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Simple Summary: Digital tools are becoming increasingly important in livestock farming. The
impact of digitalization appears to be best documented in dairy cattle husbandry. Precision Livestock
Farming (PLF) is a term that encompasses sensors for the capture of biological information, algorithms
processing the information and interfaces that allow for making use of these data. PLF is expected
to optimize animal production, health and welfare. PLF provides an enormous amount of animal
information that can be used in various ways. While some systems, e.g., estrus detection systems,
are already extensively used, other systems await practical application. PLF may allow for progress
in animal health, production, and welfare. However, so far there is little scientific evidence that
application of PLF does actually have an effect. It is to be expected that PLF will alter the animal–
human relationship and will have a substantial impact on veterinary practice.

Abstract: Precision Livestock Farming (PLF) describes the combined use of sensor technology, the
related algorithms, interfaces, and applications in animal husbandry. PLF technology is used in all
animal production systems and most extensively described in dairy farming. PLF is developing
rapidly and is moving beyond health alarms towards an integrated decision-making system. It
includes animal sensor and production data but also external data. Various applications have been
proposed or are available commercially, only a part of which has been evaluated scientifically; the
actual impact on animal health, production and welfare therefore remains largely unknown. Although
some technology has been widely implemented (e.g., estrus detection and calving detection), other
systems are adopted more slowly. PLF offers opportunities for the dairy sector through early disease
detection, capturing animal-related information more objectively and consistently, predicting risks for
animal health and welfare, increasing the efficiency of animal production and objectively determining
animal affective states. Risks of increasing PLF usage include the dependency on the technology,
changes in the human–animal relationship and changes in the public perception of dairy farming.
Veterinarians will be highly affected by PLF in their professional life; they nevertheless must adapt to
this and play an active role in further development of technology.

Keywords: dairy cattle; sensor; health; welfare; veterinarian; precision livestock farming

1. Introduction

Digitalization, the Internet of Things (IoT), Big Data—Buzzwords which are increas-
ingly associated with dairy farming. Not only agricultural and veterinary publications are
embracing this topic, the general media also cover it: while a headline like “The Connected
Cow: Optimizing Dairy Cow Health And Productivity With Technology” [1] appears to
make huge promises, another reads “Big Brother in the Cowshed” [2] and may be un-
derstood as displaying a certain caution towards technical monitoring of animals and
possibly a deterioration of the human–animal relationship. It is unclear how widespread
the adoption of digital technology already is. For Germany, the professional association
Bitkom stated in 2020 that 80% of farmers are using some kind of digital tool in animal
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husbandry [3]. The market for precision farming, including all sectors, is expected to
grow at an annual rate of 13% to reach a volume of USD 12.9 billion in 2027 [4]. It is
therefore to be expected that digitalization is becoming ever more relevant for all aspects
of dairy farming, including veterinary services. This paper tries to give an overview of
digitalization in the dairy cattle sector and to exemplify the current technology. It will also
give a critical assessment of the impact of new technology on the veterinary profession
and the animal–human relationship. It aims to provide the reader with an overview of the
state-of-the-art components of PLF, the principles of its functioning and a comprehensive
analysis of perspectives, limitations, opportunities and risks of PLF.

2. Subject Definition

Digitalization refers to various trends and innovations; it has been proposed that it
refers to “changing business models” and “new value producing opportunities” by using
digital tools. It has to be differentiated from the term “digitization”, which only describes
putting analogue processes into a digital format [5]. In production animal husbandry,
the term digitalization often refers to sensor technology, electronic data processing or
automated systems, e.g., in milking. Increasingly, the term “Precision Livestock Farming”
(PLF; [6]) is being used. PLF includes robots or sensors collecting and producing data
which are computed and analyzed by standardized operations (algorithms) to produce
relevant information. The algorithms analyze for points of interest (e.g., “alarms”) that
serve as support or basis for decision making, mainly by the farmer himself. The main
difference compared with traditional, more retrospective decision making is (1) the imme-
diate availability and processing of data; (2) the integration of data from various different
sources; and (3) the rapid decision-making process, implementing changes instantly [7,8].
PLF therefore implies a system with components sensors, algorithms and interfaces for
making practical use of data from livestock farming; the decision-making process, either
automatic or supported by applications, is an integral part of PLF itself (Figure 1).

In animal production, the implementation of PLF seems best documented in dairy
farming [9,10]. The development of PLF is fast; in 2008, Wathes et al. [11] referred to
PLF as being an “embryonic technology”, only measuring certain parameters in animals.
Twelve years later, in 2020, Cabrera et al. [12] presented the “Dairy Brain”, an integrated
system automatically optimizing group feeding and providing early recognition of cases
of clinical mastitis. Thus, PLF appears to be developing away from only measuring
parameters towards integration of different components and decision support or itself
making decisions [13,14].

3. Elements of PLF
3.1. Sensors

A “sensor” is commonly defined as “a device that is used to record that something
is present or that there are changes in something” [15]. There are numerous articles
reviewing available sensor technology, reflecting the current state of knowledge at the time
of publication [16–20].

In dairy cattle husbandry, “sensor” still seems to be associated primarily with auto-
mated heat detection based on activity data. This application is widely being used and is
well researched; its practicability had already been documented more than a decade ago [21].
Kempf [22] reported a regular estrus detection rate of 95% using activity monitoring for
estrus detection and generally higher effectivity compared to visual heat detection. This
study is just one of many examples for estrus detection based on activity. The use of these
sensors seems to be economically advantageous [23] and may in the future be integrated
with physiological data to target cows more individually for even higher reproductive
performance [24].

Most parameters around an individual dairy cow or the herd can be monitored by
sensors. One biological parameter may be measured by different sensor types. Rumina-
tion monitoring may serve as an example: it may be captured using accelerometers [25],
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pressure sensors at the head [26] or microphones [27]. Scheurwater et al. [28] showed the
possibility to assess rumination or other activities using an intrareticular pressure sensor.
The device was able to identify rumination with an accuracy of 0.92, a sensitivity of 0.97
and a specificity of 0.90.

Various sensors are currently available and regularly connected to data systems—they
can be understood as the “Internet of Things” (IoT) application to animal husbandry
(Figure 2). Knight [15] categorized sensors according to their relative position to the animal
into “at cow” sensors (e.g., accelerometers and ruminal pH sensors), “near cow” sensors
(e.g., cameras or microphones) and “from cow” sensors (e.g., real-time in-line analytic
systems for milk; sensors covering “not-cow data” such as room thermometers also have
to be included here). The author further states that while a lot of systems are commer-
cially available, they may not all have been assessed for their viability and validity in a
scientifically sound manner. Inversely, various technical options have scientifically proven
potential but are not commercially available. Rutten et al. [14] reviewed the development
of sensor usage and the changes in their practical application. They describe sensors devel-
oping away from being isolated tools, instead becoming integrated into a more complex
system on the farm (Figure 3). The phases described are (1) the sensor as tool measuring
a biological or physical parameter and delivering this information; (2) interpretation of
this data, e.g., an estrus alarm on the basis of changed activity or a ruminal fermentation
disorder on the basis of intraruminal pH value patterns; this “alarm function” rests on a
standard derived from already retrieved data, the validation of sensor data and finally an
algorithm that translates measurements into an alarm. The authors describe as next step
(3) data integration, combining various sensor and other information. An example would
be the combination of activity and rumination data with farm data such as reproduction
information or health events. Those data are generally provided externally by farmers
themselves, veterinarians or milk-recording organizations. This enrichment of data leads to
a more precise identification of relevant events, e.g., estrus or disease. The algorithms (see
below) achieving this identification are trained to recognize data patterns, make predictions
on the basis of these patterns and forecast relevant events. Animals at risk of a certain dis-
ease can thus be identified early and receive special attention [29,30]. It is not only disease
that can be predicted; another example would be the expected reproductive outcome of an
individual animal or the herd as a whole [31]. While this information is so far used only
for decision support, the next step according to Rutten et al. [12] would be (4) decision
making. PLF information is so far mainly being used to make qualified decisions. Decision
making by PLF components would suggest decisions to farmers; it would “provide fast,
concrete and simple answers to complex farmers’ questions” [32]. Decision making applies
to various aspects of herd management; most relevant today are decisions in the field of
reproduction and animal health (“alarms”) [33]. Herd dynamics and replacement (culling),
which appear difficult to model, will certainly be aided by the information provided in a
PLF environment [34]. An integrated system can therefore serve as a central hub to collect
information from various sources and provide informed decisions covering all areas of herd
management including feeding, culling, treatment options and alike [12]. This appears to
be the most inclusive development of PLF in a true sense. Sensors are mere providers of
information, which are linked with other data from various sources. It has to be stated that
so far there is no commercially available system that offers a “complete” monitoring of
herds or individuals. Systems tend to be “stand alone” solutions, monitoring only one or
two parameters; moreover, sensor systems are rarely communicating with each other, thus
limiting the possible insight. As a consequence, farmers will have to rely on a combination
of different PLF components if they want to realize full monitoring of their herd [17]. It is
therefore important for the whole industry to promote collaboration and communication
within PLF [20].

Sensors largely represent the “hardware” component of PLF and often closely interact
with the animal. As they are at least partly used for medical purposes, they would, if used
in humans, have the status of medical devices. These require specific regulations to ensure
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health and safety. As surprising as it may seem, there is hardly any regulatory framework
concerning sensors in terms of both expected efficacy and safety. Some sensors are attached
directly to the animal or even inserted into it, e.g., the digestive system. The disposal
of sensors still present after slaughter and the potential of endangering food safety after
culling may be seen as risks for human health and the environment. Alarms produced by
PLF components may lead to some form of treatment or even culling of an animal; hence,
there is a certain risk in system malfunctioning or misinterpretation leading to issues in
animal health and welfare. The implementation of a harmonized methodology within one
market (e.g., the EU) or across markets (e.g., by an international body) for evaluating these
tools and a material vigilance system would undoubtedly be necessary. A licensing system,
approval or guarantee scheme safeguarded independently appears to be desirable.

3.2. Algorithms

An “algorithm” is being defined as a “set of mathematical instructions or rules that
[ . . . ] will help to calculate an answer to a problem” [35]. It is therefore a standardized,
iterative process which produces information into “specs” needed for decision making.

As previously mentioned, algorithms are at the core of PLF as they create meaningful
and applicable information out of the pool of available sensor data. They may include
data from other sources, e.g., milk recording. The algorithms applied have to cope with
numerous challenges: (1) While the current amount of data produced by most systems is
generally moderate in size [17], an increase is to be expected; for example, the more common
use of photography-based sensors could lead to huge volumes of information. (2) If systems
are interconnected, the data produced is multi-dimensional in nature, including rather
simple information, e.g., animal ID, but also physical measurements, optical information
and data entries from outside sources. (3) It is also necessary to account for missing,
wrong or redundant data, often repetitive in nature or only slightly changing over time.
Nevertheless, this less-than-perfect information needs to be processed and relevant patterns
recognized. (4) In order to be useful and allow for proactive decision making, the algorithms
generally need to involve a prediction part that identified events of interest likely to happen
in the future [36]. These challenges can be mastered by application of “machine learning”
in which algorithms are trained to recognize relevant parts in a pool of information. This
has been extensively reviewed elsewhere [37]. Development of an algorithm can occur in
two ways, depending on whether or not the point of interest is known: (1) Information
or events that are already known can be analyzed for their informational characteristics
and used by an algorithm to be recognized in another data set. (2) The algorithm itself
identifies relevant characteristics in sensor data and defines the event; the algorithm thus
identifies conspicuous patterns in the data that can retrospectively be linked to an event of
interest. This process can therefore be defined as either “supervised” or “unsupervised”
learning [10]. Dittrich et al. [38] describe the structure of algorithms for recognizing events.
Numerous clinical studies have identified measurable behavioral changes in animals with
certain diseases. For example, cows with clinical mastitis show different patterns in lying
and standing times, and their patterns of activity and feeding behavior change. These
changes are captured by sensors and will be analyzed by algorithms using the recorded
patterns of healthy animals as a standard. Deviations from this standard point to the
occurrence of clinical mastitis. As behavioral changes usually occur prior to the onset
of clinical symptoms, the algorithm does not detect the clinical disease itself but rather
predicts its occurrence.

Reiter et al. [25] describe the validation of an algorithm belonging to an accelerometer,
giving an example of supervised learning. The sensor is attached to the ears of cows and
measures motions in a three-dimensional way. The study does not validate the accuracy of
the sensor itself in capturing motions; it rather shows the approach to train and validate
the ability of the corresponding algorithm to recognize rumination in the motion data
set produced by the sensor. The sensor was attached to ten cows, and observers visually
identified time segments with rumination. The time segments were then marked in the data
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set and processed into the algorithm. In a second step, the thus trained algorithm was tested
for repeatability of motion pattern recognition in a new data set by comparing sensor labels
with visual observation. The study shows a highly correlated agreement between visual
observation and recognition by the sensor. For example, the sensor identified an average
of 1508 s spent ruminating per hour of resting phases; observation by a human recorded
1492 s of rumination, a mere difference of 16 s per hour spent by the animal resting.

It is usually not known how exactly an algorithm in a commercially available system
is built. The algorithms are typically not accessible in publications as this is commercially
used intellectual property and therefore sensitive information. Some studies, however,
illustrate the development of an algorithm. An example is the study by Carslake et al. [39],
demonstrating the practical implementation of algorithms on the example of the behavior
of calves. The authors describe the “training” of a sensor from mere measuring activity up
to the interpretation of captured data. In this study, the activity and behavior of 13 calves
were captured by an activity sensor and at the same time recorded on video. The aim was
to correlate both sensor and visual information. The incoherent raw sensor information on
activity was therefore “mapped” with labels derived from the visual information captured
on video. As a result, it was possible to identify activities such as licking, suckling or
playing in the sensor data set. This would allow for recognition of these activities in the
field; changes in the behavior could then be identified, this possibly indicating disease.

3.3. Applications

Sensors and their respective algorithms are an important element of PLF. These com-
ponents produce data, either raw or processed, and this data has to be made accessible
and meaningful. Applications achieving this are often computer systems installed on the
farm; they form a database that contains farm-related information, e.g., production and
fertility data or milk production. They can also serve as a platform for sensor-related
applications and directly provide communication between these components, serving as
an interface between farm production data and sensor-related information. Herd manage-
ment programs, originally designed for storage and analysis of farm production data, are
increasingly serving as exchange platforms combining data originating from the farm. This
is developing into a two-way process because alarms from a sensor system are useful to be
recorded and, inversely, a sensor-related application will benefit from farm records such as
insemination, calving dates and alike. In recent years, a shift towards cloud-based solutions
is occurring, in which farm data including sensor information is transmitted towards an
external data storage and processed centrally [40]. Relevant information is available to
the farm by specially designed applications, through websites or via alarms, e.g., on a
mobile phone [41]. There is hardly any scientific literature on the nature and effect of these
applications. Rarely, the analyses of herd management programs are used for research, an
example being the study by Sorge et al. [42], in which the economic evaluation of dairy
cows in the DairyComp® program suite was thematized. In any case, the amount of avail-
able data on and from dairy farms appears to be increasing, so too does the need to apply
this information into practical decision making. It appears useful to make the generated
information simple to grasp by proper design, e.g., by means of graphic illustration [43].

3.4. Interfaces

Connecting data originating from different sources needs interfaces; they link elec-
tronic farm-specific data (e.g., insemination dates) with external data (e.g., milk recording
data) and data from sensor systems, which may originate from different manufacturers.
However, there is a tendency towards closed “ecosystems”, in which components from a
single manufacturer are combined. The exchange of information between components of
different manufacturers may be difficult to establish. Bypassing the ecosystem barrier can
be achieved externally by a so-called “warehouse”. Relevant data from various sources
on one farm is uploaded onto a server; there, it is collected, cleaned and sorted. Relevant
information for certain analyses is then extracted from the warehouse and transformed to
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answer the questions regarding an individual or a group of animals, an individual farm
or a cluster of farms [44]. In the long term, linking farm-specific data with data from
other sources will facilitate automatic decision making at the farm level. Ferris et al. [45]
introduced an integrated system which not only uses all available information at the farm
level but also information such as weather data and pricing information. A system like
this is no longer designed to measure processes or raise alarms; it predicts production-
related processes at the herd level and proposes management decisions or implements
these decisions autonomously. Cabrera et al. [12] illustrate the use of such a system on the
example of udder health. Animals can be identified as being at high risk for developing
mastitis as early as in their first lactation. This classification is achieved by using genetic
information [46], animal behavior and production data from the milking parlor or milk
recording. The system gives recommendations for this animal such as exclusion from
breeding or early culling due to low potential.

Another concept integrating data is the “digital twin” [47], in which available infor-
mation is used to create a virtual image, a doubling of a certain entity. In the case of dairy
farming this could mean the ‘twinning’ of an individual animal, a group of animals or a
herd as whole. The digital twin can then serve as a benchmark which points to risks in
the future as it anticipates certain developments. This may also help in objectively assess
animal welfare. The principle of this is already used in teaching so that the effect of certain
decisions on a dairy herd can be modeled and studied [48].

4. PLF Influencing Animal Husbandry

The rapid development of PLF and the possibilities it creates are evaluated differently
in the literature. There are few evidence-based studies demonstrating a measurable ef-
fect of PLF usage on animal health or productivity. Knight [15] states that while sensor
technology can measure a lot of biological parameters and has become very effective in
recognizing disease or disease risk, it remains unknown what the effect of their presence on
the production and health parameters really is. Determining this effect faces the problem
that this can only be done indirectly. As long as a PLF system on a farm is not acting and
deciding fully automatically and autonomously, it may only influence human behavior.
Individual farmers are likely to respond differently to automatically generated information,
and their decisions may be affected by PLF to a varying degree. Eckelkamp and Bewley [49]
evaluated the behavior of dairy farmers using PLF technology. The study assessed the
intensity with which farmers evaluated the health alarms generated by PLF systems and
how they responded to this information. It was shown that farmers generally considered
the alarms to be “true”; this did, however, not automatically trigger a certain behavioral re-
sponse, e.g., examining an animal. Especially if farmers themselves did not expect animals
to have problems (e.g., cows not in the transition phase), alarms tended to be ignored. The
number of alarms generated by the system affected the probability of farmers acting: at 20
or fewer alarms per day, this probability was higher. Furthermore, the authors showed a
“habituation”: the longer the system was present on the farm, the more likely alarms were
to be disregarded. This points to a risk of PLF application: the presence of PLF systems
is no reliable indicator for a better or improved situation concerning animal health and
welfare on a dairy farm. As PLF systems continuously produce data (and sometimes alerts
in the case of deviation of observed data from expected data), stress can be put on the
user, especially when the tools lack specificity (alerts generated on non-diseased animals).
Therefore, a difficult compromise needs to be made between sensitivity to detect alterations
and acceptable specificity, as a specificity that is too high will lead to false positive alerts
for the user. This is illustrated by a study focusing on the prediction accuracy of a system
monitoring rumination and activity; the sensitivity was programed to produce less than
four false positive alerts/100 cows/day. As a result, however, only 30% of disease events
were detected, based on rumination and activity drops [50].

Faced with this incessant flow of data and alerts, the owner may lose confidence in
the tool and even may altogether stop using information at the risk of missing sick animals.
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There is also a risk that alarms may be “over-used” with no critical review or examination of
the animal. The possible advantages of PLF usage therefore largely rely on the performance
of the tools and their operating conditions. These behavioral aspects of PLF application
need to be considered in development of future applications.

In summary, the effect of PLF applied on dairy farms remains unclear. In a study
on Italian dairy farms [51], no higher milk production was found on farms using sensor
technology. A Dutch study [52] evaluated the effect of sensors being used for udder health
and fertility monitoring on related parameters. Only small effects were found, and milk
production was not better on farms using the sensor systems. The sensors at that time were,
however, able to generate only very few and selective health alarms. Various sensor-based
systems have been proposed for detection of lameness in cattle; however, their usefulness
and cost–benefit ratio are often not acknowledged by farmers despite lameness being a
major animal health issue [53]. It therefore appears necessary to demonstrate the benefit
of this technology under farm conditions. As mentioned before, a scheme to objectively
assess the impact and risks of a PLF system appears to be necessary.

5. Animal Welfare and Animal Health

Animal welfare concerns numerous aspects going well beyond animal health alone;
while health is important, animal welfare also involves aspects of animal behavior and
emotion [54]. Sensor technology can capture various aspects: behavior of the animal
(movement and activity), time budget, but also vocalization and social interaction can be
monitored. Furthermore, physical parameters affecting behavior, e.g., ambient temperature,
are monitored easily. Combining this information may very well contribute to a general
improvement in animal welfare on dairy farms [55]. Due to the constant nature of the
systems, PLF may be able to monitor animals in a more intensive, more reliable and
more consistent manner than traditional animal monitoring by humans alone is able to
achieve [17]. Some examples below illustrate the possibilities PLF is opening for the
management of dairy farms with special respect to animal health and welfare. This list can
by no means be exhaustive and covers both technology that is already available and also
possibilities that so far are merely a concept.

The previously mentioned monitoring of rumination is possible using different tech-
nological approaches and may serve in the early detection of disease, especially metabolic
conditions. In a study using 312 dairy cows, Gusterer et al. [56] showed that changes in
rumination activity detected by a sensor system markedly preceded clinical diagnosis of
a disease. The study used the monitoring of rumination frequency and length of rumina-
tion bouts and compared this information with the results of daily standardized clinical
examination with ß-hydroxybutyrate measuring, all in the period from calving until day 8
post-partum. It was shown that rumination monitoring identified clinical disease up to five
days before a clinical diagnosis could be made.

Optical systems to determine the body condition score (BCS) of cattle have become
commercially available in recent years. The BCS is generally understood as the main risk
factor for metabolic disease in the transition period of dairy cows [57] and is mainly moni-
tored using traditional adspection methods. Optical monitoring using a three-dimensional
capture of body points is more sensitive to changes and describes the BCS better and more
consistently than the traditional system using half or quarter scoring points [58,59]. As the
BCS is a parameter intricately linked to metabolic processes, these systems open the door for
high-throughput phenotyping to finally improve genetic selection on resilience parameters.

Monitoring locomotion health in dairy cattle may benefit from PLF technologies. Digi-
tal systems that are collecting and sorting diagnoses from hoof care have been available for
some years; they are helpful to give a more systematic, dynamic and more objective picture
of diseases of the feet. [60]. In particular, control of digital dermatitis may be improved
by digital documentation as the associated algorithms help to describe the development
on herd level better and aid in identification of herd-specific risk factors [61]. Animals
experiencing lameness show a different locomotive behavior [62], and the transition from
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soundly walking to mildly lame is regularly missed by farmers, the identification of which
would help in controlling lameness at the herd level [63]. The use of accelerometers has
been described for lameness detection and appears to be a reliable method [64,65]. Early
detection of locomotion disease is also possible by use of optical monitoring systems, which,
similarly to the abovementioned principle of metabolic disease detection, may recognize
clinical alterations earlier than traditional methods and thus help to improve locomotion
health in a herd [66].

Heat stress is regularly identified as a challenge to animal wellbeing and production.
So far, most farms operate their cooling regime on fixed schedules or according to ambient
temperature. The actual level of heat stress can be predicted using environmental and
animal production data and hence provide a more exact description of the challenge [67].
The inclusion of actual body temperature data may refine strategies, making heat abatement
more effective [68]

The control of feeding dairy cows is regularly impaired by the challenge to correctly
assess the actual dry matter intake of the animals. Optical monitoring using the technique
of “photogrammetry” may provide a more reliable and constant information flow. Pho-
togrammetry converts optical data, i.e., the volume of feed, into mass. The monitoring
of changes in volume and consequently in mass allows for the calculation of feed intake
by the animals [69]. Generally, the connection of various technical components related
to the feeding process offers the perspective to make feeding more animal-oriented and
efficient [40].

Capture and analysis of livestock vocalization is so far merely a concept. It has been
shown, however, that different animal vocalizations may be sorted and classified [70]. In
the long term, this may help to assess animal affective states in a quantitative and thus
measurable way, allowing for an objective evaluation of animal welfare in dairy herds.
Thus, the assessment of biological data from various sources may enable the analysis of
“affective states” [54], which so far form a rather inaccessible part of animal welfare [71].

Figure 1. Overview of a PLF system of various components on a dairy farm. The automated milking
system (AMS) in this case serves as a complex of sensors capturing data from an individual animal.
The attached algorithm interprets the data and creates predictions that are transmitted to the farmer
to aid decision making [71].
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Figure 2. Overview of currently used devices to capture biological data from animals. All these
sensors are connected and can hence be understood as the application of the “Internet of Things” to
the dairy cattle sector.

Figure 3. Elements of Precision Livestock Farming, adapted from Rutten et al. [14]. While sensors
are measuring parameters, algorithms are recognizing relevant changes and interpreting them (here
with the example of estrus detection). Additional information from other sources helps to classify
the event. The final stage is a system that autonomously acts on the basis of the information—in this
example, it decides on inseminating the animal.

With respect to animal breeding, the large-scale and continuous collection of pheno-
typic data (e.g., milk production, growth rate, behaviors and disease resistance for example)
opens the way to what is known as “high-throughput phenotyping”, i.e., the characteri-
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zation of all the apparent characteristics of an individual. This can happen continuously
and almost in real time using connected sensors and tools. This phenotyping allows for
genomic studies that rapidly select animals carrying the characteristics of interest (such as
disease resistance, a phenotype that is very difficult to characterize classically). It may also
open up perspectives for phenotyping on traits not currently available and hence creating
new possibilities for selection. To do this, it is fundamental to associate different people
from different backgrounds to develop the tools, not forgetting to associate the end user in
particular [72]. Connected tools could make it possible to bring out the individual in the
group and thus give visibility for the breeder to isolated individuals, especially in large
numbers. However, the opposite effect is also realistic; an extreme standardization of the
animals could lead to genetic impoverishment by eliminating individuals that go beyond
the hoped or expected standards.

6. Human–Animal Relationship

The increasing presence of PLF technology on dairy farms is likely to change the
interaction between man and animal. An “alienation” further separating the animals
from the people responsible for them appears possible. The animal would become a mere
functional component in an increasingly efficient production system. Inversely, PLF seems
to offer huge potential to better recognize and respond to animals’ needs and prevent
factors negatively influencing their wellbeing. This spectrum of possibilities is laid down
in a report by a Dutch study that gives a comprehensive overview on the respective risks
and opportunities [73] (Figure 4). Covering the different perspectives of the animal, its
owner and society in general, the study tries to gauge positive or negative consequences
digitalization, electronic monitoring and automated decision making might bring to animal
husbandry. Opportunities are generally seen in a more exact provision and care for the
animals’ needs, an early detection and prevention of disease; an incorrect usage of the
systems and the information received from them or malfunctioning of systems themselves
are identified as major risks. The authors recognize the danger of reducing the animal to a
mere function and “thing”, i.e., that animals may be understood as a pure functional part
of the production process, discarding its properties a sentient being. From the producer’s
perspective, PLF opens perspectives to a more efficient production process and reduction
of workload; on the other hand, the digitalization makes a farm vulnerable to data theft
or cyber-attacks. Moreover, a certain dependency on the manufacturers of the systems is
created. From the perspective of society, there is the chance to create more transparency of
the production process, as animal husbandry may better be understood, and its principles
more effectively communicated. However, extensive application of PLF technology may
alter the image of animal husbandry towards being “over-engineered”, this conflicting
with the traditional perception of the farming sector. This conception may also be shared
by farmers themselves. However, individual preferences are to be considered. For example,
PLF-associated technology can be perceived merely as a tool not changing the production
system itself at all. Interestingly, farmers that have a strong emotional relationship with their
animals seem to recognize the potential of technology more positively [74]. An ambivalent
attitude in society is reported by Krampe et al. [75]. The study evaluated the perception of
PLF in consumers of three European countries; the already mentioned “over-engineering”
of animal husbandry was identified as a concern. However, opportunities were recognized
by consumers nonetheless: improvement of animal health and welfare, a positive impact
on sustainability and transparency of the market-chain were mentioned. The information
provided by PLF technology can very much alter the perception that the breeder or owner
has of his animal. PLF allows for a farmer to go beyond the basic, production-related
information of his animals: now, movement, behavior (feeding, sleeping) and exact location
can be monitored and assessed. This may allow for a better understanding of the animal
and a more personalized approach, bringing back the “individual animals perspective”
even to very large herds.
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Figure 4. Evaluation of opportunities and risks of PLF. Summary based on (Raad voor Dierenaangele-
genheiden [72]). From the different perspectives (animal, producer, public), different options arise.

The absence of a specific regulatory framework for hardware components on animals
means that the choice to equip a group of specific animals with a device is often made by
the owner exclusively. While it is obvious that there can be no question of obtaining the
direct consent of the animal, it is legitimate to question the circumstances in which one can
freely decide whether or not to equip an animal, particularly when the objects are of an
invasive character. Expertise from a specialist in animal health or behavior seems useful,
especially when validating the equipment and, if necessary, the choice of technical solution.
It is also essential that users be properly trained in all the risks implied by the tool.

7. Summary—PLF from the Veterinarian’s Perspective

Precision Livestock Farming is a collective term that describes a rapidly expanding
complex of sensor technology, algorithms and applications. PLF aims to optimize animal
production, health and welfare. It has become impossible to fully describe and evaluate
all developments, especially as only a few have been evaluated scientifically. As has been
shown on the example of dairy husbandry, the interaction of sensors and information
technology creates new possibilities such as early disease recognition, monitoring of animal
behavior and possibly improved animal welfare through optimized management. However,
neither alarms nor information seem to be the objective of PLF; it is rather an integrated
view on the farm, and possibly the whole industry, being interconnected. Decision making,
not decision support, is the perspective. The information available increases in accuracy,
complexity and volume. The data available may allow for a closer observation of farm
events and development, better preparation of clinical activities or advice due to better
data at hand and a more effective follow-up after changes have been implemented.

This creates opportunities but also risks: the dependency on algorithms and their
correct function and also the impossibility of comprehending all information collected
and created may be hazardous. The veterinarian may be reduced to a component within
the decision-making process which he or she may not be able to control or influence.



Animals 2023, 13, 779 12 of 15

Furthermore, the human–animal relationship may be affected, with the individual animal
being viewed as a technical component. The same may apply to veterinary practice
with treatments automatically evaluated and suggested beforehand and their success
already being predicted based on historic data. This would clearly conflict with the ethical
commitment of the veterinary profession. While PLF systems can provide early detection
or even prediction of disease, it is unclear how the veterinarian can deal with this. An
animal that has been predicted to develop clinical disease can nevertheless still be clinically
normal; a treatment using pharmaceuticals is hardly permissible if the indication is not
stated by a veterinarian. This touches the fundamentals of the veterinary profession as it
challenges the clinical examination and diagnosis.

The opportunities are there, nevertheless. The systematic collection and evaluation of
animal records of all kinds opens new perspectives in herd health. Continuous and possibly
remote access by the veterinarian to the data generated by PLF systems opens interesting
perspectives in terms of teleconsultation or tele-expertise, creating new perspectives in
optimizing health and wellbeing of the animals. This may especially be interesting for
farms in remote areas, away from centers of veterinary expertise. However, the help that
these systems could bring cannot hide the need to address the issue of planning resources
and permanent health monitoring. The mass of data generated may make it possible
to rethink the client–veterinary relationship, developing the field of telemonitoring and
an “increased” clinical examination for the veterinarian, who would thus have access to
data otherwise not available. Conversely, the farmer should not be overwhelmed with
information and should contact the veterinarian in a manner that is agreed between both
parties. It is indeed the complementarity of the approaches that should benefit the animal.
The challenge is then to explain to customers what attitude to adopt when faced with these
tools, which cannot entirely replace cow-side care. The use of PLF technologies will also
require veterinarians and owners to be adequately trained in the use of these tools and the
data and alerts they generate.

Early detection or prediction of disease may very well improve animal health on
dairy farms; monitoring lameness in particular could benefit from kinetic or optical sensor
technology. This might also help to raise acceptance of the dairy sector in the consumers’
perspective. In any case, PLF is going to alter the working routine of veterinarians. It is not
up to the veterinary profession whether to accept these changes—they must be recognized,
embraced and used. It is necessary for veterinarians to understand the functioning of PLF
and to actively take part in its development.
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