmental stages were divided into two parts:
oogenesis (IV to V and I to II) and vitellogenesis (II to III and III to IV) [21,36]. From the
KEGG enrichment results, 85% of the KEGG pathways identified were related to carbo-
hydrate metabolism in the HE-I versus HE-II group, among which the most significantly
enriched pathways were “Various types of N-glycan biosynthesis” and “N-glycan biosyn-
thesis”. The only enriched DEP was alpha-(1,6)-fucosyltransferase, which involved in the
synthesis of active ribose, providing raw materials for the formation of precursor sugar nu-
cleotides and participating in the synthesis and assembly of fucose [37]. Recent research has
highlighted the involvement of fucose in reproductive performance in mice [38]. These find-
ings further suggested that carbohydrate metabolism had a crucial part in oogenesis in M.
nipponense and was perhaps major source of energy. The top most significantly up-regulated
genes have also been reported to be involved in reproduction in other animals, arylsulfatase
A type is essential for sperm binding to the zona pellucida in mice [39], vanin-2 protein has
an activation role in bovine follicles [40], and fatty acid-binding protein has a promoting
effect on ovarian maturation in crustaceans (Portunus trituberculatus) and bovines [41,42]. In
the current study, FABP mRNA expression in ovary was significantly upregulated during
ovarian development suggesting its potential promoting role in ovarian maturation.

Yolk and lipid production began at ovary stage II reflected by the gradual enlargement
of the ovary and the color gradually turning yellow. During this progress, lipid and pro-
tein contents significantly increase in the ovary, which was related to the corresponding
decrease of these substances in the hepatopancreas [43]. From the comparison of HE-II
versus HE-III in this study, the KEGG enrichment results revealed that the “Fatty acid
degradation” pathway has the most significant changes. This suggested that numerous
lipids related to the formation of egg lipids were preserved in the hepatopancreas, which
were decomposed and transferred to the developing eggs during ovarian development.
Peroxisomal acyl-coenzyme A oxidase 1 was reported to be a rate-limiting enzyme in fatty
acid β-oxidation which is involved in estrogen signaling in brown trout Salmo trutta f.
fario [44–46]. Cholesterol is an important substrate for ovarian steroidogenesis, and the sig-
nificantly upregulated gene NPC encodes intracellular cholesterol transporter 1 coded for a
glycoprotein which processed low-density lipoprotein importing cholesterol [47,48]. In this
study, the mRNA expression of Nct-1 was positively correlated with ovarian maturation
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in hepatopancreas while negatively in ovary, suggesting that it was involved in steroid
hormone synthesis that inhibited ovarian maturation. Fibulin-1, which is a secreted protein
associating with elastic matrix fibers, is induced by progesterone in human ovarian epithe-
lial stromal cells [49,50]. Choline O-acetyltransferase shows an obvious decrease during
in this period and its expression is regulated by estradiol in mammals [51,52]. This result
also suggests that sex hormone levels change during this period. The results indicated that
carbohydrate metabolism from stage II to III was significantly reduced, as indicated by the
significant decrease in with the GDP-mannose 4,6 dehydratase.

From ovary stage III to IV in M. nipponense, the ovary expands rapidly and its color
changes from light to dark green as yolk accumulation accelerates. In the HE-III versus
HE-IV group, nine of these pathways were involved in amino acid and energy metabolism
and other eight mainly focused on series of oxidation-reduction reactions. The “Glycine,
serine, and threonine metabolism” pathway had the most significant changes, and sarcosine
oxidase and serine hydroxymethyltransferase were the top-most upregulated proteins. Pre-
vious research showed that glucose, pyruvate, glutamine and glycine increased significantly
during maturation of bovine oocytes [53]. However, the mechanisms involved in oocytes
maturation required further investigation. The relative RNA expression of sarcosine ox-
idase increases in bovine oocytes after the preovulatory luteinizing hormone surge [54],
whereas serine hydroxymethyltransferase is necessary for ovarian cancer tumor growth and
cell migration in mice [55]. In the current study, serine hydroxymethyltransferase showed
the highest mRNA expression during ovary stage III, suggesting it had an important role in
vitellogenesis. The detailed roles of these proteins in terms of oxidation-reduction reactions
in ovarian maturation remain to be determined in further researches.

From stage IV to V in M. nipponense, the ovary undergoes dramatic changes, reflecting
the change from being full of mature eggs to being completely empty. The comparison
between these two stages also confirmed this phenomenon as indicated by the numerous
DEPs and signaling pathways. Significant decreases in several proteins (vitellogenin, NPC
intracellular cholesterol transporter 1, and glyceraldehyde-3-phosphate dehydrogenase)
were also demonstrated, while “Arginine biosynthesis” and “Lysosome” were significantly
enriched. Arginine is a versatile amino acids with important roles in protein synthesis, as
well as serving as a precursor for compounds such as nitric oxide, polyamines, and agmatine
involved in sexual reproduction, hormone metabolism, and so on [56–58]. Aspartate
aminotransferase controls enzyme activity during the spawning phase in fish central
metabolism [59]. Argininosuccinate synthase and argininosuccinate lyase were important
in nitric oxide synthesis which has a wide range of reproductive functions [60], such as
in gonadotrophin secretion, estradiol synthesis, follicle survival, and ovulation [61]. The
lysosome contains more than 60 hydrolytic enzymes involved in its digestive function and
has important roles in endocytosis, exocytosis, and autophagy. Recent research highlighted
new roles of lysosomes in mammalian females. In the ovary, lysosomes have important
roles in steroidogenesis synthesis by free cholesterol and regulation of follicular atresia,
follicle rupture during ovulation, and luteal regression [62]. In previous works, three
genes (encoding legumain-like protein, crustapin, and cathepsin L) from “Lysosome”
pathways were confirmed to promote ovarian maturation by RNA interference technology
in M. nipponense [18,20,63]. Protein lgg-1 was one of important members in autophagy.
Autophagy played essential roles in cell fate decision and cellular homeostasis maintenance,
as well as reproduction. New reports indicated that autophagy process blockage may lead
to abnormal reproduction [64]. Therefore, more efforts were needed to elucidate the
mechanism of lysosome and autophagy enzymes in crustacean female reproduction. In
this study, a large number of DEPs were screened, but their roles in reproduction have not
been clarified. Moreover, an important direction of future research is to demonstrate the
novel functions of these proteins in reproduction in crustaceans.
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5. Conclusions

The present study, which applied TMT-based proteomics approach in hepatopancreas
during female M. nipponense ovarian maturation, provides an overview of regulatory mech-
anisms of hepatopancreas in crustacean reproduction. The DEPs data in HE-I versus HE-II,
HE-II versus HE-III, HE-III versus HE-IV, and HE-IV versus HE-V, respectively, indicating
the HE-V has the most different proteins than other four stages. KEGG enrichment results
showed that in hepatopancreas, as the ovaries developed to maturation, carbohydrate
metabolism, lipid metabolism, amino acid metabolism, and lysosome played important
roles. Tables 2 and 3 conclude the candidate proteins from this study based on the DEPs
and KEGG enrichment analysis. qPCR analysis proves the proteome results was consistent
with mRNA expression results. Further investigation of 4 randomly selected candidate
proteins (fatty acid-binding protein, NPC intracellular cholesterol transporter 1, serine hy-
droxymethyltransferase, and Crustapin) showed their involvement in ovary maturation. So
far, more efforts have been made in screening key pathways, proteins and genes related to
ovary maturation of M. nipponense and nutrient metabolism-related pathways and proteins
are becoming increasingly prominent. For further study, we will aim to analyze the spatial
and temporal expression patterns and biological functions of these candidate proteins and
their regulation relationship in ovarian maturation.
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