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Simple Summary: In this study, bioinformatics approaches were used to better understand the
genetic architecture of internal organ weights in three-way crossbred commercial pigs and to map
genetic markers and genes. For this purpose, we used single-trait and multi-trait genome-wide
association studies (GWASs) followed by a haplotype block analysis. We explored the key genetic
markers and genes from the internal organ weight genome-wide association study results of three-
way crossbred commercial pigs. In this manner, five genes, TPK1, POU6F2, PBX3, UNC5C, and
BMPR1B, were defined as central in affecting internal organ weight in pigs. Moreover, APK1, ANO6,
and UNC5C were identified to be pleiotropic in multi-trait GWASs. These results can be applied to
various types of genomic studies of pigs.

Abstract: Internal organ weight is an essential indicator of growth status as it reflects the level of
growth and development in pigs. However, the associated genetic architecture has not been well
explored because phenotypes are difficult to obtain. Herein, we performed single-trait and multi-trait
genome-wide association studies (GWASs) to map the genetic markers and genes associated with six
internal organ weight traits (including heart weight, liver weight, spleen weight, lung weight, kidney
weight, and stomach weight) in 1518 three-way crossbred commercial pigs. In summation, single-trait
GWASs identified a total of 24 significant single- nucleotide polymorphisms (SNPs) and 5 promising
candidate genes, namely, TPK1, POU6F2, PBX3, UNC5C, and BMPR1B, as being associated with the
six internal organ weight traits analyzed. Multi-trait GWAS identified four SNPs with polymorphisms
localized on the APK1, ANO6, and UNC5C genes and improved the statistical efficacy of single-trait
GWASs. Furthermore, our study was the first to use GWASs to identify SNPs associated with stomach
weight in pigs. In conclusion, our exploration of the genetic architecture of internal organ weights
helps us better understand growth traits, and the key SNPs identified could play a potential role in
animal breeding programs.

Keywords: internal organ weight; GWAS; DLY pigs; genetic architecture

1. Introduction

Body weight, which can reflect growth performance and thus affect economic effi-
ciency, has attracted a lot of attention in animal breeding programs. The body weight of
cattle is the sum of various elements, including fat weight, internal organ weight, muscle
weight, and bone weight, among others. Of these components, internal organ weight
constitutes 14% of the total body weight of cattle [1]. The weight and size of an organ
are salient features that serve as dependable predictors of its developmental progression,
wherein an augmented organ mass typically alludes to a heightened degree of maturation.
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Accelerated organ development leads to a smoother coordination of internal organs during
vital biological processes such as oxygen transport, blood circulation, lipid metabolism, and
digestion. This refinement of these processes can positively impact growth and economic
traits. Previous studies have shown that the internal organ weights of crossbred steer
calves are strongly correlated with carcass growth rate [2]. Moreover, in humans, internal
organ weights have been shown to be positively correlated with body weight and height
in normal Zambian adults [3]. Thus, comprehending the genetic architecture of heart
weight (Heart WT), liver weight (Liver WT), spleen weight (Spleen WT), lung weight (Lung
WT), kidney weight (Kidney WT), and stomach weight (Stomach WT) will propel genetic
progress and facilitate the successful implementation of breeding programs.

Genome-wide association studies (GWASs) are widely used to identify quantitative
trait loci (QTL) and candidate genes associated with complex traits in animals and plants.
To date, the number of QTL associated with Heart WT, Liver WT, Spleen WT, Lung WT,
and Kidney WT are 29, 31, 19, 5 and 8, respectively, and no QTL have been reported to be
associated with Stomach WT in the pig QTL database [4] (accessed on 15 November 2022).
Previous studies reported 39 QTL to be associated with internal organ weight in four local
pig populations and one commercial population [5]. For instance, Zhang et al. [6] showed
that a 2 cM QTL on Sus scrofa chromosome 2 (SSC2) was significantly associated with Heart
WT, and three QTL were associated with Liver WT, Lung WT, and Spleen WT. Although
several studies have identified QTL to be associated with internal organ weight [7,8], the
process of genetic improvement remains slow.

The difficulty (and high cost) of obtaining phenotypes for internal organ weight
studies has led to fewer studies on its genetic architecture. Moreover, previous studies
conducted single-trait GWASs for internal organ weight to map the genetic markers and
genes; however, internal organ development is mutually coordinated by each different
organ, and the single-nucleotide polymorphisms (SNPs) in the genome may act on multiple
organs at the same time. Therefore, it is difficult to identify SNPs and candidate genes that
affect multiple internal organs simultaneously using single-trait GWASs. Therefore, herein,
we performed multi-trait GWASs to identify polymorphic SNPs and improve statistical
efficiency, which mainly depends on the genetic correlation between traits [9,10]. In this
manner, it was observed that the statistical efficiency was improved in the case of low trait
correlations [11,12].

Previous studies demonstrated the superiority of conducting multi-trait GWASs in
terms of uncovering the genetic architecture of complex traits in animals. For instance,
Zhou et al. [13] performed multi-trait GWASs to identify 21 pleiotropic SNPs that were
not detected via single-trait GWASs in three body size traits. In Simmental beef cattle,
An et al. [14] detected 29 pleiotropic SNPs that were functional in all three growth periods
using multi-trait GWASs. To date, there are no studies that use multi-trait GWASs to analyze
the genetic architecture of visceral weight. Herein, we performed multi-trait GWASs to
compensate for the deficiencies associated with single-trait GWASs and to provide new
insights into the genetic mechanisms of multi-organ co-development.

The aim of this study was to map the genetic markers and candidate genes associated
with internal organ weight in pigs. To this end, we conducted single-trait and multi-trait
GWASs for six internal organ weight traits in 1518 crossbred commercial Duroc × (Lan-
drace × Yorkshire) DLY pigs. The results from the current study advanced our under-
standing of the genetic basis for internal organ weight and further revealed the complexity
of the genetic architecture of internal organ weight in pigs. Integrating SNP results from
GWASs as a source of prior biological information in the improvement program enhances
the selection process by assigning higher weight to key SNPs that are critical for improving
internal organ weight traits.
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2. Materials and Methods
2.1. Ethical Statement

All animals used in this study were treated in accordance with the guidelines for the
use of laboratory animals of the Ministry of Agriculture of China and with the approval of
South China Agricultural University (Guangzhou, China), No. 2018F089.

2.2. Animal Samples and Phenotype Collection

Experimental animals were selected from a DLY three-way crossbred commercial line
with no overlapping blood relations, through random selection based on genealogy, in
which 89 Duroc boars were mated with 397 Landrace × Yorkshire sows to produce a large
number of offspring. All pigs were raised in four farms of the Guangdong Wens Food
Group Co., Ltd. (Guangzhou, China). In brief, a total of 1518 individuals (757 boars and
764 sows) were reared with free access to water and feed and were fattened to 115 kg.
They were euthanized in 13 batches with a 24 h interval between each batch and had an
average slaughter age of about 7 months. After the pigs were euthanized, their phenotypes
were recorded, and their internal organs were excised, emptied, flushed, blotted dry, and
weighed immediately using an electronic scale with a range of 0.0 kg to 300 kg and accuracy
of ±100 g. The scale was calibrated using the linear calibration method with 20% MAX or
60% MAX weight. The organ distribution is shown in Figure 1. R 4.2.1 software was used
to test the normal distribution of the descriptive statistics of the internal organ traits.
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Figure 1. Distribution of heart, liver, spleen, lung, kidney, and stomach in the pig.

2.3. Genotyping and Quality Control

Ear samples were collected from all 1518 individuals, and genomic DNA was ex-
tracted from the ear tissue of each pig using a standard phenol–chloroform method and
subsequently diluted to 50 ng/µL for the genotyping procedure, controlling the quality
OD260/280 between 1.8 and 2.0. The 1518 DLY pigs were genotyped using the GeneSeek
Porcine 50K SNP BeadChip (Neogen, Lincoln, NE, USA), which contained 50,703 SNPs.
After genotyping, to ensure the accuracy and validity of the GWAS results, we performed
a quality control (QC) procedure using the PLINK v1.07 software [15] with the following
parameters: individual call rate > 95%; SNP call rate > 99%; minor allele frequency > 1%;
and p > 10−6 for the Hardy–Weinberg equilibrium test. Moreover, SNPs in sex chromo-
somes and unmapped regions were excluded. After QC, a final set of 31,941 eligible SNPs
remained for subsequent single-trait and multi-trait GWASs.

2.4. Population Structure and Linkage Disequilibrium (LD) Estimation

PCA was conducted using the GCTA software [16] to assess the population structure,
and PLINK v1.07 was used to calculate the LD decay distance, which was evaluated as the
squared correlation of alleles (r2) with a window size of 1000.
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2.5. Single-Trait and Multi-Trait Genome-Wide Association Studies

The GEMMA software [17] was used to implement the linear mixed model (LMM)
for the single-trait GWAS of each internal organ weight trait, including heart weight,
liver weight, spleen weight, lung weight, kidney weight, and stomach weight. GEMMA
calculated the genomic relatedness matrix (GRM) between individuals to account for the
population structure. The mixed linear model was as follows:

y = Wα + Xβ + u + ε

where y is a vector of phenotypic values for each internal organ weight; W is the correlation
matrix of covariates (fixed effects), including the top five eigenvectors of PCA, farm, sex,
and slaughter lot; α is a vector of corresponding coefficients including the intercept; X is
the genotypic vector of the SNP markers; β denotes the effect size of the SNP markers; u is
a random effects vector, u~MVNn (0, λτ−1K); ε is the residual vector, ε~MVNn (0, τ−1In);
λ is the ratio of the specified variance components; τ−1 is the variance of the residuals; K
denotes the kinship matrix; I is the unit matrix; n is the number of individuals in the DLY
population; MVNn denotes the multi-dimensional normal distribution.

Moreover, the GEMMA software [17] was used to implement the multivariate linear
mixed models (mvLMMs) [18] for multi-trait GWASs to assess pleiotropic SNPs. The
mvLMMs and LMMs were both implemented as described in previous studies [19]. In the
current study, the LMMs and mvLMMs in the single-trait GWAS and the multi-trait GWAS
utilized the same covariates. The multivariate linear mixed models were as follows:

Y = WA + xβT + U + E; G ∼ MNn×d
(
0, K, Vg

)
, E ∼ MNn×d(0, In×n, Ve)

where Y is a matrix of six internal organs for 1518 individuals; W is a covariable matrix
(fixed effects); A is a matrix of the corresponding coefficients; x is a vector that marks
the genotypes; β is a vector of marker effect sizes for six internal organs’ weights. U
denotes the random effects; E is a matrix of errors; K denotes the kinship matrix; Vg denotes
symmetric matrix of genetic variance component; I is an identity matrix; Ve denotes a
symmetric matrix of the environmental variance component; MNn×d(0, V1, V2) denotes
the n×d matrix normal distribution with mean 0; V1 denotes row covariance matrix; V2
denotes column covariance matrix.

Furthermore, the Bonferroni correction can lead to an overcorrection and can be too
conservative, this can result in a limited number of labeled association p-values that meet
the standard across the genome. This can lead to a high false-negative rate. To address this
issue, the false-discovery rate (FDR) was employed as a correction to the threshold [20].
Thus, the threshold p-value was calculated as P = FDR ∗ N

M ; the FDR was set to 0.01, N is
the number of SNPs with p-value less than 0.01, and M refers to the total number of SNPs
after quality control. Moreover, quantile–quantile (Q–Q) plots were constructed for the six
internal organ weight traits to further assess the population structure.

In addition, the PLINK v1.07 and Haploview v4.2 software [21] were implemented to
perform the haplotype block analysis in chromosomal regions with multiple significant
SNPs. The default parameters of Haploview 4.2 [22] (MAF > 0.05, Mendelian error < 2,
and p-value < 10−3 for the HWE test) were used to define the linkage disequilibrium (LD)
blocks of SNPs.

2.6. Estimation of Heritability and Phenotypic Variation

In the present study, the restricted maximum likelihood (REML) method was used
to assess the SNP-based heritability of each internal organ weight trait, and the percent-
age of phenotypic variation that could be explained by significant SNPs was calculated
using GCTA software. SNP-based heritability and the percentage of phenotypic variation
explained by significant SNPs were calculated as follows [23]:

y = Xβ + g + ε with var(y) = Agσ2
g + Iσ2

ε
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where y is the phenotypic value of each internal organ weight trait; β is the vector of fixed
effects, including the top five eigenvectors of PCA, farm, sex, and slaughter lot; X is an
association matrix; g is the vector of total genetic effect of all the qualified SNPs for the
1518 DLY pigs; Ag is the genomic association matrix between different individuals; σ2

g is
the additive genetic variance captured by either the genome-wide SNPs or the selected
SNPs; σ2

ε refers to residual variance.

2.7. Candidate Gene Search and Function Analysis

Our previous studies on this population showed that the average r2 of 0.2 is about
200 kb apart [24]; the range for searching for the functional gene closest to the position
of the significant SNP is determined based on the LD decay distance (r2 = 0.2) of the
populations [25]. We used the “biomaRt” package [26] in R, based on the Sus scrofa
11.1 genome version database (http://ensemble.org/Sus_scrofa/Info/Index, accessed
20 September 2022). Genes nearest the significant SNPs are list in Tables. We conducted
a search of both PubMed and the relevant literature to examine the correlation between
the nearest peak SNPs of all the candidate genes and the internal organ weight traits
being analyzed.

3. Results and Discussion
3.1. Phenotype Statistics and Heritability Estimation

The descriptive phenotypic statistics and estimated heritabilities (h2) for analysis of
the internal organ weights are listed in Table 1. The weight of internal organs is a crucial
indicator of internal organ development and has a significant impact on organ function. In
the current study, the average Heart WT, Liver WT, Spleen WT, Lung WT, Kidney WT, and
Stomach WT in DLY pigs were 455.57 g, 1763.61 g, 212.54 g, 1020.54 g, 0.41 kg, and 727.68 g,
respectively. The estimated heritabilities of Heart WT and Lung WT were the lowest at
0.21 ± 0.04 and 0.28 ± 0.04, respectively, and all other organ weights had had moderate to
high estimated heritabilities, ranging from 0.36 ± 0.04 to 0.49 ± 0.04. Similar to the results
of a previous study, the estimated heritabilities of Heart WT, Liver WT, Spleen WT, and
Kidney WT were between 0.35 and 0.54, which were moderate to high estimations [5],
indicating that the estimated heritabilities of the weight of an internal organ is generally
high in pigs and there is considerable room for improving the genetic contribution through
breeding. Furthermore, the coefficients of variation were the lowest for Lung WT and all
other traits were relatively high, indicating individual heterogeneity, low trait selection
intensity, and high breeding potential.

Table 1. Phenotypic statistics and heritability estimates for Heart WT, Liver WT, Spleen WT, Lung
WT, Kidney WT, and Stomach WT.

Trait N Mean (±SD) Min Max C.V.% a h2 (±SE)

Heart WT 1518 455.57 ± 78.06 217.1 868.8 17.13 0.21 ± 0.04
Liver WT 1518 1763.61 ± 271.83 993.9 2607.7 15.41 0.46 ± 0.04

Spleen WT 1517 212.54 ± 47.49 95.9 502.1 22.34 0.49 ± 0.04
Lung WT 1517 1020.54 ± 240.10 918.9 2090.4 2.18 0.28 ± 0.04

Kidney WT 1486 0.41 ± 0.08 0.17 0.84 19.51 0.36 ± 0.04
Stomach WT 1518 727.68 ± 129.97 495.7 1321.7 17.86 0.47 ± 0.04

a Coefficient of variation (C.V.).

Moreover, the genetic and phenotypic correlation coefficients among Heart WT, Liver
WT, Spleen WT, Lung WT, Kidney WT, and Stomach WT are listed in Table 2. The results
revealed moderate to low genetic correlations among the six internal organ weight traits.
Heart WT had moderate genetic correlations with Liver WT, Lung WT, and Kidney WT,
suggesting that these traits could be improved together in pig breeding programs. On the
other hand, Stomach WT showed close to 0 genetic correlations with most of the other traits,
indicating Stomach WT traits are less influenced by other traits when they are inherited.
Therefore, reasonable breeding strategies need to be designed to improve internal organ

http://ensemble.org/Sus_scrofa/Info/Index
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weight traits. The phenotypic correlation results showed that the correlation coefficients
between the phenotypes were at moderate to high levels, excluding the low phenotypic
correlation coefficients between Lung WT and Liver WT, and Spleen WT and Kidney WT,
especially the phenotypic correlation coefficients of Liver WT and Kidney WT were as high
as 0.62. When selecting for a certain phenotype in pig breeding, it is advantageous to also
consider other related traits.

Table 2. Phenotypic correlations (above the diagonal) and genetic correlations (below the diagonal)
among organ weight traits within the DLY population.

Heart
WT

Liver
WT

Spleen
WT

Lung
WT

Kidney
WT

Stomach
WT

Heart WT 1 0.36 0.33 0.41 0.37 0.49
Liver WT 0.31 ± 0.11 1 0.34 −0.02 0.62 0.38

Spleen WT 0.23 ± 0.11 0.11 ± 0.09 1 0.15 0.33 0.41
Lung WT 0.33 ± 0.13 0.17 ± 0.11 0.04 ± 0.11 1 0.05 0.27

Kidney WT 0.30 ± 012 0.33 ± 0.09 0.07 ± 0.10 0.29 ± 0.12 1 0.43
Stomach WT 0.02 ± 0.12 0.03 ± 0.09 0.26 ± 0.09 0.02 ± 0.11 0.03 ± 0.10 1

3.2. Population Structure and LD decay

Population stratification is known to lead to false-positive results in GWASs. To detect
potential population stratification, we performed PCA and added the first five principal
components to the covariates of the GWAS model to correct for the population structure.
Moreover, our previous study showed that the LD decay coefficient of the analyzed DLY pig
population with r2 decayed to 0.2 at a physical distance of 200 kb [24], indicating that the
DLY population is diverse with a weak linkage between loci, which facilitates the detection
of key SNPs for internal organ weight traits. In addition, Q–Q plots were generated for
Heart WT, Liver WT, Spleen WT, Lung WT, Kidney WT, and Stomach WT to further assess
population stratification (together with the Manhattan plots: Figure 2). The expansion
coefficients (lambda) of the Q–Q plots for all six internal organ weight traits were close to 1,
and no overall systematic bias was observed, signifying a negligible effect of the DLY pig
group structure on GWASs.
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Figure 2. Manhattan and Q–Q plots of internal organ weight traits in the single-trait GWAS. (A) GWAS
for Heart WT; (B) Q–Q plot for Heart WT; (C) GWAS for Liver WT; (D) Q–Q plot for Liver WT;
(E) GWAS for Spleen WT; (F) Q–Q plot for Spleen WT; (G) GWAS for Lung WT; (H) Q–Q plot
for Lung WT; (I) GWAS for Kidney WT; (J) Q–Q plot for Heart WT; (K) GWAS for Stomach WT;
(L) Q–Q plot for Stomach WT. The x-axis represents the chromosome, and the y-axis represents the
−log10 (p-value) value in the Manhattan plot of the GWAS. The Q–Q plot is plotted with the x-axis
representing the actual measured value of −log10 (p-value) and the y-axis representing the observed
value of −log10 (p-value) and labeled with the expansion factor lambda (λ).

3.3. Single-Trait GWASs

Single-trait GWASs were performed for the weight of the heart, liver, spleen, lung,
kidney, and stomach. The results showed that 6, 4, 3, 4, 3, and 4 SNPs were significantly
associated with the weight of each organ, respectively. The results of these single-trait
GWASs are presented in Figure 2 and Table 3. Notably, it is the first time that significant
SNPs associated with Stomach WT have been identified in pigs. Furthermore, on the basis of
the LD decay map, a region of 200 kb before and after the key SNPs was defined as a region
to screen for candidate genes [24]. For heart weight, six significant SNPs were identified,
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located on SSC5, 6, 7, 12, and 14. These six SNPs surpassed the significance threshold of
1.01 × 10−4. Figure 2B shows an expansion coefficient lambda (λ) of 1.006. Details of the
significant SNPs are listed in Table 3. The most significant SNP, WU_10.2_12_6703865 on
SSC12, explains 1.70% of the phenotypic variation and is about 44 kb downstream of the
CD300LB gene. The CD300LB gene is a triggering receptor expressed on bone marrow
cells that regulates the cytosolic process of bone marrow cells [27], and the CD300LB
protein stimulated by T cells regulates DNMT3A mutation and alters immune cells in heart
failure [28].

Table 3. Significant SNPs and candidate genes for Heart WT, Liver WT, Spleen WT, Lung WT, Kidney
WT, and Stomach WT in single-trait GWASs.

Trait SSC SNP Position (bp) MAF p-Value PEV (%) a Candidate Gene Distance

Heart
WT

6 WU_10.2_6_126961053 137,008,535 0.257 1.88 × 10−5 2.09% ST6GALNAC3 Within
14 6_43731895 132,228,312 0.407 1.99 × 10−5 1.71% HTRA1 124,717
12 WU_10.2_12_6703865 6,682,110 0.389 6.40 × 10−5 1.70% CD300LB 44,143
5 ALGA0032998 76,317,972 0.264 8.30 × 10−5 1.36% ANO6 Within
7 WU_10.2_7_116585612 110,088,932 0.242 7.42 × 10−5 1.10% KCNK10 −29,135

12 12_5381300 5,426,010 0.319 6.50 × 10−5 0.53% CDK3 Within

Liver
WT

4 WU_10.2_4_20570494 19,550,555 0.249 2.15 × 10−5 2.11% CCN3 −35,758
9 H3GA0028070 113,152,352 0.09 7.54 × 10−5 2.10% TPK1 Within
9 ASGA0044340 113,140,343 0.118 3.51 × 10−5 0.82% TPK1 Within

10 WU_10.2_10_3469625 1,753,591 0.476 3.08 × 10−5 0.43% RGS21 Within

Spleen
WT

18 ALGA0098928 54,993,603 0.328 1.39 × 10−5 2.22% POU6F2 Within
3 ALGA0105765 20,525,651 0.216 4.74 × 10−5 0.78% HS3ST4 −19,582
9 WU_10.2_9_45824613 40,989,995 0.399 1.47 × 10−5 0.58% TTC12 Within

Lung
WT

11 ALGA0060656 8,759,687 0.231 6.24 × 10−5 2.76% FRY Within
1 ALGA0110225 266,708,292 0.278 1.46 × 10−5 1.81% PBX3 97,646
7 ASGA0035515 98,022,168 0.04 3.57 × 10−5 1.43% YLPM1 Within
1 MARC0089438 11,012,474 0.271 4.46 × 10−5 0.69% / /

Kidney
WT

15 WU_10.2_15_153747936 138,955,316 0.369 2.61 × 10−5 1.97% / /
4 WU_10.2_4_119054114 108,872,194 0.478 3.93 × 10−5 1.62% RAP1A 122,469

11 WU_10.2_11_20231427 19,917,312 0.221 8.86 × 10−5 0.88% SUCLA2 Within

Stomach
WT

8 ALGA0106192 124,443,641 0.064 1.54 × 10−5 2.62% UNC5C Within
8 MARC0052872 124,421,940 0.063 1.61 × 10−5 2.53% UNC5C Within
8 ASGA0101191 124,548,240 0.081 2.40 × 10−5 2.14% BMPR1B Within
2 MARC0018316 46,014,239 0.46 8.35 × 10−5 0.74% ARNTL Within

a The percentage of phenotypic variance explained by each SNP.

For liver weight, four significant SNPs were detected on SSC4, SSC9, and SSC10 with a
λ of 0.999 (Figure 2C,D and Table 3). These four SNPs surpassed the significance threshold
of 1.04 × 10−4. The top SNP, H3GA0028070, accounted for 2.10% of the phenotypic
variance and is located within the TPK1 gene. A significant SNP, named ASGA0044340,
12 kb upstream of H3GA0028070, also located on TPK1, explained 0.82% of the phenotypic
variation. According to reports, TPK1 is a cofactor of certain enzymes associated with the
glycolysis and energy production pathways. It is involved in the metabolism of water-
soluble vitamins and cofactors and the thiamine metabolic pathway, and mutations in TPK1
can cause thiamine metabolic dysfunction syndrome [29]. In addition, knockdown of this
gene can lead to glycogen storage dysfunction [30]. However, no studies have shown TPK1
to be directly associated with liver development and weight in pigs.

The GWAS results of Spleen WT identified three significant SNPs, located on SSC3,
SSC9, and SSC18, with a λ of 0.972 (Figure 2E,F and Table 3). All three SNPs surpassed
the threshold of significance (p < 1.20 × 10−4). The top SNP, ALGA0098928, explained
2.22% of the phenotypic variation and is located within POU6F2. POU6F2 is a suppressor
associated with nephroblastoma (WT) that regulates cell proliferation and specific differen-
tiation [31]. According to the RT-qPCR results, the expression of POU6F2 is associated with
renal morphogenesis [32], suggesting that POU6F2 may be closely associated with spleen
weight traits.
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For lung weight, four significant SNPs were detected on SSC1, SSC7, and SSC11 with a
λ of 1.008 (Figure 2G,H and Table 3). These four SNPs surpassed the significance threshold
of 1.04 × 10−4. An SNP named ALGA0110225 explained 1.81% of the phenotypic variance
and is located 97 kb downstream of PBX3, indicating that PBX3 and ALGA0110225 may
both play a role in Lung WT. A literature review revealed that PBX3 is directly regulated
by targeting NBPF10, miR-144, and miR-224, which are directly associated with lung cancer
cell proliferation [33]. In addition, overexpression of PBX3 promotes the proliferation of
A549 cells (lung cancer histiocytes) [34]. Therefore, we believe PBX3 to be a promising
candidate gene for influencing Lung WT, and the regulatory mechanism needs further
investigation.

We performed GWASs with the Kidney WT trait in DLY pigs and detected three
SNPs that were above the significance threshold (p < 1.03 × 10−4) (Figure 2I and Table 3).
Figure 2J shows that the lambda is 0.987. WU_10.2_15_153747936 on SSC15 explains 1.97%
of the phenotypic variation and is located 341 kb downstream of the HDAC4 gene. Because
the LD decay distance is 200 kb, it follows that HDAC4 may not have a significant effect on
Kidney WT traits.

QTL and significant SNPs have not been previously reported in relation to Stomach WT.
Thus, this study is the first GWAS on pig Stomach WT. Herein, four significant SNPs were
identified for the DLY pigs that were above the significance threshold of p < 1.17 × 10−4

(Figure 2K and Table 3). Of the four significant SNPs, three SNPs were simultaneously lo-
cated on SSC8 and both MARC0052872 and ALGA0106192 were located within the UNC5C
gene. Furthermore, the distance between MARC0052872 and ALGA0106192 was only
21 kb, explaining 2.53% and 2.62% of the phenotypic variation, respectively. ASGA0101191
was 100 kb away from the aforementioned SNPs with a phenotypic variation value of
2.14% and was located within BMPR1B. A literature review revealed that UNC5C plays
a dominant role in netrin-1/UNC5C-mediated axonal rejection [35] and that its promoter
region sequence binds to p53 and acts as a target of p53 to regulate apoptosis [36]. As
regards the BMPR1B gene, it has been shown that the BMP family is expressed in the early
organ and tissue formation during mouse embryonic development [37]. However, neither
the BMPR1B nor the UNC5C gene is directly associated with internal organ weight traits.

The above GWAS results show that none of the SNPs associated with internal or-
gan weight overlapped with those previously reported QTL documented in the pig QTL
database [1]. This may have been due to the fact that most studies focused on the breeding
of native Chinese pigs, and fewer studies were conducted on DLY three-way crossbred
commercial populations with significant breed differences. Moreover, the significant SNPs
did not overlap in the six traits, i.e., none of the SNPs were polymorphic, which may be
related to the low genetic and phenotypic correlation between traits and the low density of
genetic markers, which was further verified by multi-trait GWASs.

3.4. Haplotype Block Analysis

Figure 3 shows the LD pattern of significant SNPs associated with Stomach WT. In this
study, multiple SNPs associated with Stomach WT were in close proximity to each other,
with two significant SNPs on SSC8, which is located in a 21 kb region within the UNC5C
and BMPR1B genes (the gene function is described above). The insufficient density of 50K
microarray markers resulted in a low number of SNPs with linkage disequilibrium, which
limited the resolution of the genetic architecture of key SNPs for the trait to some extent.
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3.5. Multi-Trait GWASs

In order to improve the statistical effect, multi-trait GWASs were individually per-
formed for each SNP by combining the joint analysis of six internal organ weight traits.
This revealed the genetic factors with significant interactions among different traits in the
same individual under the same environment. Manhattan plots of the multi-trait GWASs
are shown in Figure 4.
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The multi-trait GWASs combining six internal organ weight traits identified four signif-
icant SNPs with polymorphisms affecting the phenotypes, ALGA0032998, H3GA0028070,
MARC0052872, and ALGA0106192 (Figure 5 and Table 4). SNP ALGA0032998 explained
1.36% of the phenotypic variation and is located within the ANO6 gene. The overexpression
of CCR7 was observed to enhance the migration of BxPC-3 cells under the induction of the
ANO6 gene, which is a potential mediator of ANO6 expression through the ERK signaling
pathway. This promotion of migration was also seen in pancreatic ductal adenocarci-
noma cells [38]. The single-trait GWAS described the effects of three SNPs (H3GA0028070,
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MARC0052872, and ALGA0106192) located on TPK1 and UNC5C genes on the weight of
the liver and stomach. These SNPs were not only significant in the single-trait GWAS but
were also found to be simultaneously associated with the weight of all six internal organs,
suggesting that these four SNPs have pleiotropic effects. Furthermore, no additional SNPs,
independent of the single-trait GWAS results, were found. Similar results were previously
reported by Guo et al. [39], in which no additional SNPs, independent of the single-trait
GWAS results, were detected in the multi-trait GWASs for backfat thickness, carcass weight,
and body weight in the DLY and Duroc populations. The reasons for this situation are
manifold. For example, the complexity of the genetic architecture of the internal organ
weight trait and the low marker density result in a low number of SNPs reaching significant
levels. This renders LD detection insufficient and increases the difficulty of screening for
co-dominant SNP or QTL regions. Thus, a larger sample population and a higher marker
density are required to screen for loci associated with internal organ weight.
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Table 4. Significant SNPs and candidate genes for Heart WT, Liver WT, Spleen WT, Lung WT, Kidney
WT, and Stomach WT in multi-trait GWASs.

SSC SNP Position (bp) MAF p-Value PEV (%) a Candidate Gene Distance

8 ALGA0106192 124,443,641 0.064 7.29 × 10−5 2.62% UNC5C Within
8 MARC0052872 124,421,940 0.063 5.61 × 10−5 2.53% UNC5C Within
9 H3GA0028070 113,152,352 0.088 5.51 × 10−5 2.10% TPK1 Within
5 ALGA0032998 76,317,972 0.266 3.88 × 10−5 1.36% ANO6 Within

a The percentage of phenotypic variance explained by each SNP.

4. Conclusions

In this study, we conducted single-trait and multi-trait GWASs on the internal organ
weights of 1518 DLY pigs. A total of 24 significant SNPs were detected in the single-trait
GWAS results for six internal organ weight traits. The four significant pleiotropic SNPs
identified via multi-trait GWASs were associated with six internal organ weight traits,
confirming the results of the single-trait GWASs and improving our ability to reveal the
genetic architecture of organ weight traits. TPK1, POU6F2, PBX3, UNC5C, and BMPR1B
were highlighted as potential genes responsible for differences in Liver WT, Spleen WT,
Lung WT, and Stomach WT among individuals according to their gene functions. In
summary, the results of this study contribute to our understanding of the genetics of
internal organ weight traits in DLY pigs by assigning higher weights to relevant SNPs and
key genes in the genome.
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