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Simple Summary: Incorporating warm-season grasses into traditional cool-season grass equine
rotational grazing systems can increase pasture availability during hot, dry months and bridge the
“summer slump” forage gap. The objective of this study was to evaluate the impacts of this pasture
management practice on the equine microbiome and to explore relationships between the fecal
microbiota, forage nutrients, and metabolic responses of grazing horses. Results of this study indicate
that distinct changes in microbial community structure and composition occur as horses adapt to
different forages and that shifts in the microbial community were most influenced by forage non-
structural carbohydrates and crude protein, rather than fiber. Interrelationships were found between
these nutrients, glycemic responses, and Akkermansia and Clostridium butyricum. These bacteria were
also found to be enriched in horses adapted to warm-season grasses. While the results of this study
suggest that integrating warm-season grasses may not offer substantial metabolic benefits in healthy
adult horses, this study did reveal new insights and targets for future research necessary to better
understand the function of Akkermansia and Clostridium butyricum in the hindgut microbiome of
grazing horses and possible roles in modulation of equine metabolic health.

Abstract: Integrating warm-season grasses into cool-season equine grazing systems can increase
pasture availability during summer months. The objective of this study was to evaluate effects
of this management strategy on the fecal microbiome and relationships between fecal microbiota,
forage nutrients, and metabolic responses of grazing horses. Fecal samples were collected from 8
mares after grazing cool-season pasture in spring, warm-season pasture in summer, and cool-season
pasture in fall as well as after adaptation to standardized hay diets prior to spring grazing and at
the end of the grazing season. Random forest classification was able to predict forage type based on
microbial composition (accuracy: 0.90 ± 0.09); regression predicted forage crude protein (CP) and
non-structural carbohydrate (NSC) concentrations (p < 0.0001). Akkermansia and Clostridium butyricum
were enriched in horses grazing warm-season pasture and were positively correlated with CP and
negatively with NSC; Clostridum butyricum was negatively correlated with peak plasma glucose
concentrations following oral sugar tests (p ≤ 0.05). These results indicate that distinct shifts in the
equine fecal microbiota occur in response different forages. Based on relationships identified between
the microbiota, forage nutrients, and metabolic responses, further research should focus on the roles
of Akkermansia spp. and Clostridium butyricum within the equine hindgut.

Keywords: equine microbiome; glycemic response; non-structural carbohydrates; rotational grazing

1. Introduction

Integrating warm-season grasses into traditional cool-season grass rotational grazing
systems can provide productive pasture for grazing horses during the hot, dry months
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of the “summer slump” period [1,2]. Despite reported benefits for pasture yield [2,3] the
impacts of this practice on equine metabolic health and the hindgut microbiome have not
been previously investigated.

Warm- and cool-season grasses have different mechanisms for storage of soluble
carbohydrates [4], with non-structural carbohydrate (NSC = sugars + starch + fructans) con-
centrations in cool-season grasses typically greater than that of warm-season grasses [1,5].
These differences in NSC content are of interest in equine management as current feeding
recommendations for horses with existing metabolic dysfunction include limiting dietary
NSC concentrations [6–8]. Thus, lower-NSC warm-season grasses have been suggested as
an alternative forage source [1,9]. Feeding supplemental concentrate higher in NSC has
been shown to lower insulin sensitivity in horses [10–12], but over the relatively smaller
range of NSC concentrations observed in forages, potential benefits of limiting NSC intake
are less clear [13–15]. However, glycemic and insulinemic responses of horses grazing
low-NSC warm-season grasses have not been extensively evaluated.

In addition to the potential metabolic effects, transitioning horses between forage types
may also have implications for equine gastrointestinal health. Diet has been identified
as a dominant factor shaping the community structure of the gut microbiota both in
humans and across animal species including horses [16,17]. However, prior studies on the
influence of diet on the equine hindgut microbiome have focused primarily on concentrate
vs. concentrate or concentrate vs. forage diets [18–21]. Recent studies have demonstrated
that type of hay (alfalfa vs. grass) and transitions between hay and pasture grass can impact
equine cecal or fecal microbial community composition [22,23]. Overall, few studies have
evaluated the hindgut microbiome of grazing horses and only one previous study has been
conducted in horses grazing cool- vs. warm-season pasture grasses [24].

A number of studies have begun to explore associations between the equine hindgut
microbiota and metabolic health [25–28], but there is a lack of information on the interplay
between forage nutrients, the hindgut microbiome, and metabolism of grazing horses.
Biddle et al. [28] explored relationships between abundance profiles of fecal microbial
taxa, feed types (pasture, hay, or hay supplemented with concentrate), and blood analytes
including circulating glucose and insulin, finding negative correlations between insulin
and over 50 taxa. Studies conducted in mouse models have conclusively demonstrated
that changes in diet influence host metabolism in a microbiome-dependent manner [29,30].
Thus, there is a need for future research to better understand potential roles of the gut
microbiota in modulating metabolism of grazing horses and the influence of specific forage
nutrients on these interactions. While shifts in hindgut microbial communities have been
documented in pastured horses over time, little is known regarding relationships between
these changes in bacterial composition and forage nutrient profiles or metabolic responses
of grazing horses. Therefore, the aims of this study were to characterize shifts in glucose
metabolism and the fecal microbiota of horses adapted to different forage types and to
explore relationships between forage nutrients, microbial composition, fecal metabolites,
and metabolic responses of grazing horses.

2. Materials and Methods

Research was conducted in 2018 at the Ryders Lane Environmental Best Management
Practices Demonstration Horse Farm (Rutgers, The State University of New Jersey; New
Brunswick, New Jersey, NJ, USA). Weather data for the study period and historical averages
are presented in Table S1 [31].

2.1. Grazing Systems

Two separate 1.5 ha integrated warm- and cool-season rotational grazing systems were
utilized in this study. Grazing system design and management were as published in previous
companion studies [2,24]. In brief, warm-season grass pasture sections contained either
Wrangler bermudagrass [BER; Cynodon dactylon (L.) Pers.; Johnston Seed Company, Enid,
OK, USA] or Quick-N-Big crabgrass [CRB; Digitaria sanguinalis (L.) Scop.; Dalrymple Farms,
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Thomas, OK, USA]. Mixed cool-season grass sections contained Inavale orchardgrass [Dactylis
glomerata (L.)], Tower tall fescue (endophyte-free) [Lolium arundinaceum (Schreb.) Darbysh.],
and Argyle Kentucky bluegrass [Poa pratensis (L.)] (DLF Pickseed, Halsey, OR, USA). Grazing
management was guided by established best management practices [32].

2.2. Animal and Grazing Management

Use of animals in this study was approved by the Rutgers University Institutional Ani-
mal Care and Use Committee protocol #PROTO201800013. Eight adult Standardbred mares
(age: 18 ± 0.71 yr; body weight (BW): 537 ± 17 kg; body condition score (BCS): 5–7)) were
used in this study, with horses grouped by BW and BCS (Henneke Body Condition Score
scale [33]. Horses were then randomly assigned to each system (n = 4 horses system−1).
Prior to the study, oral sugar tests (OST) were administered to screen horses for impaired
insulin sensitivity [34]. Insulinemic responses of all horses were found to be normal (peak
insulin ≤45 mIU/L) [7]. Animal care and management have been previously detailed in
companion studies [1,24]. Horse condition measures over the course of the study can be
found in Table S2.

2.3. Fecal and Blood Sample Collection

Manual grab fecal samples were collected (0800 h) rectally from horses after 21 d
adaptation to the initial hay diet in the spring (HAY-SP), cool-season grass pasture in the
spring (CSG-SP), warm-season grass (WSG)—either BER or CRB during the “summer
slump” period, and again following a return to cool-season grass in the fall (CSG-FA) and a
final cool-season grass hay at the end of the grazing season (HAY-FA). See Figure S1 for a
diagram of experimental design and sampling protocol. Due to delayed establishment and
grazing of BER, only 17 days of grazing were possible prior to sample collection. Upon
collection, samples were immediately placed on ice, transported to the laboratory, and then
stored at −80 ◦C.

To determine impact of forage type within integrated systems on glycemic and in-
sulinemic responses of grazing horses, OST [34] were conducted following adaptation
to CSG-SP, WSG, and HAY-FA. On the evening prior to each collection period, horses
were confined to dry lots at 2000 h with no access to either hay or pasture. Following the
overnight fast, horses were moved into the barn facility at 0800 h. Two consecutive baseline
blood samples were collected (15 min apart) by venipuncture at 0800 and an oral dose of
Karo Syrup (0.25 mL/kg BW; modified dosing as utilized by Jacob et al. [12]) was imme-
diately administered after the second baseline sample. Subsequent blood samples were
collected at 30, 60, 90, 120, 180, and 240 min following Karo Syrup administration. Whole
blood was collected into sodium heparin Vacutainer tubes, which were inverted several
times before being placed on ice. Due to logistics of distance and travel time (~10 min from
the barn to the laboratory), samples were transported to the laboratory after the 120, 180,
and 240 min samples. In the laboratory, whole blood was centrifuged at 3700 rpm for 7 min.
Following centrifugation, plasma was harvested from the Vacutainer tubes and aliquoted
into microcentrifuge tubes, which were then stored at −80 ◦C.

2.4. Forage Sampling

Representative hand-clipped forage samples were also collected (0800–1000 h) on
three days per period for analysis of nutrient composition. Pasture samples were collected
according to previously published procedures [1,24,32] and dried (60 ◦C; 36 h minimum)
in a Thelco oven (Precision Scientific, Chicago, IL, USA). Samples were ground (1 mm) and
submitted to a commercial laboratory (Equi-Analytical Laboratories, Ithaca, NY, USA) for
analysis by near-infrared spectroscopy. The mean nutrient composition of hay diets and
pasture forages are shown in Table 1.
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Table 1. Nutrient composition 1 of hay diets and pasture forages.

Nutrients 2,3 Forage 4

HAY-SP CSG-SP WSG CSG-FA HAY-FA

BRS CRS BRS CRS BRS CRS

DE, Mcal/kg 2.02 2.18 2.06 2.15 2.03 2.34 2.22 2.00
CP, % 5.6 13.1 16.5 21.4 22.7 23.7 21.5 10.2

ADF, % 40.9 35.3 36.4 31.4 36.9 30.5 30.0 42.2
NDF, % 66.1 59.4 62.1 58.7 61.8 50.5 55.4 65.8
NSC, % 18.4 12.4 8.5 7.1 2.6 11.3 11.5 9.1
WSC, % 18.0 10.3 7.4 4.8 2.3 10.2 10.2 8.1
ESC, % 7.0 6.6 3.7 4.0 1.9 8.3 6.9 6.9

Starch, % 0.40 2.07 1.17 2.30 1.37 1.13 1.23 1.00
1 Determined by near-infrared spectroscopy (Equi-Analytical Laboratories, Ithaca, NY, USA). 2 Nutrient con-
centrations are reported on a dry-matter basis as means of three representative samples collected per forage.
3 Abbreviations: digestible energy (DE), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber
(ADF), non-structural carbohydrates (NSC), water-soluble carbohydrates (WSC), ethanol-soluble carbohydrates
(ESC). 4 HAY-SP: initial standardized cool-season grass hay diet in the spring; CSG-SP: cool-season grass pasture
in the spring; WSG: warm-season grass, either crabgrass or bermudagrass, in the summer slump period; CSG-FA:
cool-season pasture in the fall; HAY-FA: final standardized cool-season grass hay diet in the fall.

2.5. Analysis of Plasma Glucose and Insulin

Plasma glucose was analyzed by colorimetric assay (Glucose C-2, Wako Chemicals,
Richmond, VA, USA), with the commercial kit adapted for microplate assay following man-
ufacturer instructions. Plasma insulin was evaluated using an enzyme-linked immunoassay
(Mercodia Equine Insulin ELISA, Mercodia, Winston-Salem, NC, USA) previously vali-
dated in horses [35]. Inter-assay and intra-assay coefficients of variation for glucose were
4.0% and 2.9%, respectively. Inter-assay and intra-assay coefficients of variation for insulin
were 7.8% and 3.4%, respectively.

2.6. Fecal Sample Analyses

Fecal pH was measured in duplicate with a handheld Accumet pH meter (Fisher
Scientific; Waltham, MA, USA) using a previously published protocol for preparation
of fecal slurries [24,36]. Short-chain and branched-chain fatty acid (SCFA and BCFA,
respectively) concentrations were determined by GC-MS analysis of fecal samples. The
SCFA analyzed included acetate, propionate, butyrate, and valerate. The BCFA analyzed
included isobutyrate, isovalerate and isocaproate. Sample preparation was performed
according to a previously published protocol [37]. In brief, frozen fecal samples were
weighed and deposited in bead tubes over dry ice. Feces were then resuspended in
1 mL of 0.5% phosphoric acid per 0.1 g of sample and tubes were beaten for 5 min at
22.5 rpm in a cold case. Samples were again frozen at −80 ◦C until analyzed by Gas
Chromatography and Mass Spectrometry system GC-MS (Agilent Technologies, Santa
Clara, CA, USA). Prior to GC-MS analyses, thawed fecal suspensions were re-homogenized
and centrifuged (10 min at 17,949× g), with the aqueous phase extracted using diethyl ether
in a 1:1 volume to volume ratio. Before analysis, 2-methyl hexanoic acid (Thermo Fisher
Scientific, Dallas, TX, USA) was added to the organic phase extract as an internal standard.
Samples were analyzed in duplicate, with independent extractions for each replicate. The
specifications of the GC-MS system and analyses as well as data acquisition and procedures
for SCFA/BCFA quantitation have been previously described by Honarbakhsh et al. [37]
and Garcia-Villalba et al. [38].

Quick-DNA Fecal/Soil Microbe Kits (Zymo Research; Irvine, CA, USA) were used for
DNA extraction (in triplicate). The highest yielding replicate (quantified with a Qubit 2.0
Flourometer [Invitrogen; Carlsbad, CA, USA]) was submitted to a commercial laboratory
(RTL Genomics; Lubbock, TX, USA). Amplification of the V4-V5 region of the 16S rRNA
gene was conducted using region specific primers (515F/926R) [39]; sequencing was
conducted by Illumina MiSeq.
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2.7. Sequence and Statistical Analysis

Sequence and statistical analyses were performed in QIIME 2 (Quantitative Insights
into Microbial Ecology, v. 2020.8) [40] and R (v. 4.0.2) [41]. Network mapping was conducted
in Cytoscape (v. 3.8.0) [42]. Animal was considered the experimental unit.

Quality and chimera filtering of forward reads was conducted using DADA2 (read
length = 185) [40,43,44]. Mafft and FastTree (q2-phylogeny plugin) were used to create trees
for diversity analyses [45–47]. The lower quartile of Amplicon Sequence Variants (ASV) based
on absolute abundance were removed (minimum frequency = 16; minimum samples = 4).
The feature table was rarefied to a minimum sampling depth of 10,600 prior to α- and β-
diversity analyses. The α-diversity metrics were analyzed by Kruskal–Wallis tests [48–52]. The
β-diversity metrics analyzed included Weighted and Unweighted UniFrac by permutational
ANOVA (PERMANOVA) [53–59]. Benjamini and Hochberg FDR adjustments for multiple
pairwise comparisons were applied for all diversity analyses. Permutational multivariate
analysis of dispersion (PERMDISP) was used to test homogeneity of dispersion [60].

To further explore differential abundances, ASV were then grouped into bacterial
co-abundance groups (BCG) based on abundance profiles using Sparce Cooccurrence
Network Investigation for Compositional Data (SCNIC) [61,62]. A random forest classifier
with nested cross validation was applied to determine if forage type could be predicted
based on BCG composition [63,64]. Features (BCG) were removed from the model based
on importance scores generated by the random forest classifier in an iterative process
(serial reduction with increments of 5) until the point at which model accuracy began to
decline [65]. Relative abundances of remaining BCG and any uncorrelated ASV retained in
the model following feature reduction processes were then analyzed by linear discriminant
analysis effect size (LEfSe) to identify BCG specific to each forage type, with significance
set at an LDA score >2.0 [66]. Taxonomy was then assigned using the latest SILVA database
(SSU 138) [63,67–70].

Glucose and insulin response variables as well as SCFA/BCFA concentrations and
fecal pH were analyzed by mixed model ANOVA in R, with grazing system, forage type
and their interactions set as fixed factors and horse as the random factor in the initial model.
The area under the curve (AUC) was calculated based on the trapezoid rule as the positive
incremental AUC utilizing a published macro [71] in SAS (v.9.4 SAS Institute, Cary, NC,
USA). Proxies for insulin sensitivity (fasting glucose-to-insulin ratio (FGIR); reciprocal
of the square root of insulin (RISQI)) and insulin secretory response (modified insulin-
to-glucose ratio (MIRG)) were calculated using baseline (fasting) values as previously
described [72,73].

The relationship between forage nutrients and SCFA/BCFA fermentation metabolites
(as well as pH) and fecal microbial community composition was then explored using
random forest regression with nested cross validation to determine if nutrient concentra-
tions and/or metabolite concentrations could be predicted based on bacterial abundance
profiles. Spearman correlations between BCG and forage nutrients and fecal metabolites
were analyzed in R. Relationships between forage nutrients/fermentation metabolites
and BCG were then visualized in Cytoscape. Spearman correlations between metabolic
variables and the BCG, as well as between forage nutrients and metabolic responses were
also evaluated in R.

For all variables analyzed by mixed model, model residuals were analyzed for nor-
mality using the Shapiro–Wilk test. Log, square root, or inverse data transformations were
applied where appropriate for non-normal data. Means were separated using Tukey’s
method. When analyzing pairwise comparisons of transformed data, means and standard
errors were back-transformed to the original variable scale following application of Tukey’s
method with the delta method. For all analyses which generated p-values, results were
considered significant at p ≤ 0.05, with trends considered at p ≤ 0.10. Data for variables
analyzed by mixed model are presented as means ± SEM. Overall analysis of microbiome,
fecal metabolite, and glucose/insulin data did not reveal differences by grazing system.
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Therefore, grazing system was removed from models and results for combined data are
presented with n = 8.

3. Results
3.1. Initial 16s rRNA Sequence Analysis

A summary of 16S rRNA gene sequencing reads before and after quality and chimera
filtering as well as after filtering of low abundance features in the 40 samples analyzed for
this study is shown in Table 2. There were 1264 distinct ASV in the final dataset (taxonomy
can be found in Table S3).

Table 2. 16S rRNA gene sequence read counts before and after filtering 1.

Step Statistic Count

Initial Total 881,189
Quality and Chimera Filtering 2 Total 730,065

Minimum sample−1 12,460
Maximum sample−1 30,170

Mean sample−1 18,252
Median sample−1 18,890

Removal of Low Abundance Features Total 648,797
Minimum sample−1 10,989
Maximum sample−1 26,948

Mean sample−1 16,220
Median sample−1 15,587

1 Filtering was conducted in Qiime 2 (v.2020.8) [40]. 2 Filtering was conducted using DADA2 [43,44].

3.2. Diversity Analyses

All α-diversity metrics evaluated, including the Shannon Diversity Index, Faith’s
Phylogenetic Diversity, Pielou’s Evenness, and Observed ASVs, differed by forage (Kruskal–
Wallis tests with Benjamini and Hochberg FDR adjustments; p < 0.03; Figure 1a–d). Shannon
Diversity was greater when horses were adapted to WSG than CSG-SP (p < 0.05), and there
was a trend for greater diversity when adapted to HAY-SP compared to CSG-SP (p < 0.08)
and WSG vs. CSG-FA (p = 0.09). However, the only differences in evenness (Pielou’s
Evenness) were trends for greater evenness in WSG and CSG-SP than in CSG-FA (p < 0.06).
Conversely, richness (Observed ASVs) was greater in horses adapted to WSG, CSG-FA,
and HAY-FA than CSG-SP (p < 0.02), but did not differ between horses adapted to HAY-SP
and CSG-SP. Similarly, phylogenetic differences (Faith’s Phylogenetic Diversity) were also
found between CSG-SP and subsequent forages (WSG, CSG-FA, HAY-FA; p < 0.02).

Principal coordinate analysis of β-diversity metrics including Weighted and Un-
weighted UniFrac did not reveal distinct clustering by forage (Figure 2a,b). However,
statistical analysis by PERMANOVA (with Benjamini and Hochberg FDR adjustments)
found significant differences in these measures (p ≤ 0.02). Subsequent PERMDISP analysis
confirmed that these differences were not due to differences of variance or dispersion within
groups. Unweighted UniFrac differed for all pairwise comparisons of forages (p < 0.02),
with the exception of WSG vs. CSG-FA and WSG vs. HAY-FA for which there were trends
for differences (p < 0.10). In contrast, there were no significant differences in any pair-
wise comparisons of forages for Weighted UniFrac. The percent of variation explained by
PC1 was almost 3 times greater for Weighted than for Unweighted UniFrac, indicating an
influence of abundance profiles in addition to phylogenetic differences.
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Figure 1. Fecal microbiota α-diversity across forages within an integrated rotational grazing system
including: HAY-SP: initial standardized cool-season grass hay diet in the spring; CSG-SP: cool-season
grass pasture in the spring; WSG: warm-season grass, either crabgrass or bermudagrass, in the
summer slump period; CSG-FA: cool-season pasture in the fall; HAY-FA: final standardized cool-
season grass hay diet in the fall. Shannon Diversity Index (a), Faith’s Phylogenetic Diversity (b),
Pielou’s Evenness (c) and Observed ASV (d) were analyzed by Kruskal–Wallis tests with Benjamini
and Hochberg FDR adjustments for multiple pairwise comparisons. A “·” indicates a statistical
outlier in the data. A single asterisk indicates differences between forages at p ≤ 0.05. A double
asterisk indicates a trend for differences between forages at p ≤ 0.10.

3.3. Differential Abundance

Application of SCNIC identified 333 BCG, with 224 individual ASV remaining un-
grouped. Iterative reduction of features (BCG) based on random forest model importance
scores revealed that model accuracy increased through reduction to the top 65 features
(0.90 ± 0.09). Further feature reduction to the top 25 features (based on importance scores)
did not impact random forest model accuracy (0.90 ± 0.09 with the top 25 features retained).
All retained features were BCG; no ungrouped ASV remained in the reduced feature
set. These 25 BCG were retained for further analysis, with 11.54% of the total microbial
community abundance represented by the reduced 25 BCG feature set. The strength of
the random forest model accuracy score indicated that forage type could be predicted
based on bacterial composition, and that, conversely, bacterial community composition
was influenced by forage.

Subsequent Linear discriminant analysis Effect Size (LEfSe) analysis conducted on
features retained from the random forest classification modelling identified 6 BCG as
markers of HAY-SP, 3 BCG enriched in CSG-SP, 5 BCG for WSG, 5 BCG for CSG-FA, and
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5 BCG for HAY-FA (LDA > 4.0; p < 0.03). Forage-specific BCG markers as well as taxonomic
classifications of subsequent linear discriminant analysis Effect Size analysis conducted
on features retained from the random forest classification modelling identified 6 BCG as
markers of HAY-SP, 3 BCG enriched in CSG-SP, 5 BCG for WSG, 5 BCG for CSG-FA, and
5 BCG for HAY-FA (LDA > 4.0; p < 0.03). Forage-specific BCG markers as well as taxonomic
classifications of individual ASV within each BCG are presented in Tables 3–5.
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Table 3. Bacterial co-abundance groups (BCG) 1 identified as markers 2 of standardized hay diets.

Forage 2 BCG 3 LDA 4 ASV Taxonomic Lineage 5

HAY-SP BCG_9 4.55

Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | Papillibacter | uncultured_Clostridiales
Bacteroidota | Bacteroidia | Bacteroidales | Rikenellaceae | Rikenellaceae_RC9_gut_group | uncultured_bacterium
Firmicutes | Clostridia | Christensenellales | Christensenellaceae | Christensenellaceae_R-7_group | uncultured_Clostridia
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae (2 ASV)
Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | NK4A214_group | uncultured_rumen

BCG_18 5.03

Firmicutes | Clostridia | Oscillospirales | Ruminococcaceae | Ruminococcus | Ruminococcus_sp.
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae (3 ASV)
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Lachnospiraceae_UCG-009 | uncultured_bacterium
Firmicutes | Clostridia | Christensenellales | Christensenellaceae | Christensenellaceae_R-7_group | uncultured_prokaryote

BCG_93 4.55
Bacteroidota | Bacteroidia | Bacteroidales | p-251-o5 | p-251-o5 | uncultured_bacterium
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | probable_genus_10 | uncultured_bacterium
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Pseudobutyrivibrio

BCG_116 4.52
Bacteroidota | Bacteroidia | Bacteroidales | p-251-o5 | p-251-o5 | uncultured_bacterium
Firmicutes | Negativicutes | Veillonellales-Selenomonadales | Selenomonadaceae | Anaerovibrio | uncultured_bacterium
Firmicutes | Clostridia | Oscillospirales | Ruminococcaceae | Ruminococcus

BCG_201 4.28 Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | NK4A214_group
Bacteroidota | Bacteroidia | Bacteroidales | p-251-o5 | p-251-o5 | uncultured_bacterium

BCG_305 4.27 Firmicutes | Bacilli | Erysipelotrichales | Erysipelotrichaceae | Catenisphaera | uncultured_bacterium
Fibrobacterota | Fibrobacteria | Fibrobacterales | Fibrobacteraceae | Fibrobacter | uncultured_bacterium

HAY-FA BCG_22 4.67
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lactobacillus | Lactobacillus_equigenerosi
Firmicutes | Clostridia | Oscillospirales | [Eubacterium]_coprostanoligenes_group | [Eubacterium]_coprostanoligenes_group
Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | uncultured

BCG_118 4.56
Firmicutes | Bacilli | Erysipelotrichales | Erysipelatoclostridiaceae | UCG-004 | uncultured_rumen
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Marvinbryantia
Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | UCG-005 | uncultured_bacterium
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Table 3. Cont.

Forage 2 BCG 3 LDA 4 ASV Taxonomic Lineage 5

BCG_173 4.20
Spirochaetota | Spirochaetia | Spirochaetales | Spirochaetaceae | Treponema | uncultured_bacterium
Bacteroidota | Bacteroidia | Bacteroidales | F082 | F082 | uncultured_bacterium
Bacteroidota | Bacteroidia | Bacteroidales | Rikenellaceae | Rikenellaceae_RC9_gut_group | uncultured_bacterium

BCG_300 4.87 Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Lachnospiraceae_XPB1014_group | uncultured_bacterium
Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Streptococcus

BCG_309 4.25 Firmicutes | Clostridia | Oscillospirales | Ethanoligenenaceae | Incertae_Sedis | uncultured_bacterium
Firmicutes | Clostridia | Christensenellales | Christensenellaceae | Christensenellaceae_R-7_group | uncultured_rumen

1 The BCG markers were identified by linear discriminant analysis effect size (LEfSe) of BCG remaining in the
reduced and optimized random forest classification model for prediction of forage type. Features were retained in
the model based on feature importance scores [64–66]. 2 HAY-SP: initial standardized cool-season grass hay diet in
the spring; HAY-FA: final standardized cool-season grass hay diet in the fall. 3 Amplicon sequence variants (ASV)
were grouped into BCG using Sparse Cooccurrence Network Investigation for Compositional Data in Qiime 2
(v.2020.8) [40,62]. 4 For LEfSe, significance was set at LDA >2.0; p ≤ 0.05. 5 Taxonomic assignment of ASV was
conducted using the most recent SILVA database (SSU 138).

Table 4. Bacterial co-abundance groups (BCG) 1 identified as markers 2 of standardized hay diets.

Forage 2 BCG 3 LDA 4 ASV Taxonomic Lineage 5

CSG-SP BCG_43 4.98

Spirochaetota | Spirochaetia | Spirochaetales | Spirochaetaceae | Sphaerochaeta | uncultured_rumen
Firmicutes | Negativicutes | Acidaminococcales | Acidaminococcaceae | Phascolarctobacterium
Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | UCG-002 | uncultured_bacterium
Firmicutes | Clostridia | Oscillospirales | UCG-010 | UCG-010 | uncultured_bacterium
Firmicutes | Clostridia | Christensenellales | Christensenellaceae | Christensenellaceae_R-7_group

BCG_94 4.70
Bacteroidota | Bacteroidia | Bacteroidales | Prevotellaceae | Prevotella | uncultured_Prevotellaceae
Firmicutes | Clostridia | Clostridiales | Clostridiaceae | Sarcina | uncultured_bacterium
Firmicutes | Clostridia | Clostridiales | Clostridiaceae | Clostridium_sensu_stricto_1

BCG_233 4.80
Firmicutes | Clostridia | Clostridiales | Clostridiaceae | Clostridium_sensu_stricto_1
Bacteroidota | Bacteroidia | Bacteroidales | Bacteroidales_BS11_gut_group | Bacteroidales_BS11_gut_group |
uncultured_bacterium

CSG-FA BCG_45 4.35

Firmicutes | Clostridia | Peptostreptococcales-Tissierellales | Anaerovoracaceae | Family_XIII_AD3011_group |
uncultured_bacterium
Firmicutes | Bacilli | Erysipelotrichales | Erysipelotrichaceae | Catenisphaera | uncultured_bacterium
Actinobacteriota | Coriobacteriia | Coriobacteriales | Eggerthellaceae | Denitrobacterium | Denitrobacterium_detoxificans
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Marvinbryantia | uncultured_rumen
Firmicutes | Clostridia | Peptostreptococcales-Tissierellales | Anaerovoracaceae

BCG_48 4.79

Firmicutes | Clostridia | Oscillospirales | [Eubacterium]_coprostanoligenes_group | [Eubacterium]_coprostanoligenes_group
| uncultured_bacterium
Bacteroidota | Bacteroidia | Bacteroidales | Bacteroidales_UCG-001 | Bacteroidales_UCG-001
Bacteroidota | Bacteroidia | Bacteroidales | Rikenellaceae | Rikenellaceae_RC9_gut_group | uncultured_bacterium
Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | NK4A214_group

BCG_51 4.36
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Lachnospiraceae_XPB1014_group | uncultured_bacterium
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Lachnospiraceae_UCG-009 | uncultured_bacterium
Firmicutes | Clostridia | Peptostreptococcales-Tissierellales | Anaerovoracaceae | uncultured | uncultured_bacterium
Firmicutes | Bacilli | Erysipelotrichales | Erysipelatoclostridiaceae | Erysipelatoclostridium | uncultured_bacterium

BCG_219 4.55 Bacteroidota | Bacteroidia | Bacteroidales | Prevotellaceae | Alloprevotella | uncultured_bacterium
Bacteroidota | Bacteroidia | Bacteroidales | Bacteroidales_RF16_group | Bacteroidales_RF16_group | uncultured_bacterium

BCG_275 4.45 Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | NK4A214_group | uncultured_bacterium
Verrucomicrobiota | Kiritimatiellae | WCHB1-41 | WCHB1-41 | WCHB1-41 | uncultured_bacterium

1 The BCG markers were identified by linear discriminant analysis effect size (LEfSe) of BCG remaining in the
reduced and optimized random forest classification model for prediction of forage type. Features were retained in
the model based on feature importance scores [64–66]. 2 HAY-SP: initial standardized cool-season grass hay diet in
the spring; HAY-FA: final standardized cool-season grass hay diet in the fall. 3 Amplicon sequence variants (ASV)
were grouped into BCG using Sparse Cooccurrence Network Investigation for Compositional Data in Qiime 2
(v.2020.8) [40,62]. 4 For LEfSe, significance was set at LDA >2.0; p ≤ 0.05. 5 Taxonomic assignment of ASV was
conducted using the most recent SILVA database (SSU 138).

Table 5. Bacterial co-abundance groups (BCG) 1 identified as markers 2 of standardized hay diets.

Forage 2 BCG 3 LDA 4 ASV Taxonomic Lineage 5

WSG BCG_35 4.68

Verrucomicrobiota | Verrucomicrobiae | Verrucomicrobiales | Akkermansiaceae | Akkermansia | uncultured_bacterium
Firmicutes | Clostridia | Christensenellales | Christensenellaceae | Christensenellaceae_R-7_group
Fibrobacterota | Fibrobacteria | Fibrobacterales | Fibrobacteraceae | Fibrobacter | Fibrobacter_sp.
Spirochaetota | Spirochaetia | Spirochaetales | Spirochaetaceae | Treponema | uncultured_bacterium
Firmicutes | Clostridia | Peptostreptococcales-Tissierellales | Anaerovoracaceae | Family_XIII_AD3011_group |
uncultured_bacterium
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Table 5. Cont.

Forage 2 BCG 3 LDA 4 ASV Taxonomic Lineage 5

BCG_100 4.21
Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | NK4A214_group
Spirochaetota | Spirochaetia | Spirochaetales | Spirochaetaceae | Treponema
Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | UCG-005 | metagenome

BCG_113 4.85
Bacteroidota | Bacteroidia | Bacteroidales | Bacteroidales_RF16_group | Bacteroidales_RF16_group | uncultured_bacterium
Firmicutes | Clostridia | Clostridiales | Clostridiaceae | Clostridium_sensu_stricto_1 | Clostridium_butyricum
Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | Papillibacter | uncultured_bacterium

BCG_124 4.58
Firmicutes | Clostridia | Christensenellales | Christensenellaceae | Christensenellaceae_R-7_group
Synergistota | Synergistia | Synergistales | Synergistaceae | uncultured | uncultured_bacterium
Firmicutes | Clostridia | Peptostreptococcales-Tissierellales | Anaerovoracaceae | Mogibacterium

BCG_259 4.46 Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae
Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | [Eubacterium]_hallii_group | uncultured_bacterium

1 The BCG markers were identified by linear discriminant analysis effect size (LEfSe) of BCG remaining in the
reduced and optimized random forest classification model for prediction of forage type. Features were retained in
the model based on feature importance scores [64,65]. 2 HAY-SP: initial standardized cool-season grass hay diet in
the spring; HAY-FA: final standardized cool-season grass hay diet in the fall. 3 Amplicon sequence variants (ASV)
were grouped into BCG using Sparse Cooccurrence Network Investigation for Compositional Data in Qiime 2
(v.2020.8) [40,62]. 4 For LEfSe, significance was set at LDA >2.0; p ≤ 0.05. 5 Taxonomic assignment of ASV was
conducted using the most recent SILVA database (SSU 138).

Numerous taxa were represented in BCG markers for multiple forages. At the family
level, the BCG markers for HAY-SP contained twice as many ASV mapped to the Lach-
nospiraceae family as any other forage (CSG-SP: 0; WSG: 2; CSG-FA: 3; HAY-FA: 2 ASV). The
family Oscillospiraceae also had ASV members of BCG markers for all forages but CSG-SP
(HAY-SP: 3; WSG: 3; CSG-FA: 2; HAY-FA: 2 ASV). At the genus level, ASV assigned to
Christensenellaceae R-7 group were present in BCG markers of both hay diets (HAY-SP: 2;
HAY-FA:1 ASV) and WSG (2 ASV); ASV assigned to the NK4A214 group of Oscillospiraceae
were among members of BCG identified as markers of HAY-SP (2 ASV), WSG (1 ASV),
and CSG-FA (1 ASV). The BCG markers of both hay diets and CSG-FA each included an
ASV mapped to Rikenellaceae RC9 gut group, and BCG markers of HAY-SP and WSG each
contained ASV assigned to Fibrobacter and Papillibacter. The BCG markers of HAY-SP and
CSG-FA contained ASV within Catenisphaera and Lachnospiraceae UCG-009. Amplicon se-
quence variants mapped to the genus Clostridium sensu stricto 1 were found in BCG markers
of CSG-SP and WSG. The BCG markers of WSG and CSG-FA included ASV assigned to
Bacteriodales RF16 group and the Family XIII AD3011 group of Anaerovoracaceae. The BCG
markers of CSG-FA and HAY-FA each contained an ASV assigned to Coprostanoligenes
group, Lachnospiraceae XPB1014 group and Marvinbryantia, and ASV assigned to Treponema
were assigned to BCG markers of WSG and HAY-FA.

Amplicon sequence variants assigned to Ruminococcus, Pseudobutyvibrio, Anaerovibrio,
probable genus 10 of Lachnospiraceae, and the p-251-o5 genus and family of the order
Bacteroidales were only present in BCG markers identified for HAY-SP; no other ASV
assigned to these taxa were found in BCG markers of other forages. An ASV within
Bacteroidales BS11 gut group was the only taxa specific to BCG markers of CSG-SP. Amplicon
sequence variants mapped to the genera Akkermansia, Mogibacterium, and the Hallii group of
Lachnospiraceae as well as UCG-005 metagenome of Oscillospiraceae and Clostridium butyricum
were only found in BCG markers of WSG. The BCG markers of CSG-FA contained ASV
assigned to Alloprevotella, Erysipelatoclostridium, Bacteroidales UCG-001, the WCHB1-41
genus, family and class within the class Kiritimatiellae, and Denitrobacterium detoxificans;
these taxa were not identified in BCG markers of other forages. Taxa specific to only BCG
markers of HAY-FA included ASV from the Incertae Sedis genus of Ethanoligenenaceae as
well as Streptococcus.

3.4. Fecal pH and Fermentation Metabolites

Fecal pH differed by forage type (mixed model ANOVA with Tukey’s post hoc ad-
justment; p < 0.0001). Fecal pH was greater in horses adapted to WSG (7.56 ± 0.18) and
HAY-FA (7.57 ± 0.18) than in HAY-SP (6.73 ± 0.18), CSG-SP (6.58 ± 0.18), or CSG-FA
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(6.53 ± 0.18; p ≤ 0.02; Figure 3). Fecal concentrations of short-chain fatty acids (SCFA) and
branched-chain fatty acids (BCFA) also differed by forage (mixed model ANOVA with
Tukey’s post hoc adjustment; p < 0.001; Table 6).
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Figure 3. Fecal pH across forages within an integrated rotational grazing system including: HAY-SP:
initial standardized cool-season grass hay diet in the spring; CSG-SP: cool-season grass pasture in the
spring; WSG: warm-season grass, either crabgrass or bermudagrass, in the summer slump period;
CSG-FA: cool-season pasture in the fall; HAY-FA: final standardized cool-season grass hay diet in
the fall. Data are presented as least squares means ± SEM. A single asterisk indicates differences
between forages at p ≤ 0.05 (mixed model ANOVA with Tukey’s post hoc adjustment).

Table 6. Fecal metabolite concentration 1 of horses adapted to hay diets and pasture forages.

Fecal Metabolites 2,
ug g Feces −1

Forage 3

HAY-SP CSG-SP WSG CSG-FA HAY-FA

Total SCFA 674 ± 76 ab 1071 ± 121 c 860 ± 98 ac 1134 ± 129 c 437 ± 50 b

Total BCFA 48 ± 6 a 136 ± 16 b 113 ± 13 b 126 ± 15 b 70 ± 8 a

Acetate 323 ± 34 ab 473 ± 50 ac 423 ± 45 ac 524 ± 55 c 229 ± 24 b

Butyrate 101 ± 22 ab 174 ± 30 a 128 ± 22 a 170 ± 29 a 62 ± 11 b

Propionate 217 ± 25 a 365 ± 42 b 274 ± 31 ab 390 ± 45 b 110 ± 13 c

Valerate 12.0 ± 2.1 ab 40.4 ± 7.2 c 24.2 ± 4.3 bc 35.3 ± 6.3 c 18.1 ± 3.2 b

Hexanoate 14.2 ± 3.3 a 3.4 ± 0.8 b 5.2 ± 1.2 b 3.6 ± 0.8 b 11.6 ± 2.7 a

Heptanoate 2.8 ± 0.5 a 0.8 ± 0.1 b 1.2 ± 0.2 b 0.8 ± 0.1 b 1.7 ± 0.3 ab

Isobutyrate 34.4 ± 3.5 a 81.9 ± 8.3 b 76.9 ± 7.8 b 77.7 ± 7.9 b 47.7 ± 4.8 a

Isovalerate 13.5 ± 2.1 a 51.2 ± 7.9 b 35.0 ± 5.4 bc 47.1 ± 7.3 b 21.6 ± 3.4 ac

1 Concentrations were determined by gas chromatography—mass spectroscopy (GC-MS). Data are presented as
means ± SEM. 2 SCFA: short-chain fatty acids; BCFA: branched chain-fatty acids. 3 HAY-SP: initial standardized
cool-season grass hay diet in the spring; CSG-SP: cool-season grass pasture in the spring; WSG: warm-season
grass, either crabgrass or bermudagrass, in the summer slump period; CSG-FA: cool-season pasture in the fall;
HAY-FA: final standardized cool-season grass hay diet in the fall. a,b,c Indicates significant differences between
forages within rows (mixed model ANOVA with Tukey’s post hoc adjustment; p ≤ 0.05).

Unlike fecal pH, differences in SCFA and BCFA were primarily between pasture
forages and the hay diets, with horses adapted to WSG often intermediate (numerically)
between cool-season pasture and hay diets. Total BCFA were greater in CSG-SP, WSG, and
CSG-FA than for either HAY-SP or HAY-FA (p < 0.05). Total SCFA were greater in CSG-SP
and CSG-FA than HAY-SP or HAY-FA; WSG did not differ from CSG-SP and CSG-FA or
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HAY-SP, but was greater in comparison to HAY-FA (p < 0.002). Similarly, acetate was greater
in CSG-FA than HAY-SP or HAY-FA, while WSG only differed from HAY-FA (p < 0.02).
Acetate concentrations for CSG-FA also differed with HAY-FA (p = 0.0003), but there was
only a trend for a difference between CSG-SP and HAY-SP (p = 0.09). Fecal butyrate was
lower for HAY-FA than when horses were adapted to any of the pasture forages (p < 0.03),
but there was no difference between HAY-SP and any other forage. Fecal propionate was
lowest in horses adapted to HAY-FA (p < 0.002), but propionate concentrations were also
lower for HAY-SP than either CSG-SP or CSG-FA (p < 0.03). Propionate did not differ
between horses adapted to WSG and all other forages. Fecal valerate was lower for horses
adapted to HAY-FA than CSG-SP or CSG-FA (p < 0.03) but did not differ from WSG or HAY-
SP. Horses adapted to HAY-SP also had fecal valerate concentrations lower than CSG-SP
or CSG-FA (p ≤ 0.0002). Isobutyrate was greater for all pasture forages in comparison to
both HAY-SP and HAY-FA (p < 0.02). Isovalerate was greater in CSG-SP and CSG-FA vs.
HAY-SP and HAY-FA (p ≤ 0.002), while concentrations in horses adapted to WSG were
once again intermediate. Isocaproate was detected in all fecal samples, but concentrations
were negligible and below the limit of quantification (<1.0 ug g feces−1).

3.5. Relationships between Fecal Microbiota and Metabolites

Random forest regressors were applied to determine if fecal pH and metabolite con-
centrations could be predicted based on microbial composition. Random forest regression
did not support a strong influence of bacterial composition of the full microbial community
on these fecal variables. Relatively weak predictive accuracy was found for isovalerate,
valerate, hexanoate, and heptanoate (model R2 and p-values are shown in Table 7). Major
SCFA including acetate, butyrate, and propionate could not be predicted based on BCG
abundance profiles.

However, when random forest regressors were applied to only the top 25 BCG identi-
fied as most predictive of forage type, model accuracies improved for all fecal variables
with the exception of valerate (Table 7). While predictive accuracy was still relatively
weak, all metabolites (and pH) could be predicted with statistically significant accuracy
(p ≤ 0.001).

Individual correlations were found between 19 of these BCG and at least one fecal
metabolite or pH (Spearman correlation; rs ≥ |0.30|; p ≤ 0.05; Figure 4), with most
BCG correlated with multiple fecal variables. There were positive correlations between
BCG_300 and total SCFA and total BCFA as well as with acetate, butyrate, propionate,
valerate, isobutyrate, and isovalerate, while this BCG was negatively correlated with
hexanoate, heptanoate, and pH. The ASV members of this BCG were assigned to the
genera Lachnospiraceae XPB1014 and Streptococcus. There were also positive correlations
between both BCG_9 and BCG_259 and total SCFA and BCFA in addition to acetate,
butyrate, propionate, valerate, isobutyrate, and isovalerate; these BCG were negatively
correlated with heptoanate. These BCG included multiple ASV assigned to Lachnospiraceae
as well as ASV within the genera Christensenellaceae R-7 group, Rikenellaceae RC9 gut group,
Papillibacter, and the NK4214 group of Oscillospiraceae. Positive correlations were also found
between BCG_173 and BCG_201 and total SCFA and BCFA, acetate, propionate, valerate,
isobutyrate, and isovalerate, with negative correlations between these BCG and both
hexoanate and heptoanate. These BCG included ASV assigned to Treponema, Rikenellaceae
RC9 gut group, the NKA214 group of Oscillospiraceae, and the p-251-o5 and F082 genera and
families of Bacteroidales. Total SCFA and BCFA as well as acetate, butyrate, propionate,
isobutyrate, and isovalerate were positively correlated with BCG_113, while hexanoate was
negatively correlated. This BCG contained ASV assigned to taxa including Synergistaceae,
Bacteroidales RF16 group, Papillibacter, Christensenellaceae R-7 Group, Mogibacterium, and
Clostridium butyricum.
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Table 7. Random forest regression accuracy 1 for predicting fecal variables and forage nutrients based
on microbial composition.

Model Accuracy 2

Full BCG Dataset 2 Reduced BCG Dataset 3

R2 p-Value R2 p-Value

Fecal Variables 4

Total SCFA 0.06 0.13 0.24 0.001
Total BCFA 0.08 0.07 0.28 0.0004

Acetate 0.05 0.19 0.29 0.0003
Butyrate 0.04 0.20 0.26 0.002

Propionate 0.03 0.31 0.17 0.008
Valerate 0.24 0.49 0.15 0.01

Hexanoate 0.26 0.0007 0.48 <0.0001
Heptanoate 0.11 0.03 0.24 0.001
Isobutyrate 0.01 0.54 0.27 0.0006
Isovalerate 0.26 0.0007 0.26 0.0007
Fecal pH 0.06 0.13 0.17 0.008

Forage Nutrients

Digestible Energy 0.26 0.0008 0.34 <0.0001
Crude Protein 0.41 <0.0001 0.62 <0.0001

Acid Detergent Fiber 0.19 0.005 0.39 <0.0001
Neutral Detergent Fiber 0.27 0.0005 0.35 <0.0001

Non-Structural
Carbohydrate 0.53 <0.0001 0.61 <0.0001

Water-Soluble
Carbohydrate 0.52 <0.0001 0.67 <0.0001

Ethanol-Soluble
Carbohydrate 0.10 0.04 0.18 0.006

Starch 0.21 0.003 0.40 <0.0001
1 Random forest regression modeling with nested cross-validation was conducted in Qiime2 (v.2020.8) [40,64].
2 Initial model accuracies for random forest regressors were determined using the full feature set of bacterial
co-abundance groups (BCG) and ungrouped amplicon sequence variants generated using Sparse Co-Occurrence
Network Investigation for Compositional Data [62]. 3 Random forest regressors were then applied to a reduced
BCG dataset (iterative reduction to 25 features most predictive of forage type [based on model importance
scores]) [64,65]. 4 SCFA: short-chain fatty acids; BCFA: branched chain-fatty acids.

Seven BCG were positively correlated with total BCFA and some combination of
propionate, valerate, isobutyrate, and isovalerate, while negative correlations were found
between these BCG and hexanoate and/or heptanoate. These BCG included ASV mem-
bers assigned to the family level for Anaerovoracaceae, Oscillospiraceae, and Lachnospiraceae.
Other ASV within these BCG were assigned to Lactobacillus equigenerosi and the genera
Akkermansia, Fibrobacter, Treponema, Sphaerocheata, Phasolarctobacterium, Christensenellaceae
R-7 group, Lachnoclostridium, Cellulosilyticum, Marvinbryantia, Coprostanoligenes group, Lach-
nospiraceae XPB1014, Lachnospiraceae UCG-009, Erysipelatoclostridium, Clostridium sensu stricto
1, and Bacteroidales BS11 gut group as well as Family XIII AD3011 group of Anaerovoracaceae,
the UCG-004 genus within Erysipelatoclostridiaceae, the UCG-002 and UCG-005 genuses of
Oscillospiraceae, and the UCG-010 genus and family of Oscillospirales.

Fecal pH was positively correlated with five BCG (in addition to BCG_300) (rs ≥ |0.30|;
p ≤ 0.05), which contained ASV from taxa including Anaerovoracaceae, the Family XIII
AD3011 group of Anaerovoracaceae, Akkermansia, Christensenellaceae R-7 group, Fibrobacter,
Treponema, Catenisphaera, Alloprevotella, Bacteroidales RF16 group, Marvinbryantia, Coprostanoli-
genes group, Bacteroidales UCG-001, the NK4A214 group of Oscillospiraceae, and the WCHB1-41
genus, family, and order within Kiritimatiellae. Fecal pH was negatively correlated with
BCG_94. This BCG included ASV assigned to Prevotella, Sarcina, and Clostridium sensu
stricto 1.



Animals 2023, 13, 790 14 of 29

Animals 2023, 13, x  14 of 30 
 

heptoanate. These BCG included multiple ASV assigned to Lachnospiraceae as well as ASV 
within the genera Christensenellaceae R-7 group, Rikenellaceae RC9 gut group, Papillibacter, 
and the NK4214 group of Oscillospiraceae. Positive correlations were also found between 
BCG_173 and BCG_201 and total SCFA and BCFA, acetate, propionate, valerate, isobutyr-
ate, and isovalerate, with negative correlations between these BCG and both hexoanate 
and heptoanate. These BCG included ASV assigned to Treponema, Rikenellaceae RC9 gut 
group, the NKA214 group of Oscillospiraceae, and the p-251-o5 and F082 genera and families 
of Bacteroidales. Total SCFA and BCFA as well as acetate, butyrate, propionate, isobutyrate, 
and isovalerate were positively correlated with BCG_113, while hexanoate was negatively 
correlated. This BCG contained ASV assigned to taxa including Synergistaceae, Bacteroi-
dales RF16 group, Papillibacter, Christensenellaceae R-7 Group, Mogibacterium, and Clostridium 
butyricum. 

 
Figure 4. Network map of forage nutrients and bacterial co-abundance groups (BCG). Nutrients 
included digestible energy (DE), crude protein (CP) acid detergent fiber (ADF), neutral detergent 
fiber (NDF), non-structural carbohydrate (NSC), water-soluble carbohydrate (WSC) and ethanol-
soluble carbohydrate (ESC). Correlations were evaluated between nutrient concentrations and rel-
ative abundance of BCG most predictive of forage type (based on random forest modeling of BCG 
composition). In addition to node color, node size was also mapped to BCG relative abundance. 
Line width is mapped to correlation strength, with wider lines indicating stronger correlations be-
tween nutrients and BCG. Significant Spearman correlations (rs ≥ |0.30|; p ≤ 0.05) were included in 
the network map. 

Figure 4. Network map of forage nutrients and bacterial co-abundance groups (BCG). Nutrients
included digestible energy (DE), crude protein (CP) acid detergent fiber (ADF), neutral detergent fiber
(NDF), non-structural carbohydrate (NSC), water-soluble carbohydrate (WSC) and ethanol-soluble
carbohydrate (ESC). Correlations were evaluated between nutrient concentrations and relative abun-
dance of BCG most predictive of forage type (based on random forest modeling of BCG composition).
In addition to node color, node size was also mapped to BCG relative abundance. Line width is
mapped to correlation strength, with wider lines indicating stronger correlations between nutrients
and BCG. Significant Spearman correlations (rs ≥ |0.30|; p ≤ 0.05) were included in the network map.

3.6. Relationships between Fecal Microbiota and Forage Nutrients

Application of random forest regressors demonstrated that forage nutrient concen-
trations could be predicted based on bacterial community composition (BCG composition
of the full microbial community), including water-soluble carbohydrate (WSC) and NSC
at a predictive accuracy > R2 = 0.50 and crude protein (CP) with a predictive accuracy of
R2 = 0.41 (p < 0.0001; Table 7). Weaker, but still statistically significant, predictive accuracy
was found for digestible energy (DE), acid detergent fiber (ADF), neutral detergent fiber
(NDF), ethanol-soluble (ESC), and starch (p < 0.04).

Similar to results for fecal metabolites, when random forest regressors were applied
only to the top 25 BCG identified as most predictive of forage type, model accuracies
improved (Table 7). Forage CP, NSC, and WSC remained as the nutrients most accurately
predicted by the bacterial composition of this subset of BCG, all with R2 > 0.60 (p < 0.0001).
Model predictive capacity with the reduced feature set was also above R2 = 0.40 for starch;
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weaker, but statistically significant, predictive accuracy was found all other nutrients
(p < 0.0001).

Subsequent correlation analysis found 23 BCG (of the 25 in the reduced feature set)
were correlated with at least one forage nutrient (Spearman correlation; rs ≥ |0.30|;
p ≤ 0.05; Figure 5). Nine BCG were correlated with ADF, NDF, CP, and DE. In all cases,
opposite correlations were seen between ADF/NDF and CP/DE (i.e., if ADF and NDF
were positively correlated with a BCG, CP and DE were negatively correlated). There
were distinct ASV from the taxa Christensenellaceae R-7 group and NK4A214 group of Os-
cillospiraceae that were members of separate BCG which were positively and negatively
responding to these nutrients (i.e., these taxonomic classifications were found across all
positive and negative responder groups). The BCG negatively correlated with ADF/NDF,
and thus positively correlated with CP/DE included ASV members assigned to Clostridium
butyricum and genera Papillibacter, Lachnoclostridium, Cellulosilyticum, Fibrobacter, Treponema,
Catenisphaera, Bacteroidales RF16 group, Synergistaceae, Mogibacterium, Rikenellaceae RC9 gut
group, the Hallii group of Lachnospiraceae, the p-251-o5 genus and family of Oscillospiraceae,
and the F082 genus and family of Bacteroidales, as well as multiple ASV assigned only to
the family level for Lachnospiraceae. The BCG positively correlated with ADF/NDF and
negatively correlated with CP/DE included ASV within Sphaerochaeta, Phascolarctobacterium,
Bacteroidales UCG-001, Rikenellaceae RC9 gut group, Coprostanoligenes group, the UCG-002
genus within Oscillospiraceae, and the UCG-010 genus and family within Oscillospirales.
Four additional BCG were correlated with some combination of ADF/NDF and CP/DE.
The BCG negatively correlated with ADF/NDF, and thus positively correlated with CP/
DE contained ASV members assigned to additional taxa including Ruminococcus, Anaerovib-
rio, Pseudobutyvibrio, Lachnospiraceae UCG-009, probable genus 10 of Lachnospiraceae, and
the WCHB1-41 genus, family and order of Kiritimatiellae. The BCG positively correlated
with ADF/NDF, and negatively correlated with CP/DE included ASV within Bacteroidales
BS11 gut group and Clostridium sensu stricto 1. Forage ADF and NDF were also negatively
correlated with BCG_300 (Streptococcus and Lachnospiraceae XPB1014), but this BCG was
not correlated with either CP or DE. Forage CP was also positively correlated with BCG_35,
for which there was no relationship with ADF, NDF, or DE, but for which there was also a
negative correlation with NSC and WSC. The ASV members of BCG_35 were assigned to
taxa including Akkermansia, Fibrobacter, Treponema, Christensenellaceae R-7 group, and Family
XIII AD3011 within Anaerovoracaceae.

Forage NSC and WSC were correlated with 13 and 12 BCG, respectively (rs ≥ |0.30|;
p ≤ 0.05). In addition to the above-mentioned taxa from ASV within BCG_35, ASV within
BCG negatively correlated with both NSC and WSC were assigned to Lactobacillus equigen-
erosi and genera including Lachnoclostridium, Cellulosilyticum, Catenisphaera, Marvinbryantia,
Erysipelatoclostridium, Mogibacterium, Lachnospiraceae XPB1014 group, Lachnospiraceae UCG-
009, Coprostanoligenes group, UCG-005 metagenome within Oscillospiraceae, the Hallii group
within Lachnospiraceae, the NK4A214 group of Oscillospiraceae, the Incertae Sedis genus of
Ethanoligenenaceae, the WCHB1-41 genus, family, and order within Kiritimatiellae, as well
as Denitrobacterium detoxificans. Additional ASV were assigned only to the family level for
Synergistaceae, Lachnospiraceae, Oscillospiraceae, and Anaerovoracaceae. Forage NSC and WSC
were positively correlated with BCG_94 (Clostridium sensu stricto 1, Prevotella, and Sarcina).
Forage ESC was correlated with 9 of the same BCG as NSC and WSC, but also had a nega-
tive correlation with BCG_173, which contained multiple ASV assigned to Lachnospiraceae,
probable genus 10 within Lachnospiraceae, Pseudobutyvibrio as well as to the p-251 genus
and family of Bacteroidales. Starch was positively correlated with BCG_113 and BCG_300
and negatively correlated with two BCG, BCG_43 and BCG_48, containing ASV from
Sphaerochaeta, Phascolarctobacterium, Christensenellaceae R-7 group, Coprostanoligenes group,
Bacteroidales UCG-001, Rikenellaceae RC9 gut group, the NK4A214 group of Oscillospiraceae,
the UCG-002 genus within Oscillospiraceae, and the UCG-010 genus and family within
Oscillospirales; these BCG were also among those positively correlated with ADF/NDF and
negatively correlated with CP/DE.
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Figure 5. Network map of bacterial co-abundance groups (BCG) and fermentation metabolites as
well as fecal pH. Correlations were evaluated between BCA most predictive of forage type (based
on random forest modeling of BCG composition) and fecal pH, short-chain fatty acids (SCFA) and
branched-chain fatty acids (BCFA). In addition to node color, node size was also mapped to BCG
relative abundance. Line width is mapped to correlation strength, with wider lines indicating stronger
correlations between nutrients and BCG. Significant Spearman correlations (rs ≥ |0.30|; p ≤ 0.05)
were included in the network map.

Relationships between fecal variables and forage nutrients were also evaluated through
correlation analysis (Figure 6). Acetate, butyrate, propionate, valerate, isobutyrate, isovaler-
ate and total SCFA and BCFA were positively correlated with DE (Spearman correlation;
rs ≥ 0.62) and CP (rs ≥ 0.41), but were negatively correlated with NDF (rs ≤ −0.48) and
ADF (rs ≤ −0.57; p ≤ 0.008). There was also a weaker positive correlation between these
fecal metabolites and starch (rs ≥ 0.39; p ≤ 0.01). Total BCFA, isobutyrate, and isovaler-
ate were negatively correlated with NSC, WSC, and ESC (rs ≤ −0.37; p ≤ 0.02), with a
weaker negative correlation between valerate and NSC and WSC (rs ≤ −0.34; p ≤ 0.03).
Hexanoate and heptanoate were negatively correlated with DE, CP, and starch (rs ≤ −0.39;
p ≤ 0.01), but were positively correlated with NDF, ADF, NSC, WSC, and ESC (rs ≥ 0.37;
p ≤ 0.02). Conversely, fecal pH was positively correlated with ADF (rs = 0.47; p = 0.002),
but negatively correlated with DE, NSC, WSC, ESC, and starch (rs ≤ −0.32; p ≤ 0.04).
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Figure 6. Correlation of forage nutrients and fermentation metabolites. Nutrients included digestible
energy (DE), crude protein (CP) acid detergent fiber (ADF), neutral detergent fiber (NDF), non-
structural carbohydrate (NSC), water-soluble carbohydrate (WSC) and ethanol-soluble carbohydrate
(ESC). Significance of Spearman correlations was set at rs ≥ |0.30| (p ≤ 0.05). Cells with an “X”
indicate non-significant correlations. Color and size of circles within cells are mapped to direction
and strength of correlation. Larger, darker blue circles indicate a stronger positive correlation (closer
to rs = 1.0); larger, lighter yellow circles indicate a stronger negative correlation (closer to rs = −1.0).

3.7. Blood Samples and Glycemic/Insulinemic Responses

Plasma glucose responses to OST administration differed by forage (mixed model
ANOVA with Tukey’s post hoc adjustment; p ≤ 0.01). The AUC for glucose was lowest
when horses were adapted to WSG (42.4 ± 6.8 mg/dL*h) vs. CSG-SP (70.0 ± 6.8 mg/dL*h)
and HAY-FA (76.3 ± 6.8 mg/dL*h; p ≤ 0.03; Figure 7a). Peak plasma glucose was also
lower for WSG (110 ± 3 mg/dL) in comparison to HAY-FA (123 ± 3 mg/dL; p = 0.01), and
there was a trend for lower peak plasma glucose for WSG than for CSG-SP (120 ± 3 mg/dL;
p = 0.06; Figure 7b).

Forage did not, however, impact OST insulin responses. Neither AUC (CSG-SP: 36.1;
WSG: 29.1; HAY-FA: 32.7 ± 6.4 mIU/L*h) or peak plasma insulin (CSG-SP: 28.8; WSG:
25.5; HAY-FA: 26.6 ± 3.3 mIU/L) varied by forage (Figure S2). Fasting plasma insulin
(CSG-SP: 3.69; WSG: 5.04; HAY-FA: 5.20 ± 0.64 mIU/L) and glucose (CSG-SP: 81.4; WSG:
78.7; HAY-FA: 81.3 ± 1.4 mg/dL) also did not differ by forage (Figure S3).

There were trends for differences by forage in proxies for insulin sensitivity including
the fasting glucose-to-insulin ratio (FGIR) and reciprocal of the square root of insulin (RISQI;
mixed model ANOVA with Tukey’s post hoc adjustment; p ≤ 0.10; Figure S4). Differences
in FGIR and RISQI were limited to WSG (FGIR: 25.2 ± 16.4; RISQI: 0.58 ± 0.04) vs. HAY
(FGIR: 16.4 ± 2.1; RISQI: 0.46 ± 0.04; p = 0.08). However, the modified insulin-to-glucose
ratio (MIRG), a proxy for the insulin secretory response, did not vary by forage (Figure S4).
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Figure 7. Plasma glucose responses to oral sugar tests and relationship with forage nutrients and
fermentation metabolites. Oral sugar tests were administered to horses adapted to spring cool-season
grass pasture (CSG-SP) and warm-season grass in the summer slump period (WSG) in addition to
a standardized hay diet in the fall at the end of the grazing season (HAY-FA). Glycemic responses
including the positive incremental area under the curve (a) and peak plasma glucose (b) are presented
as least squares means ± SEM. A single asterisk indicates differences between forages at p ≤ 0.05
(mixed model ANOVA with Tukey’s post hoc adjustment). A double asterisk indicates a trend for
differences at p ≤ 0.10. (c) Correlated nutrients included digestible energy (DE), crude protein (CP)
acid detergent fiber (ADF), neutral detergent fiber (NDF), non-structural carbohydrate (NSC), water-
soluble carbohydrate (WSC) and ethanol-soluble carbohydrate (ESC). Fecal metabolites included
short- and branched-chain fatty acids. Significance of Spearman correlations was set at rs ≥ |0.30|
(p ≤ 0.05). An “X” indicates non-significant correlations. Color and size of circles within cells are
mapped to direction and strength of correlation. Larger, darker blue circles indicate a stronger positive
correlation (closer to rs = 1.0); larger, lighter yellow circles indicate a stronger negative correlation
(closer to rs = −1.0).

3.8. Relationships between Glucose Metabolism and the Fecal Microbiota

Glucose and insulin dynamics were only assessed after three of the forages (CSG-SP,
WSG, and HAY-FA), and this smaller dataset precluded the use of random forest regres-
sion modelling for these variables. As the primary metabolic differences in grazing horse
metabolism were AUC and peak plasma glucose in response to OST administration, corre-
lation analysis was conducted to explore relationships between these metabolic variables
and BCG. Only one BCG (of the 25 BCG in the reduced feature set) was correlated with
AUC (rs = −0.48; p = 0.04), with members of BCG_124 including ASV within Papillibacter,
Christensenellaceae R-7 group, and Synergistaceae. Four additional BCG were correlated with
peak plasma glucose. Positive correlations were found between peak glucose and BCG_51
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and BCG_305 (rs ≥ 0.43; p ≤ 0.04). These BCG included ASV mapped to genera including
Lachnospiraceae XPB1014, Lachnospiraceae UCG-009, Erysipelatoclostridium, Catenisphaera, and
Fibrobacter as well to the family level for Anaerovoracaceae. Conversely, BCG_113 (Clostridium
butyricum, Papillibacter, Bacteroidales RF16 group) and BCG_259 were negatively correlated
with peak glucose (rs = −0.44; p = 0.03). Members of BCG_259 included ASV assigned at
the family level to Lachnospiraceae in addition to the Hallii group within Lachnospiraceae.

While relationships between AUC and peak plasma glucose and forage nutrients
were identified through correlation analysis (Spearman correlation; rs ≥ |0.41|; p ≤ 0.04;
Figure 7c), these metabolic variables were not correlated with any fecal variables including
SCFA, BCFA, and pH. Forage NSC, WSC, and ESC were positively correlated with AUC
(rs ≥ 0.53; p ≤ 0.007) and peak glucose (rs ≥ 0.41; p ≤ 0.04). There was also a negative
correlation between CP and glucose responses to OST administration (rs ≤ −0.50; p ≤ 0.01).
Forage DE, NDF, ADF, and starch, however, were not correlated with AUC or peak glucose.

4. Discussion
4.1. Forage Type and the Microbiome

Warm-season grasses can be utilized to bridge the “summer slump” forage gap in
cool-season grass grazing systems [1,2], and differences in NSC between these forage types
could have implications for equine metabolic health [1,5,9]. However, there is limited
information on the impacts of grazing warm-season grasses on the equine hindgut micro-
biome as well as potential associations between forage nutrients, the hindgut microbiome,
and equine metabolic responses. Therefore, this study aimed of to characterize the fecal
microbiota of horses adapted to different forage types and to explore relationships be-
tween forage nutrients, microbial composition, fecal metabolites, and glycemic responses
of grazing horses. Results of this study clearly demonstrated that shifts in fecal microbiome
structure and species composition occur as horses are adapted to different forages within an
integrated warm- and cool-season grass rotational grazing system. This was supported by
statistical differences in both α- and β-diversity. Furthermore, random forest classification
modelling was able to predict forage type based on microbial community composition,
indicating the influence of forage type on the fecal microbiome. Finally, forage-specific
BCG were identified through LEfSe analysis, but the 25 BCG identified as most predic-
tive of forage type through random forest modeling and subsequently analyzed by LEfSe
represented only ~10% of the total fecal microbiota across all forages. This indicates that
distinct and identifiable shifts in microbial composition do occur as horses adapt to differ-
ent forage types. However, the majority of the microbiome (~90% in the current study) is
resistant and/or resilient to potential perturbations induced by transitioning among forage
types with different physical and chemical properties, including between cool-season and
warm-season grass pastures.

The BCG identified as markers specific to HAY-SP included multiple ASV assigned
to taxa to which fibrolytic and butyrate-producing functions have been previously as-
cribed [74–76]. The BCG specific to this forage contained a heavy representation of ASV
within the Lachnospiraceae family as well as Fibrobacter, Ruminococcus, and Pseudobutyvibrio.
Prior studies have also reported increased prevalence of Lachnospiraceae in horses fed hay
vs. pasture [19,77]. Conversely, ASV assigned to Anaerovibrio were also identified in BCG
markers of HAY-SP. Increases in this genus in response to abrupt inclusion of dietary starch
have been documented [78] as well as in temporal proximity to oral administration of
oligofructose in experimental laminitis induction models [79,80]. The co-occurrence of bac-
teria in these taxonomic groups could potentially be reflective of the nutrient composition
of HAY-SP, which was the highest in both fiber and NSC of all forages. Co-occurrence
of these bacteria may also reflect cross-feeding relationships between bacteria and/or
metabolic plasticity of bacterial populations. These factors may also account for unexpected
associations revealed by analysis in the current study, such as ASV assigned to Streptococcus
within BCG markers of HAY-FA, despite the relatively low NSC content of this forage.
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However, Zhu et al. [77] also reported a lower abundance of species within Streptococcaceae
in horses maintained on pasture vs. horses fed hay or silage [77].

Overall, the fecal microbiota of horses adapted to cool-season pasture was character-
ized by bacteria capable of utilizing rapidly fermentable fibers, which could explain the
greater fecal SCFA concentrations for CSG-SP and CSG-FA. Capacity for hemicellulose
fermentation and SCFA production have been previously documented in the Bacteroidales
BS11 gut group [81], which was identified only in BCG markers of CSG-SP. Equine studies
have found increased relative abundance of Bacteroidales BS11 gut group in horses fed barley
vs. a hay diet [82] and in horses presenting with colic [83,84]. For CSG-FA, BCG markers
included genera such as Alloprevotella and Erysipelatoclostridium, which are also associated
with degradation of fermentable fibers [85–87]. The BCG markers of CSG-FA also included
ASV assigned WCHB1-41 clade within Kiritimatiellae. Prior studies have found enrichment
of the phylum Kiritimatiellaeota in the fecal microbiota of horses with equine metabolic
syndrome and insulin dysregulation [26,27]. In contrast to results of the present study,
Fitzgerald et al. [27] reported increased abundance of this phylum in response to a change
from pasture to a hay diet in both healthy and insulin dysregulated ponies, and Ericsson
et al. [88] similarly found increased abundance of the class Kiritimatiellae when horses with
equine metabolic syndrome were transitioned from pasture to a hay diet. These conflicting
results reinforce that nutritional composition of specific forages, rather than form of forage
alone, need to be considered when evaluating interstudy effects of diet on the equine
microbiome.

A number of interesting relationships were found between BCG identified as mark-
ers specific to WSG and fecal variables, forage nutrients, and horse glucose metabolism.
Warm-season grasses are characteristically lower in soluble carbohydrates than cool-season
grasses [1,5], and of all forages evaluated in the current study, NSC and WSC were lowest
in WSG. Four of the five BCG markers of WSG were negatively correlated with forage
NSC and WSC, including BCG_35, which contained ASV assigned Akkermansia as well as
Fibrobacter, Treponema, Christensenellaceae R-7 group, and the Family XIII AD3011 group of
Anaerovoracaceae. Akkermansia has been linked to metabolic health via regulation of inflam-
matory responses and has also been explored for probiotic use in animal species [89–92].
Lindenberg et al. [93] recently demonstrated immune (and inflammatory) modulation
by specific hindgut microbiota in horses, including Akkermansia spp. Furthermore, sup-
plementation with mannanoligosaccharides and fructooligosaccharides led to increased
abundance of Akkermansia muciniphilia in a subsequent study [94], and improvements in
insulin sensitivity have been previously documented in horses supplemented with low
doses of fructooligosaccharide [95,96].

Markers of WSG also included BCG_113, which contained an ASV assigned to Clostrid-
ium butyricum. Clostridium butyricum is a prolific butyrate producer that has also been
investigated for probiotic use due to its capacity to promote anti-inflammatory responses
and improve gut barrier function and metabolic health [97–99]. BCG_35 was positively
correlated with CP as well as isobutyrate and total BCFA, which reflects the proteolytic
capacity of this BCG. BCG_113 was also positively correlated with total SCFA and all three
major SCFA (acetate, butyrate, and propionate) in addition to isobutyrate, isovalerate, and
total BCFA. This BCG was also negatively correlated with peak plasma glucose. These
findings suggest that this bacterial group including Clostridium butyricum could play a
role in modulation of equine metabolic health. While limited connections between the
gut microbiota and metabolic responses were observed in the current study, three of the
five BCG correlated with AUC and peak plasma glucose were WSG-specific BCG markers.
Further research is necessary to determine if other WSG species or varieties would produce
similar effects as those observed in the current study.

While Akkermansia and Clostridium butyricum have been investigated in mice and
other species, comparatively little research has been conducted to understand the function
of these bacteria in the equine hindgut. The relationships found between ASV in these
taxa and forage nutrients, fecal metabolites, and equine glycemic responses in addition
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to associations with low-NSC warm-season grasses in the current study support further
research to determine the role of these bacteria, factors including dietary interventions that
can promote prevalence in the hindgut, and potential probiotic applications.

4.2. Forage Nutrients and the Microbiome

Results of this study also confirmed the strong influence of dietary nutrients on the
equine microbiome and provided insights into the complex relationships between for-
age nutrients and the gut microbiota. The concentrations of several nutrients could be
predicted based on microbial community composition. Furthermore, regression model
accuracy improved when the reduced feature set identified through prior forage classifica-
tion modeling was utilized for prediction of nutrient concentrations. This indicates that
differences in forage nutrients were driving the shifts in equine fecal microbial communities
as horses adapted to various forages within the integrated grazing system. Results of this
study revealed the influence of soluble carbohydrates including NSC and WSC on fecal
microbial community composition. In contrast, fiber was not identified as a key nutrient
shaping differences in microbial communities. Forage NSC and WSC concentrations could
be predicted based on microbial community composition with an accuracy of R2 = 0.61
and R2 = 0.67, respectively, while predictive accuracy for ADF and NDF was < 0.40 (R2).
Random forest modeling also revealed that in addition to soluble carbohydrates, the gut
microbiota were also influenced by CP (R2 = 0.62). The impact of CP on the gut microbial
community was interesting, but unsurprising, as two-thirds to three-fourths of total tract
nitrogen digestion and absorption occurs in the equine hindgut [100], and many microbial
species are capable of proteolytic fermentation [101].

Prior studies in horses have found distinct effects of high-fiber vs. lower-fiber diets on
the hindgut microbial community, with benefits of increased fiber including greater micro-
bial diversity [102], reduction of lactic-acid producing bacteria [101,103], and less-acidic
hindgut pH [104,105]. However, these previous studies have been primarily conducted
in horses fed concentrate vs. forage-based diets in which there was broad variation in
fiber concentrations between treatments. In the current study, horses were maintained
on a forage-only diet throughout, and there were relatively high concentrations of NDF
and ADF found across all forages. It is possible that only minimal shifts occur in bacterial
populations most responsive to fiber above a certain concentration threshold, and that
these populations remained relatively stable throughout the study (and thus fiber concen-
tration was not able to be predicted with strong accuracy by random forest modeling).
However, it should be noted that the concentrations of NSC, WSC, and CP in forages
is low in comparison to that of fiber. Additionally, in contrast to fiber, these nutrients
are all subject to digestion in the equine foregut, and only a fraction of the total soluble
carbohydrates and CP ingested would be available for bacterial fermentation in the hindgut.
Thus, only a small amount of these nutrients were capable of exerting influence on gut
microbial communities. Digestibility was not evaluated in the current study, however,
and a more in-depth analysis of total digestibility and digestibility of specific nutrients
would be necessary to fully understand the interactions between forage nutrients and the
gut microbiota.

4.3. Fecal pH and Fermentation Metabolites

Fecal pH is commonly utilized as a marker of microbial activity in the equine
hindgut [20,103]. Differences in fecal pH in the current study indicated that functional
changes occur in the equine gut microbiota, in addition to shifts in microbiome structure
and composition, as horses adapt to different forages. Fecal pH was highest in horses
adapted to WSG and HAY-FA, which were lower in NSC than CSG-SP, CSG-FA. Accord-
ingly, fecal pH was negatively correlated with forage NSC. Lower fecal pH is broadly
associated with hindgut dysfunction in horses [106,107], and thus the higher fecal pH in
horses adapted to WSG in comparison to cool-season pasture could suggest some ben-
efit to grazing horses on warm-season grass pastures. However, mean pH was above
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6.5 for CSG-SP, CSG-FA, and HAY-SP, which is within ranges previously documented
in healthy forage-fed horses [33,108]. Therefore, while statistically significant, the differ-
ence in fecal pH between horses adapted to WSG vs. cool-season pasture may not be of
physiological relevance.

Differences in fermentation metabolites across forages did not mirror results for fecal
pH, as differences between forages for SCFA and BCFA were primarily between pasture
forages and the hay diets. Numerically, SCFA and BCFA concentrations in horses adapted
to WSG were intermediate between the cool-season pasture (greatest) and hay (lowest),
but these differences were not statistically significant. Furthermore, while statistically
significant, the predictive accuracy of random forest regressors for fecal metabolites and
pH were lower in comparison to those found for forage nutrients. Numerous studies have
noted that while the gastrointestinal tract harbors a phylogenetically diverse community,
many unrelated microorganisms are capable of performing similar functions [109–113].
The relatively poor predictive accuracy of regressors for fecal metabolites in the current
study is likely due to this functional redundancy within the equine microbial community.
Functional redundancy has been previously suggested as a contributing factor in stability
of the gut microbial communities [111,113] including within the equine microbiome during
transitions between warm- and cool-season grasses [24].

4.4. Glucose and Insulin Metabolism

While there were distinct shifts in the fecal microbiota across forages in the integrated
system, forage type exerted minimal effects on glucose metabolism. A large body of
research, primarily conducted in mouse models, has established that diet (and dietary
intervention) modulates metabolic health in a microbiome-dependent manner [29,30,114].
However, shifts in gut microbial structure and function may precede changes in metabolic
outcomes [115]. The adaptation period utilized in the present study was of a similar
duration as used in prior studies evaluating the microbiome of forage-fed horses [22,23,116],
and is considered sufficient for stabilization of microbial communities [95]. However, longer
treatment periods are often required to assess metabolic adaptations to diet [13,103,117,118].
The lower AUC and peak plasma glucose in horses adapted to WSG in the current study
does suggest that glucose may be cleared more rapidly in horses adapted to this forage,
but a longer adaptation period would be necessary to confirm these results. Regardless,
glucose and insulin responses to the OST for all forages evaluated in the current study were
within normal and previously reported ranges [12,34], indicating that substantial metabolic
changes are unlikely within the context of integrated rotational grazing management even
with the observed changes in the fecal microbiota, fecal metabolites, and pH. Additionally,
the lack of correlation between any fermentation metabolites and glucose responses, as
well as the relatively small number of BCG correlated with AUC and peak plasma glucose,
suggest that any difference in glycemic responses of horses in the current study may not
have been heavily dependent on shifts in the hindgut microbiome.

4.5. Additional Considerations

Seasonal and environmental factors should be considered when interpreting results
of this study. Prior studies have reported seasonal changes in microbial diversity and
species composition [119–121] but also lacked a true seasonal control, and thus, the effect
of seasonality on the equine hindgut microbiome requires further investigation. Seasonal
variance in insulin sensitivity has been documented in grazing horses [15,122], but when
fed controlled diets without nutrient fluctuations seen in pasture forages, minimal seasonal
differences in circulating glucose and insulin and insulin sensitivity have been found in
healthy horses [15,123,124]. Environment and management factors beyond season can also
impact pasture forage nutrient composition. Characterizing the microbiome of a larger
number of grazing horses over multiple years and in multiple locations/regions would
allow a more robust evaluation of the impacts of cool- versus warm-season grasses on the
equine hindgut microbiome.
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Finally, it should be noted that the analytical approach in this study differs from more
conventional taxon-based analysis. Rather, this study implemented a guild-based approach,
grouping individual microbial ASV by co-abundance to subsequent analysis of abundance
profiles [123–127]. This strategy has been previously utilized as an alternative to grouping
bacteria by taxonomy [24,29,30,92,121]. Substantial genetic variation is possible within taxa,
even at the species level, and therefore bacteria with similar taxonomic assignments may
not represent a functionally homologous group [29,92,127]. Results of the current study
also illustrate this concept, as ASV with the same assigned taxonomy were found in BCG
characteristic of different forages as well as in separate BCG that positively and negatively
responded to forage nutrients and with both positive and negative relationships with fecal
metabolites and grazing horse metabolism.

5. Conclusions

In conclusion, distinct shifts in equine fecal microbial community structure and compo-
sition occur as horses adapt to different forages within an integrated warm- and cool-season
grass rotational pasture system, but a substantial impact of this management practice on
glucose metabolism in healthy adult grazing horses is unlikely. Forage NSC, WSC, and CP
were the most influential nutrients driving these shifts in microbial composition. Results of
this study underscore the potential for relatively small amounts of NSC to influence hindgut
microbial composition and also that protein utilization may be an important ecological
niche within the microbiome of forage-fed horses. Fecal BCFA and SCFA concentrations
were higher in horses adapted to all pasture forages versus hay, but in comparison to forage
nutrients, bacterial community composition did not have as strong an impact on fermen-
tation metabolites, likely reflecting functional redundancy of the microbial community.
The guild-based analytical approach utilized in this study also identified key relationships
between specific bacterial groups associated with adaptation to warm-season grass pasture
and forage nutrients, fecal metabolites, and equine glycemic responses to administration of
oral sugar tests. Relationships identified in this study revealed new insights and targets
for future research necessary to better understand the function of Akkermansia spp. and
Clostridium butyricum in the hindgut microbiome of grazing horses, as these bacteria may
play a role in modulation of equine metabolic health.
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