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Simple Summary: On livestock farms, measuring individual intake is difficult to assess, but is a very
important value for evaluating the feed efficiency of livestock. Feed efficiency has an impact on farm
efficiency and, thus, on the economic balance sheet. The purpose of this work was to predict the
intake of lactating Sarda ewes from milk spectra using multivariate approaches. Individual intake
was found to be moderately correlated with the wavenumbers of the milk spectra. The preliminary
results of this study showed that individual intake and, thus, feeding efficiency can be routinely
estimated from milk spectra. Further large-scale studies may allow for a rapid, low-cost indicator to
be used to keep constant tabs on feeding and farm efficiency.

Abstract: Individual dry matter intake (DMI) is a relevant factor for evaluating feed efficiency in
livestock. However, the measurement of this trait on a large scale is difficult and expensive. DMI,
as well as other phenotypes, can be predicted from milk spectra. The aim of this work was to
predict DMI from the milk spectra of 24 lactating Sarda dairy sheep ewes. Three models (Principal
Component Regression, Partial Least Squares Regression, and Stepwise Regression) were iteratively
applied to three validation schemes: records, ewes, and days. DMI was moderately correlated with
the wavenumbers of the milk spectra: the largest correlations (around ±0.30) were observed at
~1100–1330 cm−1 and ~2800–3000 cm−1. The average correlations between real and predicted DMI
were 0.33 (validation on records), 0.32 (validation on ewes), and 0.23 (validation on days). The results
of this preliminary study, even if based on a small number of animals, demonstrate that DMI can be
routinely estimated from the milk spectra.

Keywords: multivariate; automatic feeding system; milk spectra

1. Introduction

Individual dry matter intake (DMI) is a relevant factor for evaluating feed efficiency
(FE) in livestock [1]. In fact, DMI should be carefully considered when formulating animals’
diets, because it is the main driver of animal productivity [2] and because feed represents the
main single input cost for the farmers [3]. In the past, most individual DMI measurements
were carried out using individual pens, which can increase the anxiety and reduce the
performance of the animal [4,5]. This is especially true for sheep, as they are gregarious
and social animals [6]. Moreover, the DMI seems to be reduced when social animals (e.g.,
sheep) are kept in very small groups [7].

Recently, data regarding the individual DMI of animals became available due to
the availability of automatic feeding systems at the farm level, which was mainly for
experimental purposes [8–11]. These systems allow not only the individual dry matter
intake but also the feeding behavior, to be recorded, e.g., the frequency of access to the
manger, the time spent eating, and the feeding routine during the day. However, in this case,
routine recording of this trait is hampered by the relatively high costs of these systems [12].
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In dairy animals, traits that are difficult to measure directly, such as DMI, can be predicted
from spectra obtained from Fourier transform mid-infrared (FT-MIR) spectrometry analysis
of milk. Example of variables predicted by milk MIR are fatty acid (FA) profile [13–15],
methane emissions [16,17], major minerals [18], ration composition [19], energy balance and
efficiency [20,21], and dry matter and residual feed intake [22,23]. However, milk spectra
have a very large number of variables and, thus, some techniques aimed at reducing the
dimensionality of the datasets should be applied. Among the several available approaches,
Partial Least Squares Regression (PLSR) and Principal Components Regression (PCR) are
probably the most common ones. Even if similar, these two approaches have important
differences: the reduction in the number of explanatory variables (i.e., predictors) could be
based on variance (PCR) or covariance (PLSR), and it could be carried out either considering
(PLSR) or not considering (PCR) the response variable. Both models extract new latent
variables (that are combinations of the original predictors), each providing a quota for the
total variability of the investigated system. Another technique largely applied to reduce
the dimensionality of a dataset is Stepwise Regression (SR), which iteratively selects the
predictors most associated with the response variable. Thus, the SR does not modify the
original predictors, but only selects the most suitable to predict the investigated trait.

PLSR has been successfully applied to predict FA profiles [24] and coagulation prop-
erties [25] from milk spectra. The prediction of an FA profile from milk spectra allows
traditional gas chromatography (GC), which is a time and money consuming process, to
be bypassed. This algorithm had a very good coefficient of determination (R2), and the
GC-measured and PLSR-predicted FA showed similar heritability and prediction accuracy
in a genomic study on Sarda dairy sheep [26].

The hypothesis behind this study was that milk spectra, which are now routinely
available at the farm level, could be used to predict DMI. This would allow farmers to have
a value of DMI for all lactating ewes, even in farms without feeding systems. Thus, the
aim of this work was to test the ability of the most widely adopted multivariate techniques
to predict DMI from milk spectra in Sarda dairy sheep by using actual DMI values from
experimental data.

2. Materials and Methods
2.1. Data

A total of twenty-four (24) early-lactation ewes were studied from the experimental
flock of the Dipartimento di Agraria, University of Sassari (40◦46′24.2′′ N, 8◦29′31.3′′ E;
Ottava, SS, 07100, Sassari). The ewes were all pluriparous, and they had an average body
weight of 44.38± 4.86 kg. After an adaptation period of twenty days, the animals were kept
together for twenty-eight days in a barn equipped with ten individual automatic feeding
systems (Biocontrol AS, Rakkestad, Norway) and milking equipment (AFIMILK® System,
Kibbutz Afikim, Israel). The feeding systems consisted of mangers placed on weighing
cells that automatically weighed the feed before and after each animal’s entrance. Access to
the feeding systems was controlled by gates that recognized all animals through ear tags
and allowed only one animal at a time. Thus, the feeding systems registered the daily DMI
for each ewe (Figure 1). Animals were fed a chopped total mix ration (TMR, DM 85.1%; CP
17.6% DM, NDF 34.5% DM, ash 8.3% DM, NEL 1.48 Mcal/kg DM). The TMR contained the
following components: polyphyte hay, corn flakes, corn flour, alfalfa hay, soybean flour
extract, crushed barley, and molasses.



Animals 2023, 13, 763 3 of 11Animals 2023, 13, x FOR PEER REVIEW 3 of 12 
 

 

Figure 1. Automatic feeding systems at the experimental farm of the Dipartimento di Agraria, Uni-

versity of Sassari. 

Animals were milked twice a day, and, during the routine milking, individual milk 

samples were collected on 8 different days (November–December). Milk samples were 

corrected according to [27], using 6.5% as fat and 5.8% as protein to obtain FPCM. For each 

animal, FE was computed as the ratio between the daily milk yield and the dry matter 

intake. To obtain milk spectra, each milk sample was analyzed by MIR spectroscopy 

(MilkoScan 6000, Foss Electric). The region spanning from 925.92 and 5011.54 cm−1 was 

considered for the collection of milk spectra. Considering an instrumental resolution of 

3.858 cm−1, each spectrum consisted of 1060 data points. 

2.2. Statistical Analysis 

Three different techniques were applied to the dataset: PCR, PLSR, and SR. The PCR 

and PLSR were carried out using the pcr and plsr functions of the “plsr” R package [28], 

respectively. For both models, the number of new variables to minimize the root mean 

square errors of prediction (RMSEP) were selected. SR was carried out using the step R 

function, which selected the variables according to the Akaike Information Criterion (AIC) 

of the model. In addition, in this case, the best subset of predictors was the one that mini-

mized the AIC. 

Three different validation schemes were tested: (i) observations: 90% of observations 

were randomly assigned to the training dataset, whereas the remaining 10% were used as 

validation, and this validation scheme was repeated 100 times; (ii) ewes: data from 23 

ewes were assigned to the training dataset and used to predict 1 ewe, and this validation 

was repeated 24 times; and (iii) days: data from 7 ewes were assigned to the training da-

taset and used to predict 1 day, and this was repeated 8 times. The prediction ability of 

each model was evaluated by the correlation between the measured real dry matter intake 

(rDMI) and the estimated DMI (eDMI) from the spectra, averaged across replicates. 

The three models and the three validation schemes were tested using the raw spectra 

or the spectra without the wavenumbers associated with water. 

3. Results 

The mean daily FPCM across the whole experiment was 1.56 ± 0.39 kg/day, and it 

ranged from 0.75 to 2.49 kg/day. According to the median FPCM, animals were divided 

in two classes: high and low MY. The average FPCM values in the two classes were 1.25 ± 

0.17 kg/day and 1.88 ± 0.26 kg/day for low-yielding and high-yielding ewes, respectively. 

Figure 1. Automatic feeding systems at the experimental farm of the Dipartimento di Agraria,
University of Sassari.

Animals were milked twice a day, and, during the routine milking, individual milk
samples were collected on 8 different days (November–December). Milk samples were
corrected according to [27], using 6.5% as fat and 5.8% as protein to obtain FPCM. For
each animal, FE was computed as the ratio between the daily milk yield and the dry
matter intake. To obtain milk spectra, each milk sample was analyzed by MIR spectroscopy
(MilkoScan 6000, Foss Electric). The region spanning from 925.92 and 5011.54 cm−1 was
considered for the collection of milk spectra. Considering an instrumental resolution of
3.858 cm−1, each spectrum consisted of 1060 data points.

2.2. Statistical Analysis

Three different techniques were applied to the dataset: PCR, PLSR, and SR. The PCR
and PLSR were carried out using the pcr and plsr functions of the “plsr” R package [28],
respectively. For both models, the number of new variables to minimize the root mean
square errors of prediction (RMSEP) were selected. SR was carried out using the step
R function, which selected the variables according to the Akaike Information Criterion
(AIC) of the model. In addition, in this case, the best subset of predictors was the one that
minimized the AIC.

Three different validation schemes were tested: (i) observations: 90% of observations
were randomly assigned to the training dataset, whereas the remaining 10% were used as
validation, and this validation scheme was repeated 100 times; (ii) ewes: data from 23 ewes
were assigned to the training dataset and used to predict 1 ewe, and this validation was
repeated 24 times; and (iii) days: data from 7 ewes were assigned to the training dataset and
used to predict 1 day, and this was repeated 8 times. The prediction ability of each model
was evaluated by the correlation between the measured real dry matter intake (rDMI) and
the estimated DMI (eDMI) from the spectra, averaged across replicates.

The three models and the three validation schemes were tested using the raw spectra
or the spectra without the wavenumbers associated with water.

3. Results

The mean daily FPCM across the whole experiment was 1.56 ± 0.39 kg/day, and
it ranged from 0.75 to 2.49 kg/day. According to the median FPCM, animals were di-
vided in two classes: high and low MY. The average FPCM values in the two classes
were 1.25 ± 0.17 kg/day and 1.88 ± 0.26 kg/day for low-yielding and high-yielding ewes,
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respectively. These values were associated with three different DMIs, measured on the
same day and one and two days before the milking event.

The average individual DMI registered the same day of the milking event in the
experimental group was 2.00 ± 0.63 kg/day (Table 1), and ranged from 0.3 to 4.5 kg. When
considering the DMI measured on the same day as the milking event, high-yielding ewes
showed a DMI equal to 2.07 ± 0.68 kg, whereas the low-yielding ewes had a DMI of
1.94 ± 0.58 kg. The same pattern was observed one and two days before the milking event
(Table 1).

Table 1. Individual fat–protein-corrected milk (FPCM), dry matter intake, and feed efficiency during
the experimental trial.

FPCM Class

Trait All Low High

FPCM yield 1.56 ± 0.39 1.25 ± 0.17 1.88 ± 0.26

Dry matter intake
Day of milking 2.00 ± 0.63 1.94 ± 0.58 2.07 ± 0.68
1 d before milking 1.93 ± 0.67 1.88 ± 0.57 1.98 ± 0.76
2 d before milking 2.07 ± 0.62 2.00 ± 0.55 2.15 ± 0.68

Feed efficiency
Day of milking 0.87 ± 0.41 0.71 ± 0.28 1.04 ± 0.46
1 d before milking 0.96 ± 0.61 0.73 ± 0.29 1.18 ± 0.76
2 d before milking 0.84 ± 0.43 0.67 ± 0.24 1.01 ± 0.51

FPCM = fat- and protein-corrected milk.

The overall average FE (considering the DMI measured the same day of the milking
event) was 0.87 ± 0.41 kg of FCPM/kg of dry matter intake, and it ranged from 0.3 to
2.5. When computed individually for each sheep, the FE (on the day of milking) ranged
from 0.48 to 1.38 kg of FCPM per kg of dry matter intake. The FE was almost stable
across the eight sampling points, with only the last day showing a larger value due to a
general decrease in the dry matter intake (Figure 2). High-yielding ewes showed greater
FE compared to the low-yielding ewes (Table 1).
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the eight samplings.

In this study, the correlations between DMI and FPCM were not significant considering
the pooled records of all the ewes (Table 2).
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Table 2. Correlations between fat- and protein-corrected milk (FPCM) and dry matter intake measured
either on the day of or one or two days before the milking event.

Dry Matter Intake

FPCM Class Same Day 1 d Before 2 d Before

All 0.11 NS 0.17 NS 0.06 NS

Low 0.40 *** 0.54 *** 0.34 **
High −0.14 NS −0.16 NS −0.27 *

NS = not significant; * = p < 0.05; ** = p < 0.01; *** = p < 0.001. FPCM = fat- and protein-corrected milk.

However, low-yielding ewes showed positive correlations with DMI that ranged
from 0.34 to 0.54, whereas high-yielding ewes showed negative correlations (Table 2 and
Figure 3).
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measured the day before milking. Red indicates high-yielding ewes, whereas blue indicates low-
yielding ewes. The lines indicate the trend line from the linear model.

The correlations between DMI and FPCM were computed for each sampling day and
animal. Correlations between the daily DMI (measured on the day of the milking event)
and the daily FPCM within each sampling point ranged from −0.11 (at the fourth sampling
day) to 0.43 (computed using data from the eighth sampling day). The correlations between
DMI and FPCM were also computed for each sheep: these values ranged from −0.74 to
0.77. Correlations considering the DMI measured one and two days before the milking
events showed a similar pattern.

The significant variability among the animals could also be observed while computing
the correlations between FPCM and the DMI measured the day before the milking event
(Figure 3). However, when the animals were considered all together, a correlation of 0.17
(Table 2 and Figure 3) was observed for the DMI one day before of the milking event
(Table 2); thus, this value was used in the prediction models.

Table 3 shows the results of the individual DMI prediction (measured one day before
the milking event) based on the milk spectra. On average, PCR and PLSR selected 11 and
2 new variables from the raw spectra, and 18 and 7 new variables from the spectra without
the wavenumbers associated with water. SR showed the opposite behavior, i.e., it selected
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more variables when applied to the raw spectra than to the spectra without the wavenum-
bers associated with water. On average, SR selected 81 and 54 wavenumbers from the
spectra with or without water, respectively.

Table 3. Results of the dry matter intake prediction and average correlations (standard errors)
between real and estimated dry matter intake.

Raw Spectra Without Water

Validation PCR 1 PLSR 2 SR 3 PCR PLSR SR

Number of variables
Observations 11 (1) 2 (0) 88 (7) 18 (1) 6 (0) 61 (7)
Ewes 11 (2) 2 (0) 79 (15) 17 (0) 7 (0) 54 (14)
Day 11 (3) 3 (0) 76 (27) 18 (3) 8 (2) 47 (19)

Correlation between real and estimated dry matter intake Average

Observations 0.26 (0.02) 0.38 (0.02) 0.31 (0.02) 0.36 (0.02) 0.33 (0.02) 0.33 (0.02) 0.33
Ewes 0.29 (0.06) 0.38 (0.06) 0.30 (0.07) 0.35 (0.06) 0.29 (0.05) 0.32 (0.06) 0.32
Day 0.22 (0.06) 0.28 (0.05) 0.29 (0.11) 0.20 (0.06) 0.16 (0.05) 0.23 (0.07) 0.23

1 PCR = principal components regression; 2 PLSR = partial least squares regression; 3 SR = stepwise regression.

Correlations between rDMI and eDMI were low to moderate, and ranged from
0.16 (PLSR applied to predict DMI of ewes on the spectra without wavenumbers associ-
ated with water) to 0.38 (PLSR applied to predict DMI of observations and ewes on the
raw spectra). Standard errors for the correlations ranged from 0.02 to 0.11. The average
correlation between rDMI and eDMI for the three validation schemes (across models and
spectra) were 0.33, 0.32, and 0.23 for observations, ewes, and days, respectively (Table 3).

Figure 4 illustrates the correlations between DMI and milk absorbance at each
wavenumber. The average correlation between DMI and all wavenumbers was −0.03 ± 0.19,
and ranged from −0.31 to 0.32.
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Figure 4. Plot of the overlapping values of the correlation between the dry matter intake (DMI) and
the milk absorbance at given wavenumber, and that of the average MIR spectra of milk samples.

The regions showing the highest correlations between the DMI and milk absorbance
were between ~1100 and 1300 cm−1 and between ~2800–3000 cm−1. However, as reported
in Figure 3, some other regions showed moderate correlations and included wavenumbers
which had often been discharged due to the water absorption, as well as others belonging
to a large area (~1770–2400 cm−1).

4. Discussion

Individual DMI is an important factor that could provide information regarding the
FE of animals. Its recording on a large scale is difficult because dairy ewes are traditionally
fed all together. Recently, the automatic feeding systems that can record individual DMIs
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have been spreading in sheep farms. However, the availability of these systems is still
quite low because of their high cost. Thus, the prediction of individual DMI could help
to save money and could provide important information at the population level. Besides
the use of milk spectra, several mathematical methods to empirically estimate dry matter
intake have previously been developed for small ruminants, and have also been applied to
Sarda dairy sheep [27]. The main variables driving DMI are metabolic body weight (i.e.,
body weight, kg0.75) and production of fat- and protein-corrected milk (FPCM; 6.5% fat
and 5.8% protein) as follows: DMI, kg/d per ewe = −0.545 + 0.096 ×metabolic weight
+ 0.650 × FPCM [27]. This equation was applied to the average values of body weight
and FPCM recorded in the present study, and it estimated a DMI of 2.10 kg/day, which is
very close to the values recorded by the automatic feeding systems in this trial (Table 1).
Moreover, the average values of DMI and MY found in this study are in line with previous
studies on lactating Sarda dairy sheep. Cabiddu et al. [29] analyzed the dry matter intake
of ewes during the late pregnancy and suckling periods, and they reported an average
value of 1.71 kg per day (from 1.58 to 1.87 kg per day according to the diet, with an average
milk yield of 1.58 ± 0.10 L/day). A slightly lower average value (1.3 kg/day) was reported
by Lunesu et al. [30], who investigated the effects of dietary starch concentration on the
performance of mid-lactating ewes. The DMI reported by these authors ranged from 1.2 to
1.4 kg per day according to the diet, with an average MY of 0.9 kg/day [30]. Finally, Carta
et al. [31] found an average dry matter intake of 1.8 kg/day in Sarda ewes, with an average
MY of 1.3 kg/d. Muir et al. [32] analyzed the DMI in composite sheep, and they reported
an average value of 2.7 ± 0.42 kg per day in adult ewes. This composite breed had average
weight of 62.0 ± 6.8; thus, the greater DMI values could be due to the greater average body
weight. The average DMI in New Zealand sheep was reported to be 0.92 kg/d (ranging
from 0.45 and 1.55 kg/d, depending on the experiment and the diet [33]).

As reported in Table 2, correlations between DMI and FPCM varied according to
the animals considered: the correlations were positive when computed on low-yielding
ewes and negative when considering high-yielding animals. This result suggests that
the relationship between DMI and milk production was affected by the feed efficiency of
the animals and the depletion of body reserves. Moreover, the association between DMI
and MY should be evaluated, also considering the body condition scores (BCS) and body
weight changes. In order to better decipher the relationship between the two parameters,
the correlations between DMI and FPCM were computed for each individual sampling day
and animal. Greater variability was observed when correlations between DMI and FPCM
were computed for each sheep. These results highlight a huge level of variability due to
environmental (sampling day) and genetic (animal) factors that influence the dry matter
intake in sheep, as pointed out by the analysis of the FE reported in Table 1. Moreover, the
results regarding the correlations between DMI and FPCM could be due to the fact that,
even after a long adaptation period, some animals were not well adapted to the use of the
automatic feeding systems. The low correlation estimated between pooled DMI and FPCM
data seems to disagree with the strong relationship between milk production and energy
supply, for which an increased DMI has been considered the main driver [27,34]. Stronger
correlations between DMI and MY were reported in cattle: from 0.52 to 0.85, according to
the breed, parity, and feeding system [35,36]. However, Liang et al. [37] analyzed the total
DMI or the DMI within two hours of the feed suppletion, and they estimated correlations
with DMIs of 0.38 and −0.02, respectively. Zamuner et al. [38] reported a Spearman rho
correlation of 0.70 between DMI, as a percentage of body weight, and fat- and protein-
corrected milk in dairy goats from 14 to 42 days in milk. The greater average correlations
computed between DMI and MY in dairy cattle could be explained by the stronger genetic
correlation of this species, which leads to more efficient cows which are more similar to
each other compared to the ewes studied herein.

In the present study, when all ewes were considered together, the strongest correlation
was found between MY and DMI one day before the milking event (Table 2). This result
could be due to the fact that milk released in the morning of one day was accumulated in
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the interval between the previous and the subsequent milking and, thus, the milk yield was
affected by the amount and composition of the feed eaten by the animals the day before.
For this reason, the DMI measured the day before of the milking event was used as the
dependent variable in the models to predict this parameter from the milk spectra. The lower
number of new variables explaining the total variability found when PCR and PLSR were
applied to the raw spectra could be associated with the low variability of wavenumbers
associated with water (i.e., 1582–1701 and 3048–5000). On the contrary, the SR selected
more wavenumbers when applied to the raw spectra, since the latter had more input data
compared to the spectra without the wavenumbers associated with water.

Looking at the prediction ability (i.e., correlations between rDMI and eDMI) of the
three models involved, PLSR showed better performance on the raw spectra, whereas PCR
worked better using the spectra without the wavenumbers associated with water. SR was
the best model to predict the DMI on a particular day using both spectra, with or without
the wavenumbers associated with water. It should be pointed out that SR has the advantage
of selecting the wavenumbers without extracting new variables, as both PCR and PLSR do.
Therefore, once a subset of wavenumbers is selected, these can be easily propagated to the
whole population to better predict DMI. Moreover, the selection of wavenumbers instead
of new predictors (i.e., principal components) allows for a biological interpretation of the
results. Moreover, the results of the prediction analysis (i.e., low-moderate correlations
between real and estimated DMI) could be partially due to the weak correlation computed
between DMI and milk production in the present study, since the milk spectra reflect the
milk production.

The lower predictive ability of the models applied to predict DMI on a particular day
could be ascribed to the larger between-day variability, especially on the last sampling day
(as observed in Figure 2). The exclusion of one animal at the time has already been used as
a validation scheme in the prediction of DMI from milk spectra [12,22]. Shetty et al. [22]
applied PLSR to predict DMI from milk spectra in dairy cows, and the correlations between
rDMI and eDMI ranged from 0.49 to 0.55. Recently, PLSR has been applied to milk infrared
spectra to predict DMI in 552 Dutch Holstein cows; a correlation of 0.47 between rDMI and
eDMI was estimated [39]. Dórea et al. [12] predicted the DMI of 308 mid-lactating dairy
cows, testing different models. When these authors used PLSR on the whole or restricted
milk spectra only, they reported correlations between rDMI and eDMI of 0.17 and 0.36,
respectively. The generally larger predictive abilities of the models found in these studies
could be ascribed to the larger dataset and the different species. Cows, and especially some
dairy breeds such as Holstein, have been strongly selected for milk yield and, therefore, for
DMI, as demonstrated by the very strong correlation reported in this species between these
two traits. Thus, the DMI is more stable across cows than ewes.

The useful potential of milk MIR spectroscopy as a phenotyping tool has already been
widely studied; this technique is routinely used to determine the main components of milk
(fat, protein, and lactose) in the framework of milk payment and milk recording, but also
other minor compounds [40,41]. Moreover, recently, several studies have been conducted
to predict more complex phenotypes, such as the milk fatty acid profile, cheese-making
aptitude, metabolic status of animals, feed composition, body weight, methane emissions,
and feed intake [41].

As shown in Figure 4, the overlapping with the mean absorbance of milk spectra
allows to identify the region and the wavelengths more associated with the DMI. The
regions showing the highest correlations were between ~1100 and 1300 cm−1 and between
~2800–3000 cm−1. The first MIR spectral region includes signals related to milk lactose
content (from ~1100 to 1200), due to the presence of C-O bonds belonging to the alcoholic
and ether groups of carbohydrates [42,43], and to the protein content (from ~1200 to
1300 cm−1), due to the presence of C-N bonds of tertiary amides [43]. The second MIR
spectral region includes signals related to the asymmetric and symmetric stretching of
methylenic C–H fat bond [44]. The importance of fat, protein, and lactose regions of the
milk infrared spectral profile in relationship to the DMI was consistent with a previous
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work on dairy cows [22]. However, as it can be seen in the Figure 3, other regions showed
not negligible correlations; some of these include wavelengths often discharged due to the
water absorption, and others belong to a large area that is not typically related with milk
components (~1770–2400 cm−1) but were found to be important for other milk traits, as
milk coagulation properties [45,46]. This finding disagrees with Shetty et al. [22] which
affirmed that milk spectral data does not add significant new information to improve DMI
prediction models.

This study investigated the relationship between milk production and individual DMI
in lactating sheep and the possibility of using milk spectra to predict the latter. The increase
in knowledge on this field (i.e., precision farming) could lead to several advantages to
the livestock sector in terms of saving time, managing animals, and reducing waste. The
results regarding the association between MY and DMI could have a strong impact on
the management of dairy farms. In fact, since these two traits had different correlations
in low- and high-yielding ewes, the farmers might divide the flock into groups according
to the different levels of milk production, thus increasing the farm’s efficiency through
better feed utilization and a decrease in waste. Waste reduction and a better utilization of
feed in the farms allow a decrease in the production costs and an increase in the economic
income of the farmers. Moreover, good management of the animals has a positive effect on
the environmental impact of farms, because DMI is a crucial parameter to define livestock
efficiency. The animal production system is called to meet the demand of consumers who
want to reduce the environmental impact of the livestock sector without a decrease in
production levels. The DMI predictions could be a great way to increase the productivity
of the farms without any additional costs. The results of the present study suggest the
possibility of predicting DMI from milk spectra, allowing farmers to have records for
all lactating ewes, even in farms without the automatic feeding systems. The suggested
methodology needs to be improved and tested on a larger dataset with more observations
in order to increase the predictions’ accuracy.

5. Conclusions

This is a preliminary study based on a small number of observations that, despite the
low to moderate correlations between real and estimated dry matter intake, demonstrated
that these prediction models can be used to routinely predict the DMI of animals from milk
spectra. Future studies on a larger dataset that also consider BCS and body weight changes
might be needed. The PLSR gave the best results, both with raw spectra and without water
variables; thus, it should be particularly considered for further applications. The inclusion
of more observations in the future, especially from animals in different stages of lactation
and with different diets, is expected to increase the prediction ability.
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