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Simple Summary: Octopus minor, Uroteuthis edulis, Sepia esculenta and Sthenoteuthis oualaniensis are
important economic cephalopod species in coastal waters of China. They are very important role in
marine ecosystems as relevant prey for large marine fish, and marine mammals are a critical compo-
nent of the food chain. As the main feeding organ of cephalopods, the beak has a stable structure
and is resistant to corrosion. However, the sexual dimorphism on the beak of the O. minor, U. edulis
and S. esculenta and Sthenoteuthis oualaniensis at different ontogenetic stages is unknown, neither
has it been determined whether variation of beak shape relates to changes in habitat environment
and feeding preference at different ontogenetic stages. Using a geometric morphometrics approach,
we found that the beaks of O. minor, U. edulis, S. esculenta, and Sthenoteuthis oualaniensis showed
a pattern of variation, displaying sexual dimorphism and allometry between ontogenetic stages.
Habitat may drive variation in beak shape. This study has furthered our understanding of the beak
shape ontogenetic variation among the four species. We discuss the potential factors underlying the
beak shape variation and provide a basis for the understanding of cephalopod phenotypic plasticity
and its ecological significance.

Abstract: Investigating the ontogenetic variation of biological individuals helps us to fully understand
the characteristics of evolution. In order to explore the ontogenetic variation and sexual dimorphism
of the beak shape in Octopus minor, Uroteuthis edulis, Sepia esculenta and Sthenoteuthis oualaniensis
of the China’s coastal waters, the differences between immature and mature stages and the sex-
linked differences in the beak shape and size were analyzed with geometric morphometrics methods
in this study. The results of Procrustes analysis of variance, principal component analysis and
multivariate regression showed that the shapes of the upper beaks of O. minor, U. edulis and S. esculenta
differed significantly among various ontogenetic stages (p < 0.05). The shapes of the lower beaks of
U. edulis, S. esculenta and Sthenoteuthis oualaniensis were also significantly different among various
ontogenetic stages (p < 0.05). The results of thin-plate spline deformation grids showed that the
beaks of the four cephalopod species presented different variation patterns. This study gives us
basic beak geometry morphology information for Octopus minor, Uroteuthis edulis, Sepia esculenta and
Sthenoteuthis oualaniensis present in China’s coastal waters. The ontogenetic differences in beak shape
might be related to extrinsic factors (diet difference and intra and interspecific competition) in habitat.

Keywords: cephalopods; beaks; ontogenetic variation; sexual dimorphism; geometric morphometrics;
phenotypic plasticity
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1. Introduction

Biological individuals in nature often face different habitat environments which can
drive phenological variation [1] and the evolution of organisms. Shape variations of bio-
logical individuals also reflect variation in their habitats [2]. In addition, the phenomenon
of sexual dimorphism is also common in biological groups due to natural selection and
gender selection. Sexual selection usually affects males through female choice and may
also be caused by differences in lifestyle habits [3–6].

Two methods are generally used to explore ontogenetic and sexual dimorphism.
First, based on traditional morphometrics where the linear distance difference among
individuals is analyzed by multivariate statistical methods. However, the shape variation
of biological individuals involves geometric information, which traditional morphometrics
tend to ignore [7]. Secondly, geometric morphometrics (GM) was proposed in the 1990s,
which addressed the problems of traditional morphometrics [8–10]. This method can
quantify the geometric variation of organisms and accurately measure complex biological
shapes. Therefore, it is widely used in morphological studies [11–13]. GM is the statistical
analysis of the form based on Cartesian landmark coordinates [7,10,14]. InGM, by using
a superimposition method, for instance, Procrustes, which is used to remove the effect of
size, position and orientation of the landmark configurations, exclusively shape variables
are obtained. Then, the Procrustes shape coordinates variation and influencing factors are
studied by multivariate statistical methods, such as principal component analysis (PCA)
and discrimination analysis (DA). GM is an effective method to evaluate shape variations
at the intraspecific level as it allows the assessment of ontogenetic changes and sexual
dimorphism [15], as has been evidenced for Diplodus puntazzo [16], Munida rugosa [17],
Lates niloticus [1] and Hysterocarpus traskii [18]. Assessing ontogenetic changes and sexual
dimorphism of organism structures can help distinguish taxa (e.g., species, subspecies and
population) and understand their possible ecological role [18–20].

Cephalopoda contains around 850 extant species [21], which are widely distributed
in the world. Cephalopods play an important role in marine ecosystems as relevant prey
for large marine fish, and marine mammals are also a critical component of the food
chain [22–25]. Phenotypic plasticity in response to environment variability is one of the
main characteristics of cephalopods [26,27]. Storero et al. [26] showed the variability and
plasticity of Octopus tehuelchus in response to the environment. Fang et al. [27] discussed
the possible phenotypic plasticity of body and beak of Ommastrephes bartramii in different
aspects. Therefore, exploring the life cycle of different cephalopods is prerequisite for
sustainable exploitation and utilization of this resource.

As the main feeding organ of cephalopods, the beaks are located in the buccal mass
and divided into the upper beak and the lower beak [15,28–30]. A beak is a hard tissue
structure, which has a stable structure and is resistant to corrosion [28]. Therefore, it
is widely used in the study of feeding ecology [31,32] and stock discrimination [28–30].
Crespi-abril et al. [33] discovered that the shape of the beaks of Illex argentinus did not
vary between cohorts and sexes nor between different ontogenetic phases. Jones et al. [19]
confirmed that Patagonian squid (Doryteuthis gahi) populations had complex structures and
high intra-species variations in body shape. Sexual dimorphism of the beak is a common
phenomenon in some cephalopods [15,34,35]. However, the sexual dimorphism of the beak
in some cephalopods at different ontogenetic stages is unknown, and little is known about
the inter-population variation in beak shapes of Cephalopods species.

Cephalopods are diverse in China seas [23,36–38]. O. minor, U. edulis, S. esculenta,
and Sthenoteuthis oualaniensis, representatives of Octopodiformes and Decapodiformes
in the subclass Coleoidea, are important economic cephalopod species in coastal waters
of China [39–41]. This study aims to assess variation in the shape of beaks in different
ontogenetic stages of these four squid species and to analyze the sex-linked differences in
beak shape and size, relating these differences to relevant factors in the life history of these
species. Our analysis will expand the current knowledge about the beak development
pattern of cephalopods.
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2. Materials and Methods
2.1. Specimens

The samples were collected from 2018 to 2021 by Chinese commercial jigging and trawl
vessels in the East China Sea and South China Sea and included 198 O. minor, 205 U. edulis,
198 S. esculenta, and 218 Sthenoteuthis oualaniensis (Table 1). All samples were immediately
frozen to −18 ◦C and shipped back to the laboratory for biological experiments.

Table 1. Sample information of four cephalopods in this study.

Species Ontogenetic Stages Quantity of Samples
(F, M)

Mantle Length (mm)
(F, M)

Octopus minor Immature 97 (37, 60) 16–69, 12–74
Mature 102 (39, 63) 20–72, 20–79

Uroteuthis edulis
Immature 110 (55, 55) 92–190, 86–182

Mature 95 (53, 42) 103–240, 100–232

Sepia esculenta Immature 120 (60, 60) 51–129, 56–139
Mature 78 (49, 29) 62–160, 63–154

Sthenoteuthis
oualaniensis

Immature 118 (60, 58) 101–171, 100–189
Mature 100 (60, 40) 104–296, 109–187

Dorsal mantle length (ML) of each specimen was measured by measuring tape and
the sex and gonadal maturity of each species were then determined [42–44]. In this study,
two ontogenetic stages were considered, catalogued as mature and immature according
to the maturity stages proposed for each taxon (O. minor and S. esculenta: [42,44]; U. edulis
and Sthenoteuthis oualaniensis: [43]). After completing biological experiments as above, the
beaks were removed from the buccal mass with tweezers, cleaned, placed in a glass bottle
containing 75% ethyl alcohol, and numbered for subsequent analysis.

2.2. Data Acquisition

We focused on lateral profiles of the upper and lower beaks (Figure 1), which were
commonly used in previous studies [15,29,45]. The beak photos were taken in a small
photography shed. After debugging the small photography shed and placing the scale
ruler, the NiKonD750 camera was fixed with a tripod (the parameters of shooting lens
are Micro 105 mm f/2.8). To prevent shooting errors, the positions of beaks, camera and
focusing point were kept unchanged during shooting. Beak samples were taken out one
by one from the glass bottle and positioned, photos were taken immediately. In order to
facilitate reading image data with the software and ensure the efficiency of subsequent
shape analysis, the images were preprocessed in Photoshop CS6. The obtained images
were then used to establish landmarks.

The images of beaks were each named according to species, sex, ontogenetic stage,
and the specimen number. We added semilandmarks to better represent beak shape [46].
According to the previous studies [15], 8 landmarks and 12 semilandmarks were marked
on the upper beak (Figure 1). Additionally, 10 landmarks and 10 semilandmarks were
marked on the lower beak. Landmarks and semilandmarks of the beaks were digitized in
2D with the software TpsDig2 [47]. The coordinate data were read with the “readland.tps”
function in the R package “geomorph” [48]. The landmarks and semilandmarks were
established with the “define.sliders” function in the R package “geomorph” [48]. The
process of establishing landmarks was repeated twice to minimize measurement errors [49].
The two coordinate replicates differed by less than 5%; the data were averaged for the
subsequent shape analysis.
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Figure 1. Shape and digitized landmarks (hollow dots) and semi-landmarks (solid dots) of the
Cephalopods beak. (a): Landmark positions. (b): Shape description—A: Rostral tip, B: Jaw angle, C:
Wing, D: Lateral wall, E: Crest, F: Hood, G: Rostrum.

2.3. Geometric Morphometrics Analysis

The ontogenetic variation and sexual dimorphism of beak shape of O. minor, U. edulis,
S. esculenta, and Sthenoteuthis oualaniensis were analyzed with GM methods.

All morphological measurements and statistical analyses were performed in the R
4.0.5 “geomorph” package [48]. Firstly, the landmarks of all samples were transformed and
rotated in order to eliminate the effects of non-shape variation by generalized Procrustes
analysis (GPA) with the “gpagen” function [8,48]. The squared sum of the distances from all
landmarks to the centroid was defined as the centroid size, which can be used to represent
the size of the organism’s structure [50]. Therefore, the centroid size obtained from the
landmarks data of beaks was used as an index of the beak size in order to compare the
variation in the beak size between immature and mature specimens. We conducted a Pro-
crustes analysis of variance (ANOVA) with the “procD.lm” function to assess ontogenetic
differences and sexual dimorphism in the upper and lower beak shape [48,51]. In order
to reduce the spatial dimensions of shape data, principal component analysis (PCA) of
landmarks data was performed with the “gm.prcomp” function to determine the main
components of the shape variation in the upper and lower beak samples [48], and the beak
shape variation associated with principal component 1, 2 (PC1, PC2) and principal compo-
nent 3, 4 (PC3, PC4) was graphically depicted. Then, we also performed the multivariate
regression analysis to compare the allometric patterns of beaks in ontogenetic stages based
on the relationship between beak shape and centroid size [2,10]. Finally, the shape variation
of beaks by ontogenetic stage was visualized with thin-plate spline (TPS) deformation grids
of the “plotRefToTarget” function [48,52].
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3. Results
3.1. Ontogenetic Variation

There are significant differences in the size of the upper beaks among the four cephalo-
pod species (p < 0.05; Table 2), S. esculenta had the largest beaks, followed by U. edulis
and Sthenoteuthis oualaniensis. The beaks of O. minor were the smallest. The upper beaks
are slightly larger than the lower beaks in all four species (Figure 2). In addition, during
ontogenesis, beak size also increased accordingly. The beak size of O. minor and S. esculenta
showed the more significant variation (Figure 2a,c) compared to those of U. edulis and
Sthenoteuthis oualaniensis between ontogenetic stages, respectively (Figure 2b,d).
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C: Sepia esculenta; D: Sthenoteuthis oualaniensis.
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Table 2. Procrustes ANOVA of the shapes of upper beaks of the four cephalopods considered in
different ontogenetic stages.

Octopus minor df SS MS F Z p

Size 1 0.0556 0.0556 10.9116 5.0287 0.001
Ontogenetic stages 1 0.0109 0.0109 2.1395 1.8142 0.035

Sex 1 0.0160 0.0160 3.1475 2.4676 0.009
Size × ontogenetic stages 1 0.0117 0.0117 2.2959 2.0383 0.024

Size × sex 1 0.0043 0.0043 0.8494 −0.1484 0.549
Ontogenetic stages × sex 1 0.0079 0.0079 1.5491 1.1651 0.125

Size × ontogenetic stages × sex 1 0.0052 0.0052 1.0255 0.2676 0.385
Residuals 191 0.9726 0.0051

Total 198 1.0843

Uroteuthis edulis df SS MS F Z p

Size 1 0.0335 0.0335 6.3105 3.4049 0.001
Ontogenetic stages 1 0.0134 0.0134 2.5257 2.4851 0.007

Sex 1 0.0103 0.0103 1.9345 1.9292 0.029
Size × ontogenetic stages 1 0.0108 0.0108 2.0415 1.5520 0.066

Size × sex 1 0.0159 0.0159 3.0031 2.1099 0.021
Ontogenetic stages × sex 1 0.0126 0.0126 2.3824 2.3226 0.012

Size × ontogenetic stages × sex 1 0.0127 0.0127 2.3879 1.8585 0.030
Residuals 197 1.0455 0.0053

Total 204 1.1548

Sepia esculenta df SS MS F Z p

Size 1 0.0286 0.0286 8.3690 4.9628 0.001
Ontogenetic stages 1 0.0252 0.0251 7.3539 5.1175 0.001

Sex 1 0.0047 0.0047 1.3757 0.9843 0.172
Size × ontogenetic stages 1 0.0108 0.0108 3.1603 2.8167 0.003

Size × sex 1 0.0069 0.0069 2.0157 1.8508 0.038
Ontogenetic stages × sex 1 0.0019 0.0019 0.5642 −1.1075 0.874

Size × ontogenetic stages × sex 1 0.0026 0.0026 0.7575 −0.4160 0.661
Residuals 190 0.6497 0.0034

Total 197 0.7304

Sthenoteuthis oualaniensis df SS MS F Z p

Size 1 0.0295 0.0295 8.9339 5.4394 0.001
Ontogenetic stages 1 0.0037 0.0037 1.1051 0.4886 0.318

Sex 1 0.0066 0.0066 1.9938 2.0165 0.021
Size × ontogenetic stages 1 0.0025 0.0024 0.7398 −0.5531 0.698

Size × sex 1 0.0044 0.0044 1.3345 0.8517 0.190
Ontogenetic stages × sex 1 0.0048 0.0048 1.4396 1.1014 0.134

Size × ontogenetic stages × sex 1 0.0055 0.0055 1.6637 1.4738 0.068
Residuals 210 0.6941 0.0033

Total 217 0.7510

df : degrees of freedom; SS: sum of squares; MS: mean squares’ F: test statistics; Z: effect size. Bold p values indicate
significant at α = 0.05.

The results of the Procrustes analysis of variance showed that the shapes of the upper
beaks of O. minor, U. edulis, and S. esculenta differed significantly between ontogenetic
stages (p < 0.05; Table 2), but the shape of the upper beak of Sthenoteuthis oualaniensis
showed no significant difference between immature and mature stages (p > 0.05; Table 2).
Results of principal component analysis also suggest more overlap between the immature
and mature stages of the upper beak of the Sthenoteuthis oualaniensis (Figure 3d). The
results of principal component analysis on the shape of the upper beak indicated that
the first four principal components (PC1, PC2, PC3, and PC4) altogether accounted for
60.8%, 65.8%, 55.9% and 53.4% of the variation of the shapes of the upper beaks of O.
minor, U. edulis, S. esculenta and Sthenoteuthis oualaniensis and the upper beaks between
immature and mature stages could be better distinguished in the scatter plot of principal
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components (Figure 3a–d). The results of the deformation mesh analysis of thin-plate
splines deformation grids showed that the main shape variations of the upper beaks of
O. minor, U. edulis and S. esculenta between immature and mature stages occurred in the
rostrum (Landmarks 1, 2, and 3), hood (Landmarks 16, 18, and 19), wing (Landmarks 4 and
20) and lateral wall (Landmarks 7, 10, 11, and 13) (Figure 4). Although the morphological
variations in upper beaks of each species occurred at similar sections between immature
and mature stages, four cephalopod species still had different shape variation directions
in various parts between immature and mature stages. The rostra of the O. minor and
S. esculenta gradually became shorter, more blunt and thicker (Figure 4a,c), but U. edulis
became longer, sharper and thinner (Figure 4b). The hoods of O. minor and U. edulis became
more curved and wider (Figure 4a,b), whereas the hoods of S. esculenta became curved and
compressed (Figure 4c). The lateral wall of the upper beak of each species became wider in
different directions. In addition, differences were apparent in changes of upper beak shape
with increasing upper beak size (Figure 5a–d) and the predicted shape of the upper beak
was positively correlated with the upper beak size (Figure 5a–d).

The results of the Procrustes analysis of variance showed that the size of the lower
beak of four species showed significant variation (p < 0.05; Table 3). The shapes of the lower
beaks of U. edulis, S. esculenta, and Sthenoteuthis oualaniensis were significantly different
between immature and mature stages (p < 0.05; Table 3), but the shape of the lower beaks
of O. minor showed no significant variation (p > 0.05; Table 3). The first four principal
components (PC1, PC2, PC3, and PC4) altogether accounted for 57.2%, 49.9%, 54.5% and
58.0% of the variation in lower beak shape of the lower beaks of O. minor, U. edulis, S.
esculenta, and Sthenoteuthis oualaniensis (Figure 6a–d). The explanatory rate of the first 4
principal components for the variation of the lower beak was slightly lower than that for the
variation of the upper beak. The scatter plots of principal components for the beak shape in
immature stages partially coincided with those in mature stages, but they could still explain
the variation in the beak shape among various ontogenetic stages (Figure 6b–d). The results
of the deformation mesh analysis of thin-plate splines deformation grids showed that the
main variations of the shapes of the lower beaks of U. edulis, S. esculenta, and Sthenoteuthis
oualaniensis in the immature and mature stages occurred at rostrum (Landmarks 1 and
18), hood (Landmark 17), wing (Landmarks 4, 5, 6, and 7) and lateral wall (Landmarks
9, 11, and 14) (Figure 7). In mature stages, U. edulis had sharper rostrum, wider wing,
longer hood, and wider lateral wall (Figure 7b) and similar variations were observed in
the lower beaks of S. esculenta and Sthenoteuthis oualaniensis (Figure 7c,d). In particular, the
shapes of the lower beaks of different species showed different variations. For instance, the
hoods of U. edulis and S. esculenta became more curved (Figure 7b,c), whereas the hood of
Sthenoteuthis oualaniensis flattened (Figure 7d). Moreover, the variation of the shape of the
lower beak with size was not significant (Figure 8b–d). Compared with the upper beak,
the lower beak showed significant difference in variation rate of shape among four species
in both immature and mature stages. The beak shape variation pattern of S. esculenta was
different from other species. Sthenoteuthis oualaniensis had similar variation pattern of the
lower beak (Figure 8d) and the predicted shape of the lower beak was positively correlated
with beak size. The shape of the lower beak of S. esculenta showed no significant variation
with the increase of beak size in immature stages, but the shape of the lower beak of S.
esculenta was negatively correlated with beak size in mature stages (Figure 8c, right).

3.2. Sexual Dimorphism

Firstly, the results of the Procrustes analysis of variance indicated that the shapes
of the upper beaks of O. minor, U. edulis and Sthenoteuthis oualaniensis were significantly
different between female and male (p < 0.05; Table 2), whereas the shapes of the upper
beaks of S. esculenta showed no sexual dimorphism (p > 0.05; Table 2). The scatter plot of
principal components indicated that the spatial proportions of the upper beaks of female
and male individuals showed some differences (Figure 3a,b,d). The upper beak of male
individuals of O. minor and U. edulis had a more protruding lower recess of the lateral
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wall, wider hood and sharper rostra than did female individuals in immature and mature
stages (Figure 4a,d). Unlike O. minor and U. edulis, the upper beaks of female individu-
als of Sthenoteuthis oualaniensis had sharper and longer rostra than did male individuals
(Figure 4b). The multiple regression analysis results showed that the upper beaks of O. mi-
nor and Sthenoteuthis oualaniensis were not significantly different between male and female
individuals (Figure 5a,d, left), but the upper beak of U. edulis was significantly different
between male and female individuals (Figure 5b, left). The shapes of the upper beaks of
female and male individuals in different species showed the same variation of shape with
increasing size (Figure 5, right).
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Table 3. Procrustes ANOVA of the shapes of lower beaks of the four cephalopods considered in
different ontogenetic stages.

Octopus minor df SS MS F Z p

Size 1 0.0399 0.0399 7.5901 5.9824 0.001 *
Ontogenetic stages 1 0.0069 0.0069 1.3162 0.8405 0.193 ns

Sex 1 0.0091 0.0091 1.7232 1.5217 0.064 ns

Size × ontogenetic stages 1 0.0066 0.0066 1.2474 0.7334 0.235 ns

Size × sex 1 0.0064 0.0064 1.2192 0.7083 0.244 ns

Ontogenetic stages × sex 1 0.0082 0.0082 1.5549 1.2435 0.114 ns

Size × ontogenetic stages × sex 1 0.0066 0.0066 1.2623 0.7695 0.219 ns

Residuals 192 1.0084 0.0053
Total 199 1.0919

Uroteuthis edulis df SS MS F Z p

Size 1 0.0350 0.0350 10.1427 6.4009 0.001 *
Ontogenetic stages 1 0.0070 0.0070 2.0207 1.9704 0.025 *

Sex 1 0.0051 0.0051 1.4765 1.1945 0.133 ns

Size × ontogenetic stages 1 0.0043 0.0043 1.2519 0.7994 0.210 ns

Size × sex 1 0.0032 0.0032 0.9257 −0.0621 0.523 ns

Ontogenetic stages × sex 1 0.0084 0.0084 2.4245 2.4116 0.008 *
Size × ontogenetic stages × sex 1 0.0063 0.0062 1.8112 1.7396 0.039 *

Residuals 197 0.6793 0.0034
Total 204 0.7484

Sepia esculenta df SS MS F Z p

Size 1 0.0196 0.0196 5.2965 4.2139 0.001 *
Ontogenetic stages 1 0.0131 0.0131 3.5309 3.3474 0.001 *

Sex 1 0.0094 0.0093 2.5219 2.2754 0.011 *
Size × ontogenetic stages 1 0.0146 0.0146 3.9279 3.3226 0.001 *

Size × sex 1 0.0043 0.0042 1.1461 0.5342 0.305 ns

Ontogenetic stages × sex 1 0.0042 0.0042 1.1229 0.4810 0.320 ns

Size × ontogenetic stages × sex 1 0.0075 0.0075 2.0309 1.7868 0.030 *
Residuals 190 0.7044 0.0037

Total 197 0.7770

Sthenoteuthis oualaniensis df SS MS F Z p

Size 1 0.0315 0.0315 6.7091 4.5043 0.001 *
Ontogenetic stages 1 0.0111 0.0111 2.3571 2.0559 0.017 *

Sex 1 0.0043 0.0043 0.9091 −0.0141 0.502 ns

Size × ontogenetic stages 1 0.0047 0.0047 0.9914 0.1859 0.435 ns

Size × sex 1 0.0151 0.0151 3.2157 2.7576 0.002 *
Ontogenetic stages × sex 1 0.0103 0.0102 2.1853 2.0485 0.024 *

Size × ontogenetic stages × sex 1 0.0060 0.0060 1.2825 0.7839 0.226 ns

Residuals 210 0.9850 0.0047
Total 217 1.0677

df : degrees of freedom, SS: sum of squares, MS: mean squares, F: test statistics, Z: effect size, ns: not significant.
* p: significant at α = 0.05.

The results of the Procrustes analysis of variance indicated that the S. esculenta showed
significant sexual dimorphism in the shape of the lower beak (p < 0.05; Table 3). The
shapes of the lower beaks of O. minor, U. edulis and Sthenoteuthis oualaniensis were not
significantly different between females and males (p > 0.05; Table 3). The scatter plot of
principal components of S. esculenta indicated that the spatial proportions of the principal
components of the lower beak shapes were significantly different between female and male
individuals (Figure 6c). In immature stages, female individuals of S. esculenta had sharper
rostra and more curved hoods of the lower beaks, wider wings, and slightly compressed
lateral wall than male individuals. In mature stages, male individuals of S. esculenta
had wider hoods, wings and lateral wall of the lower beak than did female individuals
(Figure 7c). Multiple regression analysis showed that the difference in the lower beak
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between male and female individuals was not significant (Figure 8c, left). The shape of
the lower beaks of female and male individuals showed the same variation of shape with
increasing size (Figure 8c, right).

4. Discussion
4.1. Ontogenetic Pattern of Beak Shape

Cephalopods are short-lived species, so their growth and development are closely
related to the habitat environment and their feeding habits are different among various
ontogenetic stages [53–55]. As a feeding organ of cephalopods, the beak is one of the hardest
parts of the cephalopod body and mainly used to bite and fix prey [56,57]. In addition,
genetic factors also contribute to the shape differentiation of beaks among different species
and different ontogenetic stages [58,59]. This phenomenon is possibly the consequence
of the adaptive evolution of different species to habitat environment changes. Therefore,
the beak shape of different species during ontogeny may be affected by many factors and
display different variation patterns.

In this study, the upper and lower beaks of each cephalopod species showed signifi-
cant changes in the hood, wing, and rostrum between immature and mature individuals
(Figures 4 and 7). The beaks in the cephalopod buccal mass are controlled by musculature
in the buccal mass, including the anterior mandibular muscle, lateral mandibular muscle,
posterior mandibular muscle and superior mandibular muscle [60–62]. The parts of the
upper and lower beaks are surrounded by these muscles, include the hood, lateral wall,
crest and wing [60–63]. Since the diets of each cephalopod species are gradually expanded
to bigger and harder foods as they grow [41,55,64–66], larger beaks are required to produce
a stronger bite. Therefore, we assumed that the increase in the proportion of the hood,
lateral wall, crest and wing of upper and lower beaks relate to muscle growth, insertion and
bite cycle and help to improve the bite force of the beaks. However, the variation pattern
of different kinds of beaks were slightly different. For instance, the hoods of the lower
beaks of U. edulis and S. esculenta became more curved with growth (Figure 7b,c) and the
hoods of the lower beaks of Sthenoteuthis oualaniensis became flat (Figure 7d). The habitats
of U. edulis and S. esculenta are more similar (Table 1). Therefore, the different development
patterns suggested differences in the function and growth mechanisms of beaks among
different cephalopods. These differences may result from adaptation of each species to
habitat and feeding preference during ontogeny.

Larger feeding organs and larger beaks specifically would allow organisms to eat
larger and harder food [41,55,65,67]. In this study, O. minor inhabits the benthic environ-
ment of temperate waters and mainly preys on crustaceans [54,64]). S. esculenta is also a
demersal shallow-water species that preys on microcrustaceans in its alevin stage, and
bigger crustaceans in its adult stage [53,65]. Due to the differences in feeding types and
the complexity of the benthic habitat at different ontogenetic stages, the rostra of O. minor
and S. esculenta may be subjected to greater abrasion during feeding and gradually become
dull in the maturation stage (Figure 4a,c and Figure 7c). After sexual maturity, U. edulis
in the East China Sea mainly preys on juvenile fish of Scombridae and other fishes [55],
which are softer than the foods preyed by O. minor and S. esculenta. Sharper upper beaks
can help to quickly secure prey and facilitate eating prey [57,68]. As a result, the rostra of
O. minor and S. esculenta became dull and the rostrum of U. edulis became sharp. Stheno-
teuthis oualaniensis mainly preys on microcrustacean and crustaceans in paralarval and
adult stages, respectively [66]. These mature individuals need to eat more food for more
energy to sustain life activities such as growth and reproduction [34]. In addition, usually
cephalopod beak growth rate of the immature stage is faster. When the carcass grows to a
certain stage, the growth rate of the beaks slows [33,69,70]. Therefore, the results in this
study suggested that feeding strategies in different ontogenetic stages might be responsible
for the difference of beak shape.

In addition to the differences in the internal formation mechanism of beaks and feeding
habits, the habitat environment may also affect the variation of beaks. Firstly, the habitat
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environments of different cephalopod species are different. O. minor are benthic cephalopod
species [53,64,65], whereas U. edulis and S. esculenta inhabit the demersal, and Sthenoteuthis
oualaniensis inhabits the pelagic [71–73]. Secondly, in the growth process of a single species,
due to migration and other living habits, the habitat environment is different in various
ontogenetic stages. The East China Sea and South China Sea are greatly affected by the
continental coastal currents, black tides and southwest and northeast monsoons, and the
climate is complex and variable. The four species had a wide swimming range and variable
habitat environment in the growth process [55]. Roscian et al.’s [68] study highlights
the importance of habitat as a driver of variation in beak shape. The short, blunt, thick
rostra of O. minor and S. esculenta are likely more useful for breaking shells (Figure 4a,c),
while the long, sharp and thin rostra of U. edulis and Sthenoteuthis oualaniensis are likely
more efficient at piercing and tearing fish (Figure 7a,c). Long and extremely mobile arms
of benthic cephalopods allow them to capture, maintain and manipulate prey without
needing to kill it rapidly. In contrast, pelagic cephalopod hunt by projecting the tentacles
and rapidly bringing back the prey toward the beak to kill it [54,57,64,68]. Therefore, beak
shape changes between immature and mature may reflect an adaptation of cephalopod
species to the habitats and diet resources.

4.2. Sexual Dimorphism of Beak Shape

Gender selection, ecological differences, etc. may cause the differences in size and
shape between female and male individuals and the shape differences of biological indi-
viduals between female and male individuals are called sexual dimorphism [17,18]. Some
studies confirmed the presence of sexual dimorphism in cephalopod beaks [15,35]. In
this study, the upper beaks of female individuals of each cephalopod species were larger
than those of male individuals in the mature stages (p < 0.05) (Figure 2; Tables 2 and 3).
Female squids always grow faster than males during ontogeny, which ultimately leads to
the subtle sexual dimorphism [34]. We also suggested that the shapes of the upper beaks
of O. minor and U. edulis and the shape of the lower beak of S. esculenta showed gender
differentiation in various ontogenetic stages (Table 2). The upper beak of O. minor and
Sthenoteuthis oualaniensis females had a more protruding crest and wider hood than that of
males (Figure 4a,d). In the mature stages, the hood and wing of the beaks of females of S.
esculenta were wider than those of males (Figures 4d and 7d). Similarly, the beak shapes
of neon flying squid (Ommastrephes bartramii) also showed significant difference between
females and males [15]. The female beaks, with larger, wider hood and sharp rostra, also
might be related to the high quality of food requirements after sexual maturation since
larger beaks provide stronger feeding ability to prey on high-level food. This also may
reflect that beak shape changes in different sexes are an adaptation of cephalopod species
to the habitats and diet resources.

4.3. Variations in the Size and Shape of Beaks

Allometry has long been an important focus of the study on evolution and growth
and GM is a flexible and powerful tool for studying shape structure evolution and devel-
opment [12,74]. The multiple regression analysis in this study revealed some differences
in allometric variation of beaks of each species (Figures 5 and 8). The intensity of feeding
in some cephalopods varied significantly with the growth stage [55,64,66]. The intensity
of feeding of individuals gradually increased in the immature stages and decreased after
maturity was reached; some individuals did not eat at all after spawning [75]. In this study,
the upper beaks of O. minor, U. edulis, and S. esculenta show faster variation rates of shape
in their immature stages (Figure 5). It was inferred that the different feeding demands in
various ontogenetic stages affected the growth rate and shape on their upper beaks, so
beaks grow faster in immature stages. In addition, the rostrum is the main part for cutting
foods [56,57]. Therefore, the variation of rostrum of each species was bigger, as indicated in
thin-plate spline deformation grids analysis (Figures 4 and 7). Hence, the phenomenon of
allometry in the beak shape occurred. In this study, we found that the upper beaks had a
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higher variation rate of shape than the lower beaks (Figures 5b,c and 8b,c). It was shown
that the upper beak grew faster compared to the lower beak, which could also explain why
the upper beaks of the four species were slightly larger than the lower beaks (Figure 2). In
some cephalopod species, the upper beak grew faster than the lower beak [69,76]. Similar
differences in other cephalopods were ascribed to the earlier formation of the upper beak
during embryonic development [77]. This study suggests that this difference of size on the
upper and lower beaks is also related to differences in allometry.

5. Conclusions

Through geometric morphometrics analysis, we found that the beaks of O. minor, U.
edulis, S. esculenta, and Sthenoteuthis oualaniensis showed different variation patterns, dis-
playing sexual dimorphism and allometry between ontogenetic stages. Habitat difference
(diet difference and intra and interspecific competition) may drive ontogenetic variation in
beak shape. This study has furthered our understanding of the beak development pattern
among four cephalopods species. The detection of additional sexual differences and their
expression during ontogeny in other cephalopod species is also highly interesting and
necessary, considering the strongly specialized life history in cephalopods, and different
habitats.
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