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Simple Summary: The development of primordial germ cells (PGCs) and sex determination (SD)
is governed by a complex interplay of genes that can be targeted to hinder sexual development in
fish. Obtaining high-quality ribonucleic acid (RNA) from Atlantic salmon embryos, especially after
fertilization, can be extremely challenging due to the presence of a substantial amount of yolk. The
objective of this research was to extract high-quality RNA from developing salmon embryos for
use in downstream applications. The study also aimed to validate different housekeeping genes
(HKGs) for a quantitative polymerase chain reaction (qPCR)-based assessment of PGC and SD genes
during developmental stages in salmon. We isolated RNA from the developing embryos, and we
present the validation of HKGs as well as the mRNA expression levels of important PGC and SD
genes during the fertilization to hatching stage. The findings of this study could prove beneficial for
researchers seeking to extract high-quality RNA from salmonids. Moreover, the transcript results
may offer insights not only into the function of transcripts at specific developmental stages but also
in identifying the stage with the highest expression levels, during which treatment to disrupt the
function of the transcripts and ultimately the growth of PGCs could be administered.

Abstract: The challenge in extracting high-quality RNA impedes the investigation of the transcrip-
tome of developing salmonid embryos. Furthermore, the mRNA expression pattern of important
PGC and SD genes during the initial embryonic development of Salmo salar is yet to be studied. So,
in the present study, we aimed to isolate high-quality RNA from eggs and developing embryos to
check vasa, dnd1, nanos3a, sdf1, gsdf, amh, cyp19a, dmrt1 and foxl2 expression by qPCR. Additionally,
four HKGs (GAPDH, UB2L3, eEf1a and β-actin) were validated to select the best internal control for
qPCR. High-quality RNA was extracted, which was confirmed by spectrophotometer, agarose gel
electrophoresis and Agilent TapeStation analysis. UB2L3 was chosen as a reference gene because it
exhibited lower intra- and inter-sample variation. vasa transcripts were expressed in all the develop-
mental stages, while dnd1 was expressed only up to 40 d◦C. Nanos3a was expressed in later stages and
remained at its peak for a shorter period, while sdf1 showed an irregular pattern of mRNA expression.
The mRNA expression levels of SD genes were observed to be upregulated during the later stages of
development, prior to hatching. This study presents a straightforward methodology for isolating
high-quality RNA from salmon eggs, and the resulting transcript profiles of significant PGC and
SD genes in S. salar could aid in improving our comprehension of reproductive development in this
commercially important species.
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1. Introduction

Atlantic salmon (Salmo salar of the Salmonidae family) is an anadromous fish that is
native to rivers flowing into the North Atlantic Ocean from Northern Europe as far south
as Spain, the Baltics, Canada and Northeastern USA [1]. Many natural Atlantic salmon
populations have declined significantly due to overexploitation [2] and other anthropogenic
factors [3]. Due to its popularity as food and overexploitation in the wild, there has been a
considerable shift towards the farming of the species under controlled conditions. Ocean
pen and land-based farming of A. salmon has grown into a billion-dollar industry [4,5], and
they are currently experiencing exponential growth. However, the farming of salmon can
have negative impacts on wild populations, as the farmed fish exhibit different breeding and
feeding behavior and aggressive tendencies, while also potentially transmitting harmful
diseases to wild populations [6–8].

Different policies, guidelines and procedures have been formulated to prevent the
escape of farmed salmon [9,10]. Physical and environmental containment is not secure
enough to prevent fish from escaping into the wild [11], which necessities focusing more
on biological containment. In biological containment, sexual reproduction is disrupted
so that the fish produced is completely sterile, and this is the best safeguard against the
spread of cultured stocks by eliminating their reproductive interaction with wild fish [12].
Moreover, the sterile population also has better production time, flesh quality and growth by
eliminating energy costs associated with breeding [13,14]. Triploid fish are sterile, but at the
same time, their disease resistance and tolerance to the changing environment is low [15,16]
making them sub-optimal for aquaculture. Disruption of the growth of primordial germ
cells (PGC), which are required to produce germ cells in both sexes during embryonic stages,
is becoming a popular way to achieve sterility in fish [17–19]. The most effective approach
to prevent the formation of PGCs is to silence the genes responsible for their growth and
migration. [20]. Surprisingly, the mRNA expression profile of most of the genes involved
in the development of PGCs in A. salmon during the initial embryonic stages is yet to be
studied in detail. Gaining knowledge of the mRNA expression levels of these genes can
aid in tracking the effectiveness of treatments used to induce sterility by eliminating PGCs
during the embryonic stage. The bottleneck for the analysis of transcript levels of different
genes during embryonic stages is the extraction of quality mRNA from the large yolk-filled
eggs. The RNA extraction from cyprinid eggs [mostly used as model organisms] is quite
different from other fish species such as salmonids because of the larger egg diameter
of the latter [21]. The larger egg diameter coincides with higher yolk content, making it
difficult to isolate pure RNA from them. Additionally, due to the low cell-to-lipid ratio in
fish eggs, RNA isolation from eggs is challenging, especially when it needs to be used for
downstream applications [22]. In molecular biological and diagnostic applications, it is
preferable to use high-quality RNA as a starting point. The quantity and quality of starting
RNA are recognized to have an impact on the accuracy of gene expression evaluation. The
difficulty in isolating pure RNA hinders the study of transcriptomic changes in unfertilized
eggs and during the initial embryonic development of fishes, especially salmonids.

The most important step for the analysis of quantitative polymerase chain reaction
(qPCR) data is normalization with the proper housekeeping gene (HKG) to eliminate
pre-PCR and PCR processing variations [23,24]. The choice of an appropriate HKG is
crucial for accurate and reliable results in qPCR analysis, as any variability or bias in their
expression can affect the normalization and interpretation of the target gene expression.
An ideal reference gene should be constantly expressed in the testing samples to prevent
erroneous results [25]. Often, however, HKGs under different experimental conditions or
developmental stages show variable results [26,27]. It is advised to validate more than one
HKG for the normalization of qPCR data to avoid misleading results [28,29]. By validating
housekeeping genes, we can ensure the reliability and reproducibility of qPCR experiments
and minimize the risk of misinterpreting gene expression data.

In the present study, we developed an efficient way to extract cells from the de-
veloping embryo for RNA extraction. Additionally, the expression of four reference
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genes—glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ubiquitin-conjugating en-
zyme E2 L3 (UB2L3), elongation factor 1-alpha (eEf1a) and beta-actin (β-actin)—to select
the best internal control was assessed by qPCR. The stability in mRNA expression of the
reference genes was validated using different statistical algorithms.

In addition, we examined the mRNA expression levels of several key genes, including
vasa, dead-end gene (dnd1), nanos3a and stromal cell-derived factor 1 (sdf1), which are
involved in the growth, development and migration of PGCs [30]. vasa belongs to the
ATP-dependent RNA helicase of the DEAD (Asp–Glu–Ala–Asp)-box family and performs
roles in germ cell origination, migration and development [31,32]. The dnd gene encodes
an RNA-binding protein that is essential for PGC migration and prevents the degradation
of germplasm RNAs by binding with microRNA that targets it [33,34]. nanos3a plays an
important role in the migration and maintenance of germ cells [35–38]. sdf1 (chemokine
ligand 1) is secreted by the somatic cells surrounding PGCs and provides chemoattractant
signals, which are sensed by its receptor CXCR4B expressed on the PGCs itself and help in
their migration [39]. Knockdown studies of sdf1 genes in fish disrupted the migration of
PGC [40].

Similarly, the transcript profile of some important transcription factors required in
SD and gonadal development in fish were analyzed during embryogenesis in A. salmon.
The genes included gonadal somatic derived factor (gsdf ), doublesex and mab-3 related
transcription factor (dmrt1)), anti-Mullerian hormone (amh), forkhead box protein L2 (foxl2)
and cytochrome P450arom (cyp19a) [41–43].

2. Materials and Methods
2.1. Fertilization and Embryo Development of S. salar

Fertilization of salmon eggs was carried out in the Vogar fish farm of Benchmark
Genetics, Iceland, following a standard operating protocol of the company. Eggs were
collected from mature S. salar by an abdominal cavity excision after being anesthetized
with 2- phenoxyethanol (at 0.1 to 0.6 mL·L−1). An equal volume of eggs from four different
females along with the ovarian fluid were obtained and kept in the same container and
mixed with cryopreserved milt for fertilization. At three hours post-fertilization, the eggs
were transported to the wet lab of the Institute for Experimental Pathology, University of
Iceland, Keldur. The fertilized eggs were subsequently moved to glass tanks (capacity 50 L)
to undergo development. The water temperature (10 ◦C), water flow and dissolved oxygen
were maintained throughout the experiment. A water temperature of 10 ◦C is considered
optimum for the development of S. salar eggs [44]. Dead eggs (whitish) were constantly
removed from the tanks to maintain the water quality and to prevent the growth of any
fungal infection.

2.2. Sampling

The unfertilized eggs at day one and fertilized eggs during developmental stages
(fertilization to hatching) (Table 1) were collected for RNA extraction. Ten eggs/embryos
until 40 degree days (d◦C), six embryos up to 340 d◦C and three yolk sac fry or alevins
(only the trunk portion was collected) were collected and pooled together, and four such
pools were used to study gene expression. The detailed sampling is presented in Table 1.

Table 1. Incubation time of A. salmon eggs/embryos and larvae and the number of samples used in
the present study. (Temperature was maintained at 10 ◦C).

Day\Days
Post-Fertilization Degree Days (d◦C) Pooled Number of

Eggs/Embryos/Larvae per Sample

0 unfertilized egg 10
1 10 10
2 20 10
3 30 10
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Table 1. Cont.

Day\Days
Post-Fertilization Degree Days (d◦C) Pooled Number of

Eggs/Embryos/Larvae per Sample

4 40 10
5 50 6
7 70 6
8 80 6
11 110 6
14 140 6
21 210 6
24 240 6
27 270 6
34 340 6
43 430 (yolk sac fry or alevins) 3

2.3. Cell Extraction from the Embryo during Different Developmental Stages

After each sampling, the developing eggs were treated with 5% acetic acid for 5 min
(to make the chorion transparent). The chorion was then carefully removed, and the cell
mass was separated from the yolk using a pipette. The collected cells were placed into a
1.5 mL tube with 500 µL of ice-cold PBS. The cells were centrifuged at 12,000× g for 7 min,
and the supernatant was removed without disturbing the cells. The step was repeated two
times to remove any remaining yolk. The unfertilized eggs were immersed in water for 1–3
h and were then placed into acetic acid to remove the cell by dissection.

2.4. RNA Extraction and cDNA Synthesis

Total RNA from the embryonic cells was extracted using the TRI reagent (Sigma-
Aldrich, St. Louis, MO, USA) extraction method. The samples were homogenized (Mini-
Beadbeater, Sigma-Aldrich) using stainless steel beads of 3 mm diameter, and following
the phase separation, precipitation and washing steps, the pellet obtained was dissolved in
water. RNA integrity and yield were confirmed by NanoDrop™ 2000/2000c Spectropho-
tometer (ThermoFisher Scientific, Waltham, MA, USA) gel electrophoresis, TapeStation
(Agilent 2200 TapeStation system, Agilent, St. Clara, CA, USA) and nanodrop spectropho-
tometer (Thermofisher Scientific), respectively. The RNA samples were prepared as per the
protocol suggested by Agilent RNA ScreenTape System Quick Guide, run on 2200 TapeSta-
tion instrument and analyzed with 2200 TapeStation Controller Software. RNA was treated
with DNase 1 to remove any DNA contamination. RNA was transcribed to complementary
deoxyribonucleic acid (cDNA) using ProtoScript® II First Strand cDNA Synthesis Kit (New
England Biolabs Inc., Ipswich, MA, USA) by oligo dT priming following the manufacturer’s
instructions. The cDNA samples were stored at −20 ◦C prior to analysis.

2.5. Primers

All the primers except for dnd1 used in the present study were designed by Gene
Runner software version 6.5.52 Beta. The mRNA sequences of all the genes of S. salar
were retrieved from GenBank, NCBI, and the primer set was designed from the coding
(cds) region. The dimers, hairpin loops, bulge loops, internal loops and match site were
checked by the oligo analysis option of Gene Runner software. The primers were supplied
by Microsynth AG company (Balgach, Switzerland) in a lyophilized form, which was
dissolved in water and stored at −20 ◦C for further use. The primers were used to amplify
the cDNA from S. salar embryos in RT-PCR, and the product was run on a 2% agarose
gel. Only one band could be found at an expected size, which allowed us to use them in
qPCR. In addition, a melting curve analysis was also performed to check the presence of
only a single peak. The correlation coefficient (R2) of the primers was determined by serial
dilution (10-fold) to generate the standard curve, and a value above 0.98 was accepted. The
primer set for dnd1 was taken from the previous report [19]. The primer sequences used in
the present study are presented in Table 2.
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Table 2. Primers used in the present study.

Gene Forward Primer Sequence (5′ to 3′) Reverse Primer Sequence (5′ to 3′) Accession Number and Reference

vasa CGCTCCCTGGTCAAAGTCCTGTC GCTAGTTGACTCGCCCCATCTCTC JN712912
dnd1 TCTGTACAGGGCCTGATGGT TAAAACAAAGTAGGGGATCTGTG [19].

nanos3a ATGGAGTCCGAAAACAAGAGT CGGTTCTGGGGTGAACTTGC KC237283
sdf1 GTGTTGGTCCTACTGGCTGTGGC GAGGGACGGTGTTGAGAGTGGAGC NM_001140787
gsdf GACAAAGCAGTGGCTGTACC GGCAGCATTTCAGACCACTA XM_014138924
amh CAGTCACTCTCTGCAGCCTTACAA CAACATTGAATCTCCATTTCAGTTTAC NM_001123585

cyp19a TCAAACAGAACCCTGACGTAG GCTCCCTTTCACCTATAGCAGTGT AF436885
dmrt1 AGGAGGAGGAGATGGGGCTCTGTA CCAGCAGAGGTGTTTCCACAGGTAG XM_014172771
foxl2 GCGGTGATGGGTACGGCTACCTG GACGGGACTCACGTTGCCACTGG JX184084

β-actin CCAAAGCCAACAGGGAGAAG AGGGACAACACTGCCTGGAT BG933897
GAPDH AAGTGAAGCAGGAGGGTGGAA CAGCCTCACCCCATTTGATG AM230811

eEf1a CCCCTCCAGGACGTTTACAAA CACACGGCCCACAGGTACA BT058711
UB2L3 CGAGAAGGGACAGGTGTGTC ACCAACGCAATCAGGGACT NM_001141284

2.6. Quantitative PCR (qPCR) Analysis

Real-time PCR was performed in 96-well PCR plates on a QuantStudio Real-Time PCR
Systems (Thermo Fisher Scientific) using SYBR green, Luna® Universal qPCR Master Mix
(New England Biolabs Inc.) following manufacturers protocol with a slight modification in
volume. Each sample was run in duplicate with a final volume of 10 µL reaction mixture
per well. For each gene, a non-template control was also included in duplicate with 10 µL
in volume. The qPCR program started with a 2 min hold at 50 ◦C followed by a 10 min
hot start at 95 ◦C. It was followed by 40 cycles at 95 ◦C for 15 s and then the annealing
temperature optimized for each primer set for 30 s. The melt curve analysis confirmed the
presence of no dimer in the primers. The primer and PCR efficiency was also calculated
from the slope of a standard curve generated by serials dilution of primers and cDNA. The
expression analysis of the genes during different developmental stages was performed by
using the 2−∆Ct method [45] using the UB2L3 gene as an internal control.

2.7. Validation of HKGs

The validation of the four HKGs, GAPDH, UB2L3, eEf1a and β-actin, was conducted to
select the best internal control for the present study.

2.8. Data Analysis

Statistical analysis for the difference in expression levels of genes was carried out
by a one-way ANOVA using SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). Signif-
icant differences in mRNA expression of the genes were tested by one-way ANOVA,
followed by Tukey’s HSD test (p < 0.05). Data are presented as mean ± standard devia-
tion (SD), and p < 0.05 was considered statistically significant. To determine the stability
of selected reference genes, different statistical algorithms were employed to analyze
the set of data, i.e., the comparative delta Ct method [46], BestKeeper (version 1) [47],
NormFinder (version 0.953) [48] and geNorm [49]. To select the most suitable refer-
ence gene, the results from the four methods were combined and screened by RefFinder
[http://150.216.56.64/referencegene.phpm accessed on 20 September 2022], which gives
comprehensive stability of HKGs and ranks them as per the stability [50].

3. Results
3.1. Embryonic Development

The fertilized eggs were allowed to develop at 10 ◦C, and their development was
constantly monitored under the microscope. The embryos did not show any abnormalities
that could vary the mRNA expression results.

3.2. RNA Quality

The nanodrop spectrophotometer showed a 260/280 ratio close to 2.0. The RNA in gel
electrophoresis showed well-defined bands of 28s rRNA and 18s rRNA representing good-

http://150.216.56.64/referencegene.phpm
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quality RNA, and TapStation results presented an RNA integrity number (RIN) value of
more than eight. The figures of gel electrophoresis and the TapStation system are presented
in Figure 1.

Animals 2023, 13, x FOR PEER REVIEW 6 of 19 
 

3. Results 

3.1. Embryonic Development 

The fertilized eggs were allowed to develop at 10 °C, and their development was 

constantly monitored under the microscope. The embryos did not show any abnormalities 

that could vary the mRNA expression results. 

3.2. RNA Quality 

The nanodrop spectrophotometer showed a 260/280 ratio close to 2.0. The RNA in gel 

electrophoresis showed well-defined bands of 28s rRNA and 18s rRNA representing 

good-quality RNA, and TapStation results presented an RNA integrity number (RIN) 

value of more than eight. The figures of gel electrophoresis and the TapStation system are 

presented in Figure 1. 

 

Figure 1. Gel electrophoresis of RNA (A). It showed clear distinctive bands of 28s rRNA and 18s 

rRNA. RNA analysis was carried out using the Agilent 2200 TapeStation system with a gel image 

showing different RNA samples (B). 

3.3. Validation of HKG 

3.3.1. Expression Level of Selected Candidate Reference Genes by Cycle Threshold (Ct) 

Value Analysis 

The Ct values obtained from the qPCR assay across various samples were utilized to 

assess the expression levels and variability of all potential reference genes. eEf1a was ex-

pressed the most (Ct values 18 to 25), followed by UB2L3 (Ct values 20 to 24), β-actin (Ct 

values 21–25) and GAPDH (Ct values 24–28). UB2L3 exhibited the least variation of Ct 

values in different samples than other HKGs (Figure 2). 

Figure 1. Gel electrophoresis of RNA (A). It showed clear distinctive bands of 28s rRNA and 18s
rRNA. RNA analysis was carried out using the Agilent 2200 TapeStation system with a gel image
showing different RNA samples (B).

3.3. Validation of HKG
3.3.1. Expression Level of Selected Candidate Reference Genes by Cycle Threshold (Ct)
Value Analysis

The Ct values obtained from the qPCR assay across various samples were utilized
to assess the expression levels and variability of all potential reference genes. eEf1a was
expressed the most (Ct values 18 to 25), followed by UB2L3 (Ct values 20 to 24), β-actin
(Ct values 21–25) and GAPDH (Ct values 24–28). UB2L3 exhibited the least variation of Ct
values in different samples than other HKGs (Figure 2).
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3.3.2. Gene Stability Analysis of HKGs

The use of Ct values alone may not adequately indicate the stability of reference genes,
highlighting the need to employ diverse statistical algorithms for data analysis. These
algorithms can help determine the most robust reference genes that exhibit consistent
expression levels across various experimental conditions and sample types. The stability
analysis, which is based on the values generated from the delta Ct method, BestKeeper,
NormFinder and geNorm algorithms, was used to generate the compressive stability
(RefFinder) by which the best internal control was selected.

The analysis of the comparative delta Ct method is based on the average standard
deviation, with a greater value indicating less stability and vice versa. UB2L3 showed the
lowest average standard deviation (1.64), followed by GAPDH (1.96), β-actin (2.09) and
eEf1a (2.30). This method indicates UB2L3 as the most stable HSK and eEf1a least stable.

The BestKeeper algorithm calculates the standard deviation of the data to predict the
stability. The gene that shows the lowest value of standard deviation is considered the most
stable internal control. In the present study, the lowest value was calculated for UB2L3
(0.89), and the highest value was calculated for eEf1a (1.64), indicating the former as the
more stable candidate reference gene. For GAPDH, the calculated value was 1.23, and
for β-actin, it was 1.28. The statistical analysis of HKGs by the BestKeeper algorithm is
presented in Table 3. So according to the BestKeeper algorithm, the order of ranking of the
HKGs was UB2L3, GAPDH, β-actin and eEf1a.

Table 3. Statistical analysis of housekeeping genes by BestKeeper.

UB2L3 eEF1a β-actin GAPDH

n * 15 15 15 15
geo Mean [CP] 21.90 20.57 22.88 25.56
AR Mean [CP] 21.93 20.67 22.93 25.60

min [CP] 20.00 18.00 20.00 23.00
max [CP] 24.00 25.00 25.00 28.00

std dev [±CP] 0.89 1.64 1.28 1.23
CV [% CP] 4.05 7.96 5.58 4.79

min [x-fold] −3.74 −5.92 −7.38 −5.90
max [x-fold] 4.27 21.61 4.33 5.42

std dev [±x-fold] 1.85 3.13 2.43 2.34
* number of stages from which mRNA expression of HKGs was analyzed.

The NormFinder algorithm calculates the stability value of each HKG and ranks them
accordingly, i.e., a gene with the lowest value is the most stable and vice versa. Based
on this analysis, the decreasing order of values calculated for different HSK genes was
0.65 > 1.42 > 1.57 > 1.97 for UB2L3, GAPDH, β-actin and eEf1a, respectively. The data from
the NormFinder algorithm indicated UB2L3 as the most stable and eEf1a as the least stable
candidate reference genes.

Similarly, geNorm calculates the stability value and ranks the reference genes accord-
ingly. The lowest value indicates more stability, and, in our case, UB2L3 and GAPDH
showed a similar lowest value (1.291), indicating that they were more stable candidate
reference genes than β-actin (1.698) and eEf1a (1.997). The stability analysis calculated by
the delta CT method, BestKeeper, NormFinder and geNorm algorithms is presented in
Figure 3.

The average stability of the three HKGs was finally elucidated by the comprehensive
gene stability calculated from the RefFinder, with the lower values representing the most
stable genes (Figure 4). Here, UB2L3 was reported to be the most stable candidate gene
(average stability value of 1.0), followed by GAPDH (1.68), β-actin (3) and eEf1a (4).
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Figure 4. Stability ranking of candidate reference genes as determined by RefFinder in different
developmental stages of S. salar. Lower Geomean values indicate more stable expression and
vice versa.

Thus, from the above results, UB2L3 was the most stable HKG and was selected as an
internal control to study the mRNA expression of different PGC and SD genes during the
ontogenetic development of S. salar.

3.4. mRNA Expression of Genes Involved in PGC Development of S. salar Collected from
Fertilization to Hatching Stages
3.4.1. vasa

The vasa transcript was found to be expressed significantly (p < 0.05) more in the
embryos collected at 20 and 30 d◦C. Up to 50 d◦C, vasa mRNA expression was observed
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to be higher compared to unfertilized eggs. The mRNA expression was observed to be
downregulated between 40 ◦C to 340 d◦C, followed by an increase in expression at 430 d◦C.

3.4.2. dnd1

The expression of dnd1 transcripts was found to be significantly higher (p < 0.05) in
developed embryos collected at 10 d◦C compared to unfertilized eggs. However, there
was no significant difference (p < 0.05) in the transcript level between samples collected at
20 d◦C and 30 d◦C. The transcript was downregulated after 40 d◦C and was almost absent
in the later stages analyzed in this study.

3.4.3. nanos3a

The expression of nanos3a transcripts was found to be significantly (p < 0.05) upregu-
lated at 40 d◦C and 50 d◦C. A moderate level of expression was also observed at 30 d◦C,
70 d◦C and 80 d◦C. However, a decreasing trend in nanos3a expression was observed from
110 d◦C onwards, reaching levels similar to those observed in unfertilized eggs and the
initial two stages analyzed in this study.

3.4.4. sdf1

The expression pattern of the sdf1 transcript was irregular, with significantly higher
expression observed at 10 d◦C, followed by 30 d◦C and 20 d◦C. The expression level was
drastically downregulated up to 210 d◦C, followed by an upward trend in the subsequent
stages analyzed in this study.

The graphical representation of different PGC genes during the developmental stages
of S. salar is presented in Figure 5.
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Figure 5. Basal mRNA transcript level of PGC genes: vasa, dnd1, nanos3a and sdf1 during develop-
mental stages of S. salar. Data are presented as mean ± SD (n = 4). Bars with different superscripts
denote statistically significant differences (p < 0.05) between developmental stages. 0: unfertilized
egg and 430: yolk sac fry or alevins.

3.5. Expression of SD Genes in S. salar during Embryonic Developmental Stages
3.5.1. gsdf

The expression of this transcript was not detected until the late stages, beginning at
270 d◦C. Significantly higher (p < 0.05) expression was observed in the hatching stage.
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3.5.2. amh

The expression of amh was not detected until 210 d◦C, after which it was expressed in
the subsequent stages analyzed in this study. Significantly higher (p < 0.05) expression was
observed at 430 d◦C.

3.5.3. cyp19a

The expression pattern of cyp19a mRNA was similar to that of amh, with significantly
higher (p < 0.05) expression observed at 430 d◦C. No expression was detected in the
unfertilized egg, and very low mRNA expression was detected up to 210 d◦C.

3.5.4. dmrt1

The expression of dmrt1 showed a non-significant (p < 0.05) mRNA expression trend
from the unfertilized egg to 270 d◦C. However, in the 340 d◦C and 430 d◦C stages, the
expression of dmrt1 was significantly increased compared to the other stages analyzed in
this study.

3.5.5. foxl2

The expression of foxl2 mRNA was very low in unfertilized eggs and developing
embryos up to 80 d◦C. However, an increasing trend in mRNA expression was observed
from 110 d◦C onwards, with significantly higher expression observed at 430 d◦C.

The graphical representation of different SD/sex-differentiation genes during the
developmental stages of S. salar is presented in Figure 6.
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Figure 6. Basal mRNA transcript level of SD genes: gsdf, amh, cyp19a, dmrt1 and foxl2 during
developmental stages of A. salmon. Data are presented as mean ± SD (n = 4). Bars with different
superscripts denote statistically significant differences (p < 0.05) between developmental stages. 0:
unfertilized egg and 430: yolk sac fry or alevins.
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4. Discussion

Gonadal SD is a significant event that occurs during embryogenesis to form a bipo-
tential gonad, and its fate to turn into testes or ovaries is determined by different genetic
or environmental cues [51,52]. Similarly, gametes originate from specialized cells known
as PGCs that are formed in the early stages of embryonic development and migrate to
the developing gonads under the influence of different molecular factors [30,43,53,54].
Deviation in the programming of gene expression of PGC and sex-determining factors
in fish by artificial means can lead to either sex reversal or sterility [17,19,55–57]. In the
present study, we measured the basal mRNA expression of some important genes involved
in the development of PGCs and SD in S. salar by qPCR.

The high sensitivity, reproducibility, precise quantification, fast readout and easy
operation make qPCR one of the most popular and commonly used tools for measuring
gene expression analysis in molecular biology [58–60]. However, the output results of
qPCR are affected by many factors such as RNA quality and quantity, reverse transcription,
HKGs and PCR efficiencies [61,62], meaning careful attention must be paid during nucleic
acid isolation from the tissue. Good-quality RNA is essential for qPCR analysis because it
serves as the starting material for reverse transcription, which generates cDNA templates
for qPCR amplification [63]. RNA degradation, fragmentation, or contamination can lead
to inaccurate results and unreliable gene expression analysis. Techniques such as RNA
quantification, quality assessment, and sample preparation are important for obtaining
high-quality RNA for qPCR analysis.

As discussed in the introductory section, RNA extraction from salmon eggs is very
difficult, and in this study, we isolated the embryonic cells by dechorionation. The im-
mersion in acetic acid made the eggs transparent, facilitating easy cell collection, while
centrifugation in PBS did not alter cellular physiology. Agarose gel electrophoresis results
demonstrated the two bands, i.e., 28s rRNA and 18s rRNA, which is an indicator of high-
quality and intact RNA [64]. The RIN quantifies the fragmentation of the RNA sample [65],
and high-quality RNA should fall in the range of a value of eight. In the present study, the
RIN value was more than eight, which indicates that the isolated RNA had good integrity.

Housekeeping genes are constitutively expressed and assumed to have stable expres-
sion levels across different samples and experimental conditions. However, in reality, the
expression of housekeeping genes may vary depending on the tissue type, developmental
stage or experimental treatments. Therefore, it is important to validate the expression
stability of housekeeping genes under specific experimental conditions before using them
for normalization. This can be achieved by using statistical algorithms such as geNorm,
NormFinder, BestKeeper etc. The delta-CT method used in the present study compares
∆Ct of the HKGs in pairs, thereby bypassing the need for accurate RNA quantification [46].
The average SD index is used to rank the housekeeping genes based on their stability
in this method. BestKeeper, which is an Excel-based statistical algorithm, uses pairwise
correlations to determine the most suitable internal control gene [47]. NormFinder uses a
model-based approach, provides a distinct analysis of the sample subgroups and includes
both intra and inter-group variation estimations to calculate a gene stability value [48,66].
geNorm calculates the average expression stability value (M), a pairwise variation between
one HKG and other candidate reference genes. During analysis, it excludes the gene with
a high M value in each step, and the process is repeated until the most stable gene (least
M value) is selected. GeNorm estimates pairwise variation (Vn/n + 1) to determine the
optimal number of candidate reference genes, and they should satisfy Vn/Vn + 1 below
the threshold value of 0.15 [49]. Finally, the comprehensive stability was estimated on the
basis of output results from other validation algorithms as discussed in the data analysis
section to select the HKG as an internal control.

In the present study, UB2L3 was found to be the most stable HKG in the developing
embryos of S. salar as per all the algorithms. Most of the ontogenetic studies on S. salar used
the elongation factor gene [27,67,68] or 18s rRNA [69,70] as an internal control for qPCR
studies. Additionally, in various gene expression studies of S. salar, the reference genes
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behave differently, as in immunity-related studies, where β-actin was stable [71–74] while
the internal controls changed based on the stress factor (temperature stress, sea lice etc.) in
an experiment [75–78]. So, the present results on HKG validation support the statement
that a researcher should not rely on the so-called “golden standard” term and assume that
the well-known housekeeping gene will work for every gene expression study [29].

The vasa transcript in the present study was expressed in unfertilized eggs and al-
most in all stages analyzed, but a significant decreasing trend was observed after 80 d◦C.
Moreover, after 430 d◦C, the mRNA expression was significantly higher. Similarly, the
dnd1 transcript was expressed in unfertilized eggs until 30 d◦C and was either negligible
or absent in the remaining stages. The semi-quantitative PCR results in S. salar revealed
that the vasa transcript was expressed up to the 10-somite stage, and dnd1 was expressed
up to the early blastula stage, which corresponds to 162 d◦C and 30 d◦C [at 6 ◦C], re-
spectively [79]. In summer flounder (Paralichthys dentatus) and Nile tilapia (Oreochromis
niloticus), both the transcripts were expressed up to the blastula stage [30,80]. The mRNA
expression pattern of the two transcripts suggests that they are maternally inherited [79,81]
and play an important role in the PGC specification and development. The sudden drop
in mRNA expression between the blastula and gastrula stage is due to the degradation
of the transcripts through an unknown mechanism, although some studies suggest that
microRNAs are involved in degrading the maternal mRNAs [82–84]. Additionally, the
genes could have been methylated because they have no role in certain stages [85]. In
our study, the increase in vasa expression at 430 d◦C, which corresponds to the yolk sac
larval stage in S. salar, is in contrast with the results of the other teleost, in which low
expression was detected [86–88]. In situ hybridization and immunohistochemistry detected
the presence of vasa at a higher level in hatched larvae, which corroborates with the present
results [79].

In the present study, the S. salar nanos3a was detected in the unfertilized egg, which
suggests its maternal inheritance. The transcript began being expressed at 30 d◦C and
was drastically downregulated after 50 d◦C, which suggests its role in PGCs for a shorter
duration. This could indicate a role in migration or maintenance, but it needs to be
further evaluated. Like our results, nanos3a expression declined in the later stages and was
almost absent in the hatching stage in Atlantic cod (Gadus morhua) [89]. Similarly, nanos3a
expression declined in zebrafish after 5 days post-fertilization [35].

In the present study, sdf1 was expressed in all embryonic developmental stages except
80–210 d◦C, which is in accordance with the expression results in medaka [40]. The
expression of this transcript is high after hatching, which suggests its role in the later
stages of development of PGCs or with other somatic cells such as pigment cells or muscle
cells [90,91].

A network of genes is involved during embryonic stages to guide the bipotential go-
nad to change into either the testis or ovary [92]. The most common SD genes identified in
teleosts include gsdf, amh, cyp19a1a, foxl2 and dmrt variants [93,94]. gsdf and amh belong to
the TGF-β superfamily of genes and control cell proliferation [95] and are mainly involved
in male SD [96]. gsdf interacts with other male-specific genes such as sex dmy or dmrt1, and
it affects estradiol production, a major female-specific hormone [97,98]. Its role in the regu-
lation of PGC proliferation and germ cell differentiation has also been validated [99,100].
The role of amh in fish is to regulate male germ cell accumulation and prevent female-biased
sex ratios [101]. Our results showed that gsdf and amh are weakly expressed during the
embryonic development stages, and the mRNA expression was greater after hatching. In
rainbow trout (Oncorhynchus mykiss), the RT-PCR results show that gsdf started being
expressed at 2.5 dpf, and in zebrafish, the transcript was expressed after 16 dpf [99,102].
Our results of gsdf suggest that it is involved in later stages of PGC development in S.
salar, which is supported by the fact that this transcript is restricted to somatic cells of
the genital ridge surrounding PGCs in rainbow trout, and in gsdf morphants, the PGC
proliferation was suppressed [99]. Similarly, amh expression is initiated in somatic cells
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when the PGCs are migrating in the somatic gonadal precursors [103,104]; therefore, it may
play an important role in the maintenance of PGC in later developmental stages.

cyp19a1 is a member of the aromatase family of genes that are involved in the conver-
sion of androgens to estrogens [105], and blocking its activity by aromatase inhibitors or
gene editing results in a female-to-male sex reversal [106,107]. Like gsdf and amh, cyp19a1
was not expressed much in the embryonic stages in the present study, and the transcript
started being expressed in hatched larvae, which is in consistent with the earlier reports
stating its late-stage expression in fish [108,109]. The results indicate an unimportant role
in the maintenance of PGC and its involvement mostly in the SD in fish [110].

dmrt1 belongs to the family of genes characterized by having a highly conservative
zinc-finger DNA-binding motif [DM domain], and it plays an important role in male
SD [111,112]. On the other hand, foxl2 is a member of the Fox gene family and is involved
in ovarian differentiation and oogenesis in females [113]. Mutations in dmrt1 resulted in
male-to-female sex reversal, and the opposite is true for fox12 mutations [111,114]. In the
present study, dmrt1 mRNA was expressed in all stages of embryonic development as
well in the yolk sac larvae. In Yellow catfish (Pelteobagrus fulvidraco), dmrt1 is expressed
in all embryonic stages [115], while in ayu (Plecoglossus altivelis), it was expressed from
day two post-fertilization [116]. dmrt1 has been found to be expressed in the somatic cells
surrounding PGC, hence playing a crucial role in germ cell development [117], which may
be the reason for its wide expression in embryonic developmental stages. foxl2 mRNA
expression in the present study was weakly expressed up to 80 d◦C and was increased from
110 d◦C. In Celebes medaka (Oryzias celebensis), the foxl2 transcript started being expressed
from the late blastula stage and increased in the subsequent stages [118]. The available
data on the role of foxl2 in PGCs is limited, and the present study suggests that it may have
a function prior to the onset of sexual differentiation. However, further investigation is
required to fully understand its role in PGC development.

5. Conclusions

To summarize, the study successfully extracted high-quality RNA from developing
S. salar embryos, which was then used to analyze the expression of PGC genes during
embryogenesis. The results provide insights into the expression patterns of key PGC
transcripts during early development and could serve as a reference for future studies on
gene editing efficiency in S. salar.
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