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Simple Summary: Intensive farming in the modern pig industry has resulted in an increase in
phosphorus pollution, which is a major environmental concern. The dietary intake of phosphorus is
primarily employed for the growth and metabolism of pig bones. Dietary strategies to improve bone
growth can be utilized to optimize the utilization of dietary phosphorus and reduce its release into
the environment. Interestingly, recent studies have shown that alpha-ketoglutarate, an intermediate
metabolite in the tricarboxylic acid cycle, improves osteogenesis in vitro. Therefore, we hypothesized
that dietary alpha-ketoglutarate supplementation would have a positive effect on bone growth, and
thereby improve the utilization of dietary phosphorus and calcium in piglets. In the present study, we
found that dietary alpha-ketoglutarate supplementation improves bone growth, such as bone density,
length, and weight in piglets. Of note, our study further demonstrated that alpha-ketoglutarate
supplementation improves the apparent ileal and total tract digestibility of phosphorus and calcium in
piglets’ diets. Our findings may provide a nutritional strategy for diminishing phosphorus pollution
originating from the pig industry.

Abstract: Phosphorus (P) pollution from modern swine production is a major environmental problem.
Dietary interventions to promote bone growth can improve the utilization of dietary P, and thereby
reduce its emission. Recent in vitro studies have shown that alpha-ketoglutarate (AKG) exerts a pro-
osteogenic effect on osteoblast cells. This study aimed to evaluate the effects of AKG supplementation
on bone growth, P and Ca digestion, and the gut microbial profile in piglets. Thirty-two piglets were
randomly assigned into two dietary groups. The piglets were fed a basic diet containing 10 g/kg
AKG or 10 g/kg maize starch (control) for 28 days. On days 21–28, titanium dioxide was used
as an indicator to determine the apparent digestibility of P. AKG supplementation improved the
bone mineral density, length, weight, and geometrical and strength properties of the femur and
tibia. Furthermore, AKG supplementation increased apparent ileal and total tract digestibility of
P. Colonic microbiota analysis results showed that AKG supplementation increased α-diversity and
beneficial bacteria, including Lactobacillus and Clostridium butyricum, and decreased nitrogen fixation
and chemoheterotrophy. Together, AKG supplementation improves bone growth, the utilization of
dietary P, and the colonic microbial profile, which may provide a nutritional strategy for diminishing
P pollution originating from the pig industry.
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1. Introduction

Phosphorus (P) emission is one of the main causes of environmental pollution that
constrains intensive farming in modern swine production [1,2]. The vast majority of P
in pigs is enriched in their bones [3]. P in the diet is mainly used for the growth and
metabolism of pig bones [3]. It has been proposed that dietary intervention to enhance bone
growth is an effective way to improve the utilization of dietary P and reduce its emission
into the environment [4–6].

Alpha-ketoglutarate (AKG) is an intermediate metabolite in the tricarboxylic acid cycle
and transamination of amino acids, which is generated from isocitrate via isocitrate dehy-
drogenase and amino acids metabolism [7]. In addition, intracellular AKG is the obligate
co-substrate of AKG-dependent dioxygenases, such as the ten-eleven translocation family
of 5-methylcytosine hydroxylases, histone demethylases, prolyl hydroxylases, and collagen
prolyl-4-hydroxylase, whereas extracellular AKG is the specific ligand of cell membrane
receptor GPR99 (also known as OXGR1) [7–9]. Accumulated evidence suggests that AKG
plays a crucial role in regulating a wide range of cellular biological processes [7,10,11]. Of
note, recent studies have revealed that AKG exerts a pro-osteogenic effect on osteoblast cells
in vitro [12,13]. The maintenance of bone homeostasis is dependent upon the equilibrium
between osteoblast-mediated bone matrix formation and bone osteoclast-mediated resorption
in adults, whereas in adolescence, bone homeostasis tends to be dominated by osteoblast-
mediated bone matrix formation to support bone growth and development [14,15]. Moreover,
the application of dietary nutritional interventions to promote osteogenesis has been proven
to be an effective strategy to improve bone growth in young animals [16,17]. Therefore, we
hypothesized that dietary AKG supplementation would enhance bone growth and devel-
opment, thereby optimizing the utilization of dietary P and Ca in piglets. Previous studies
have demonstrated that daily administration of AKG effectively improves the morphometry,
geometrical and mechanical properties, cortical bone density, and collagen synthesis of bone in
piglets [18,19]. Of note, our recent study revealed that dietary 10 g/kg AKG supplementation
enhances the total tract digestibility of both Ca and P in growing pigs [20]. The bones of
piglets progress quickly in terms of growth and development. Enhancing the utilization of P
during the piglet stage can be a viable solution to reduce P pollution originating from the pig
industry. However, the effect of dietary AKG supplementation on the utilization of dietary Ca
and P in piglets is still unknown.

Emerging knowledge suggests an increasing importance of gut microbiota in the
nutrient absorption, immunity, and growth performance of piglets [21,22]. Accumulated
evidence suggests that gut microbiota plays a critical role in skeletal homeostasis, as it
affects the metabolic process, immune system, and hormonal secretion of the host [23,24].
Furthermore, short-chain fatty acids (SCFAs), metabolites of colonic microbiota, have been
proven to increase bone mass and prevent inflammation and menopause-induced bone loss
by inhibiting osteoclast differentiation and bone resorption in vivo and in vitro [25]. Our
previous studies showed that dietary AKG supplementation altered the bacteria profiles in
the feces of sows, and improved the colonic microbiota profiles of chronic oxidative stress
model piglets [26,27]. However, the effects of AKG supplementation on colonic microbiota
profiles and SCFAs, as well as the relationship between colonic microbiota and bone growth
in piglets, remain largely unknown.

In this study, we evaluated the effect of dietary AKG supplementation on the bone
mineral density (BMD), morphometry, the geometrical and mechanical properties of femur
and tibia, the apparent ileal and total tract digestibility of P and Ca, and the colonic
microbiota profiles in piglets.

2. Materials and Methods
2.1. Animal Care and Experimental Design

The experiment design and procedures used in this study were approved by the
Animal Ethical Committee of the Institute of Subtropical Agriculture, Chinese Academy
of Science (Permit No. ISA 2020045). A total of 32 Duroc × Landrace × Large Yorkshire
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crossbred piglets with the same paternal origin were randomly divided into two groups
(n = 16/group) at day 7 after weaning (30 days of age). Piglets in the AKG group were fed
a basal diet containing 1% AKG (Wuhan Yuancheng Gongchuang Technology Co., Ltd.,
Wuhan, Hubei, China; purity ≥98%), the dosage of which was selected according to our
previous studies [20,28,29]. To balance the ratio of carbon to nitrogen in the diet, piglets
in the control group were fed a basal diet containing 1% maize starch. During a 28-day
study, each piglet was kept in its own pen with a hard plastic slatted flooring and had
ad libitum access to the experimental diets and water. Feed intake and weight gain were
monitored during the experiment (Figure 1). The basal diet was formulated in accordance
with the recommended nutrient requirements of the National Research Council (2012). The
components of the basal diet are provided in Table 1.

Table 1. Ingredients of the basic diet fed to piglets.

Ingredients (%) Basal Diet 1% AKG Diet

Corn 62.16 62.16
Soybean meal 18.23 18.23
Maize starch 1.00 –

AKG – 1.00
Wheat bran 0.30 0.30

Whey powder 5.00 5.00
Fish meal 5.00 5.00

Soybean oil 2.50 2.50
Glucose 2.50 2.50

Limestone 0.65 0.65
CaHPO4 0.39 0.39

Salt 0.40 0.40
Lys-HCl 0.54 0.54

Met 0.10 0.10
Thr 0.20 0.20
Try 0.03 0.03

Premix 1 1.00 1.00
Total 100 100

Calculated nutrient levels 2

DE, MJ/kg 14.45 14.45
CP, % 18.46 18.46
Lys, % 1.37 1.37
Met, % 0.40 0.40

Met + Cys, % 0.74 0.74
Thr, % 0.80 0.80
Trp, % 0.23 0.23
Ca, % 0.74 0.74

Total P, % 0.53 0.53
Available P, % 0.36 0.36

Analyzed nutrient levels

Ca, % 0.77 0.77
Total P, % 0.59 0.59

1 Provided the per kilogram of diet: vitamin A. 8750 IU; vitamin D, 2500 IU; vitamin E, 25 IU; vitamin K3, 2.5 mg;
vitamin B1, 2.5 mg; vitamin B2, 6.25 mg; vitamin B6, 2.5 mg; vitamin B12, 25 µg; D-biotin, 0.10 mg; folic acid,
1.25 mg, nicotinamide, 30 mg; D-pantothenic acid, 25 mg; Zn, 100 mg; Fe, 100 mg; Cu, 20 mg; Mn, 20 mg; I, 0.3 mg;
Se, 0.3 mg. 2 The data were calculated from data provided by Feed Database in China (2020).
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On the 21th day of the experiment, 8 piglets were chosen randomly from each group
to perform the Ca and P digestibility test. Titanium dioxide (TiO2) was uniformly included
in all experimental diets in a 0.5% proportion to act as an indicator. After administering the
diet with the indicator for 3 days, approximately 50 g of feces were collected and stored
at −20 ◦C from each pig every morning for 3 consecutive days. On day 28, four hours
after the piglets had consumed the experimental diet, they were anesthetized with sodium
pentobarbital intravenously (50 mg/kg BW) and bled by exsanguination. Approximately
50 g digesta from the terminal ileum was collected and stored at −20 ◦C.

On the 28th day of the experiment, after overnight fasting, blood samples were
taken from the anterior vena cava of the remaining 8 piglets in each group; then, piglets
were anesthetized with sodium pentobarbital intravenously (50 mg/kg BW) and bled by
exsanguination. The femur, tibia, and metatarsal were collected and stored at −20 ◦C. The
colonic digesta were collected, immediately frozen in liquid nitrogen, and stored at −80 ◦C.
The scheme of the experiment design is shown in Figure 1.

2.2. Apparent Ileal Digestibility of Ca and P Analysis

The samples of fecal, ileal digesta, and diet were dried at 65 ◦C in an oven and then
passed through a 0.5-mm screen. The dry matter of the samples was measured after oven-
drying at 105 ◦C for 24 h. The Ca, P, and TiO2 contents of the samples were ascertained
using the method described in the preceding literature [30]. Apparent ileal digestibility
of Ca and P and apparent total tract digestibility of Ca and P were calculated using the
following equations:

Apparent ileal digestibility of Ca =

[
1 −

(
TiO2 diet

TiO2 ileal digestia

)
×
(Ca ileal digestia

Cadiet

)]
(1)

Apparent ileal digestibility of P =

[
1 −

(
TiO2 diet

TiO2 ileal digestia

)
×
(P ileal digestia

Pdiet

)]
(2)

Apparent total tract digestibility of Ca =

[
1 −

(
TiO2 diet
TiO2 fecal

)
×
(

Ca fecal
Cadiet

)]
(3)

Apparent total tract digestibility of P =

[
1 −

(
TiO2 diet
TiO2 fecal

)
×
(

P fecal
Pdiet

)]
(4)

in which TiO2 diet, TiO2 ileal digestia, and TiO2 fecal represent the concentration of TiO2 in
diet, ileal digestia, and fecal, respectively; Ca ileal digestia, Ca diet, and Ca fecal represent the
concentration of Ca in ileal digestia, diet, and fecal, respectively; and P ileal digestia, P diet;
and P fecal represent the concentration of P in ileal digestia, diet, and fecal, respectively.
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2.3. Bone Analysis

Bone analysis was conducted according to previous studies [16,17]. Briefly, the femur
and tibia samples were prepared by manually discarding the surrounding skin, muscle,
and other tissues, and then stored at −20 ◦C. In the subsequent stages of analysis, the left
femur and tibia were selected to measure their midshaft geometry and histomorphometric,
whereas the right femur and tibia were used to determine bone density, length, weight, and
mechanical testing. In preparation for all analyses, the frozen bones were thawed for 8 h
at room temperature. The whole bone mineral density (BMD) of the femur and tibia was
determined using the dual-energy X-Ray Bone Densitometer (MEDILINK, Pérols, France).

The mechanical properties of the femur and tibia were determined using a Universal
Testing Machine (Zwick Z010, Zwick Roell Group, Ulm, Germany) at room temperature by
subjecting each bone to the three-point bending test according to previous studies [17,31].
Briefly, a diamond bandsaw was used to create a cross-section at the midpoint of the left
femur and tibia. The internal and external cross-sectional diameters were determined using
a digital caliper. The bone geometrical properties, including the mean relative wall thickness,
cross-sectional area, cross-sectional moment of inertia, and cortical index, were calculated
on the basis of bone cross-sectional diameters according to previous studies [16,32,33]. The
midpoint of the bone diaphysis was subjected to a loading rate of 10 mm/min until the bone
fractured. The bone-breaking strength and maximum elastic strength were determined from
the load-displacement curves.

2.4. Bone Mineral Concentration Analyses

The levels of individual elements in the dried metatarsal were determined using
an inductively coupled argon plasma spectrophotometer (ICP-OES -5110) according to
previous studies [17]. In brief, the metatarsal samples were dried for 8 h at 105 ◦C in order
to measure dry weight, and then ashed in a muffle furnace at 550 ◦C for 4 h. The ash was
dissolved in 5% HNO3 before analysis.

2.5. Analysis of the Indexes Related to Bone Metabolism

Blood samples were collected in aseptic-capped tubes without anticoagulant from
the anterior vena cava. The blood samples were allowed to stand at room temperature to
enable the blood to clot and were centrifuged at 3000× g for 10 min. The serum samples
were collected and stored at −25 ◦C. Serum alkaline phosphatase (ALP), Ca, and P were
determined using an automatic biochemistry analyzer (Cobas c311). Osteocalcin (H152),
C-terminal cross-linking telopeptide of type I collagen (β-CTX-I) (H287), and N-terminal
propeptide of type I procollagen (PINP) (H285) were measured using commercial kits
according to the manufacturer’s instructions (Jiancheng Bioengineering Institute, Nanjing,
China).

2.6. Serum-Free Amino Acid Analysis

Serum-free amino acids were analyzed by an automatic amino acid analyzer (L-8900,
Hitachi Global Inc., Tokyo, Japan).

2.7. Gut Microbiota Analysis

Microbial genomic DNA from colonic digesta was extracted and amplified using
specific primers with barcodes (16S V3 + V4). Amplicon libraries were sequenced on
the Illumina MiSeq 2500 platform (Illumina, San Diego, CA, USA) for paired-end reads.
Clustering of the highest quality sequences with a 97% match resulted in the production of
operational taxonomic units (OTUs) by using Uparse V.7.0 in QIIME V.1.8 (http://qiime.
org/, accessed on 23 December 2020). The 16S rRNA Silva database was employed to
assign taxonomy to OTUs, based on the ribosomal database project (RDP). OUT-based
functional predictions were conducted using FAPROTAX. The correlation between femur
and tibia bone density and the colonic microbial profile was conducted using Spearman’s
correlation analysis. Visualizations were constructed using R (Version 2.15.3).

http://qiime.org/
http://qiime.org/
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2.8. Analysis of Short-Chain Fatty Acids (SCFAs)

The analysis of SCFA was conducted according to our previous study [34]. In brief, the
colonic digesta were homogenized, after which about 1 g of each sample was taken. The
samples were diluted with 5 mL distilled water, homogenized, and centrifuged at 12,000× g
for 10 min. The supernatant was collected. The concentration of SCFA in the samples was
quantified using a gas chromatograph (Agilent) with an HP-INNOWAX column A.

2.9. Statistical Analyses

Data are presented as the mean ± standard error of the mean (SEM). Statistical
comparisons were analyzed by independent T-test. p < 0.05 was considered significant.
0.05 < p < 0.10 was considered a significant trend. SPSS software version 20.0 (SPSS Inc.,
Chicago, IL, USA) was used for data analysis.

3. Results
3.1. Growth Performance

To evaluate the effect of AKG supplementation on the growth performance of piglets,
both feed intake and weight gain were monitored for 0–21 days. The growth performance
data are shown in Table 2. Compared with the control group, dietary 1% AKG supplementa-
tion significantly increased the average daily feed intake (ADFI) (p < 0.05) and average daily
gain (ADG) (p < 0.05). However, there was no difference in initial body weight, final body
weight, and the ratio of feed to weight gain (F/G) between the control and AKG groups.

Table 2. Growth performance of piglets.

Item
Diet Treatment

p Value
Control 1% AKG

Initial body weight, kg 9.87 ± 0.22 9.84 ± 0.25 0.934
Final body weight, kg 20.41 ± 0.55 21.76 ± 0.70 0.138

ADFI, g/d 839.88 ± 27.53 924.88 ± 29.48 * 0.044
ADG, g/d 501.64 ± 19.44 567.41 ± 21.88 * 0.032

F/G 1.68 ± 0.03 1.64 ± 0.03 0.297
* Statistical significance: p < 0.05. Data were presented as mean ± SEM (n = 16).

3.2. Bone Length, Weight, Density, Macrominerals, and Microminerals

To evaluate the effect of AKG supplementation on the bone growth of piglets, the bone
density, bone weight, and bone length of the femur and tibia were determined (Table 3).
Compared with the control group, piglets in the AKG group had 10% greater bone density
(p < 0.05), 11% greater bone weight (p < 0.05), and 3% greater bone length (p = 0.109) of
the femur. Moreover, the bone density, bone weight, and bone length of the piglets in the
AKG group were 13% (p < 0.05), 8% (p = 0.117), and 4% (p < 0.05) higher than those in the
control group.

To evaluate the effect of AKG supplementation on BMD of piglets, the macrominerals
and microminerals of the metatarsal were determined (Table 4). Compared with the control
group, 1% AKG supplementation significantly increased the Zn content in the metatarsal
(p < 0.05). However, Ca, P, Ca/P, Na, Mg, Fe, Sr, Cr, and Mn content of the metatarsal but
did not differ between the control and AKG groups (p > 0.05).
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Table 3. Effects of dietary supplementation 1% AKG on BMD, bone weight, and bone length.

Item
Diet Treatment

p Value
Control 1% AKG

Femur

Bone density, g/cm2 0.75 ± 0.027 0.83 ± 0.024 * 0.026
Bone weight, g 88.60 ± 2.08 98.42 ± 3.20 * 0.022

Bone length, mm 124.17 ± 1.47 127.98 ± 1.66 0.109

Tibia

BMD, g/cm2 0.52 ± 0.01 0.59 ± 0.02 * 0.008
Bone weight, g 65.84 ± 1.74 71.86 ± 3.14 0.117

Bone length, mm 114.27 ±0.72 118.89 ± 1.42 * 0.015
* Statistical significance: p < 0.05. Data were presented as mean ± SEM (n = 8).

Table 4. Effects of dietary supplementation with AKG on metatarsal macrominerals and microminerals.

Item
Diet Treatment

p Value
Control 1% AKG

Macrominerals (g/kg)

Ca 195.22 ± 4.09 196.00 ± 2.59 0.873
P 94.54 ± 1.63 96.69 ± 1.21 0.308

Ca/P 2.06 ± 0.01 2.03 ± 0.01 0.057
Na 8.85 ± 0.13 8.90 ± 0.10 0.765
Mg 3.68 ± 0.06 3.83 ± 0.05 0.095

Microminerals (mg/kg)

Zn 300.00 ± 10.62 369.28 ± 18.62 * 0.008
Fe 148.47 ± 6.15 130.68 ± 7.81 0.095
Sr 47.92 ± 1.29 49.92 ± 1.32 0.299
Cr 2.42 ± 0.03 2.43 ± 0.03 0.968
Mn 1.97 ± 0.09 1.83 ± 0.06 0.242

* Statistical significance: p < 0.05. Data were presented as mean ± SEM (n = 8). Ca: calcium; P: phosphorus;
Ca/P: the ratio of Ca to P; Na: sodium; Mg: magnesium; Zn: zinc; Fe: ferrum; Sr: strontium; Cr: chromium; Mn:
manganese.

3.3. Bone Geometrical and Strength Properties

The geometrical and strength properties of the femur and tibia were detected by a
three-point bending test to evaluate the effect of AKG supplementation on the bone growth
of piglets. The results are shown in Figure 2 and Table 5. Compared with the control
group, 1% supplementation significantly increased the breaking force of the femur and
tibia (Figure 2A,B) and the maximum elastic force of the tibia (Figure 2D) (p < 0.05). The
maximum elastic force of the femur tended to increase in the pigs fed with AKG when
compared with the control group (Figure 2C) (p = 0.206). A total of 1% AKG supplementa-
tion significantly increased the cross-sectional area, moment of inertia, and strain when
compared with the control group (p < 0.05). These results suggest that dietary 1% AKG
supplementation improves the geometrical and strength properties of the femur and tibia.
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Strength properties

Yield stress, MPa 4.10 ± 0.32 4.27 ± 0.54 6.77 ± 0.45 6.43 ± 0.34 0.793 0.557
Strain 0.15 ± 0.01 0.16 ± 0.01 0.16 ± 0.01 0.19 ± 0.01 * 0.504 0.025

Modulus of elasticity, MPa 28.22 ± 2.81 27.35 ± 2.94 41.85 ± 2.46 34.08 ± 3.05 0.834 0.067
Maximum stress, MPa 4.34 ± 0.25 4.78 ± 0.63 7.52 ± 0.33 6.59 ± 0.43 0.532 0.105

* Statistical significance: p < 0.05. Data were presented as mean ± SEM (n = 8). Mpa: N/mm2.

3.4. Apparent Ileal Digestibility and Apparent Total Tract Digestibility of Ca and P

To evaluate the effects of dietary AKG supplementation on the Ca and P digestion of
piglets, the apparent ileal digestibility and apparent total tract digestibility of Ca and P were
determined (Table 6). Compared with the control group, dietary 1% AKG supplementation
significantly increased apparent ileal digestibility and apparent total tract digestibility of
Ca (p < 0.05). The apparent ileal digestibility and apparent total tract digestibility of P
in the 1% AKG group were 9.37% and 9.74% higher than those in the control group (p <
0.05). Next, we analyzed whether the apparent ileal digestibility and apparent total tract
digestibility of Ca and P differed in the control or AKG group. As shown in Table 7, the
determined apparent ileal digestibility and apparent total digestibility of Ca and P did not
differ whether in the control group or in the AKG group.

Table 6. Effects of dietary supplementation with AKG on apparent ileal digestibility and apparent
total tract digestibility of Ca and P.

Item
Ca

p Value
P

p Value
Control 1% AKG Control 1% AKG

Apparent ileal digestibility, % 58.59 ± 1.43 63.81 ± 1.42 * 0.022 50.36 ± 0.89 55.08 ± 1.39 * 0.012
Apparent total tract digestibility, % 60.25 ± 1.37 65.45 ± 1.21 * 0.013 51.12 ± 1.48 56.10 ± 0.85 * 0.014

* Statistical significance: p < 0.05. Data were presented as mean ± SEM (n = 8).
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Table 7. Comparison of apparent ileal digestibility and apparent total tract digestibility of Ca and P.

Item

Control
p Value

1% AKG
p ValueApparent Ileal

Digestibility, %
Apparent Total Tract

Digestibility, %
Apparent Ileal
Digestibility, %

Apparent Total Tract
Digestibility, %

Ca 58.59 ± 1.43 60.25 ± 1.37 0.417 63.81 ± 1.42 65.45 ± 1.21 0.395
P 50.36 ± 0.89 51.12 ± 1.48 0.658 55.08 ± 1.39 56.10 ± 0.85 0.541

Data were presented as mean ± SEM (n = 8).

3.5. Osteocalcin, β-CTX, PINP, ALP, Ca, P, and Free Amino Acids in Serum

The concentrations of serum indicators related to bone metabolism including osteo-
calcin, β-CTX, PINP, ALP, Ca, and P are determined (Table 8). Compared with the control
group, dietary 1% AKG supplementation significantly increased osteocalcin (p < 0.05).
There is no difference in β-CTX, PINP, Ca, and P between the control and AKG groups. We
also measured the serum concentrations of free amino acids after an overnight fast (Table 9).
The results showed that compared with the control group, dietary 1% AKG supplementa-
tion significantly decreased serum ammonia (NH3) (p < 0.05). However, the concentrations
of serum-free amino acids were not different between the control and AKG groups.

Table 8. Effects of dietary supplementation with AKG on osteocalcin, β-CTX, PINP, ALP, Ca, and P
in serum.

Item
Diet Treatment

p Value
Control 1% AKG

Osteocalcin, µg/L 33.70 ± 0.98 37.28 ± 1.13 * 0.031
β-CTX, µg/L 8.47 ± 0.40 8.28 ± 0.50 0.766
PINP, µg/L 97.26 ± 1.84 101.41 ± 7.28 0.589
ALP, U/L 179.25 ± 9.01 203.5 ± 10.26 0.097

Ca, mmol/L 2.37 ± 0.02 2.36 ± 0.02 0.656
P, mmol/L 3.39 ± 0.09 3.54 ± 0.08 0.230

* Statistical significance: p < 0.05. Data were presented as mean ± SEM (n = 8).

Table 9. Effects of dietary supplementation with AKG on free amino acid concentrations in serum.

Component (µmol/L)
Diet Treatment

p Value
Control 1% AKG

Tau 142.37 ± 8.87 164.88 ± 11.78 0.149
Asp 55.20 ± 2.34 55.89 ± 4.34 0.890
Thr 92.58 ± 10.65 100.65 ± 13.73 0.650
Ser 90.30 ± 4.88 93.79 ± 6.53 0.674
Glu 330.45 ± 15.28 327.01 ± 14.46 0.872
Sar 11.25 ± 0.71 10.82 ± 1.97 0.842
Gly 607.46 ± 46.01 600.16 ± 41.96 0.908
Ala 316.61 ± 11.42 310.95 ± 21.38 0.819
Cit 11.68 ± 0.61 13.03 ± 1.16 0.320
Val 131.42 ± 7.40 152.38 ± 9.07 0.095
Cys 10.84 ± 0.87 10.05 ± 0.95 0.546
Met 13.01 ± 0.66 13.85 ± 1.21 0.551
Ile 64.81 ± 4.55 74.47 ± 6.64 0.251

Leu 104.91 ± 4.66 118.28 ± 9.86 0.240
Tyr 36.26 ± 2.36 39.73 ± 6.21 0.610
Phe 53.41 ± 2.87 61.15 ± 2.46 0.060
NH3 326.18 ± 21.51 264.16 ± 12.84 * 0.027
Orn 56.59 ± 9.84 63.99 ± 11.75 0.636
Lys 172.52 ± 17.91 193.14 ± 29.17 0.556
His 35.94 ± 2.61 38.12 ± 2.07 0.522
Arg 104.10 ± 6.58 111.26 ± 10.23 0.566

Hypro 41.94 ± 3.19 46.57 ± 5.34 0.469
Pro 129.97 ± 4.58 147.06 ± 7.37 0.069

* Statistical significance: p < 0.05. Data were presented as mean ± SEM (n = 8).
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3.6. Gut Microbial Profile and SCFAs

The colonic microbial profile was determined in Figure 3. The results of α-diversity
showed that AKG supplementation significantly increased chao1 and ace (p < 0.05)
(Figure 3B,C), and tended to increase in observed species (p = 0.111) (Figure 3 A) when
compared with the control group. However, the β-diversity was not different between the
control and AKG groups (Figure 3D,E). The top 10 species of relative abundance of colonic
bacteria at the species level in both the control and AKG groups are shown in Figure 3F.
T-tests were performed to identify the bacteria that were significantly different between
the control and AKG groups at the species level (Figure 3F). The results showed that 1%
AKG supplementation significantly increased Lactobacillus johnsonii, Clostridium butyricum,
Eubacterium coprostanoligenes, Lachnospiraceae bacterium, and Mesomycoplasma moatsii when
compared to the control group (Figure 3G). Linear discriminant analysis Effect Size (LEfSe)
analysis results further showed that the order Lachnospirales, the family Lachnospiraceae, and
the phylum 251 order 5 were significantly enriched in the AKG groups, whereas the class
Bacteroidia, the family Muribaculaceae, the phylum Bacteroidota, the order Bacteroidales, the
genus Rikenellaceae RC9 gut group, and the family Rikenellaceae were significantly enriched
in the control (Figure 3H).

To gain insight into the functional profiles of the colonic bacterial community, FAPRO-
TAX analysis was used to predict the gene abundance of bacterial communities. The
top 10 relative gene abundance of bacterial communities in both the control and AKG
groups were shown in Figure 3I. FAPROTAX-T test results showed that AKG supplemen-
tation significantly decreased the metabolic pathway involved in nitrogen fixation and
chemoheterotrophy as compared with the control group (Figure 3J). To determine the corre-
lation between colonic microbiota and bone growth, we performed a Spearman correlation
analysis between femur and tibia density and colonic microbial composition. The results
showed that Catenisphaera was negatively correlated with femur density (p < 0.05). We also
measured the concentrations of colonic SCFAs, which are colonic microbial metabolites
(Table 10). Our results showed that AKG supplementation significantly increased total
SCFAs when compared with the control group. However, the concentrations of acetate,
propionate, isobutyrate, butyrate, isovalerate, and valerate were not different between the
control and AKG groups.

Table 10. Effects of dietary supplementation with AKG on colonic short-chain fatty acids.

Component (µg/g)
Diet Treatment

p Value
Control 1% AKG

Acetate 323.33 ± 7.29 330.51 ± 11.79 0.612
Propionate 188.84 ± 11.74 217.21 ± 11.78 0.110
Isobutyrate 11.87 ± 1.27 14.61 ± 1.52 0.189

Butyrate 121.51 ± 12.59 140.54 ± 8.93 0.238
Isovalerate 30.88 ± 1.05 30.82 ± 2.51 0.982

Valerate 31.55 ± 3.75 40.27 ± 5.12 0.191
Total SCFAs 707.97 ± 14.90 773.95 ± 23.92 * 0.035

* Statistical significance: p < 0.05. Data were presented as mean ± SEM (n = 8).
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Figure 3. Effects of dietary supplementation with AKG on colonic microbial communities. (A) Ob-
served species, (B) chao 1, (C) ace, (D,E) based on binary jaccard and unweighted unifrac, (F) colonic
species composition, (G) T-test analysis of colonic species composition between control and AKG
groups, (H) LEfSe analysis of colonic microbiota, (I) relative abundance of colonic microbial function,
(J) T-test analysis of microbial function between control and AKG groups, (K) correlation between
colonic microbial composition and femur bone mineral density (BD) and tibia bone density analysed
by Spearman correlation analysis. Data were presented as mean ± SEM (n = 8). *, p < 0.05.

4. Discussion

The environmental P pollution caused by intensive breeding in the modern pig indus-
try has always been a problem. Bone is the largest P and Ca reservoir in pigs. Nutritional
interventions to accelerate bone growth and development can improve P and Ca deposition
in bone, and thereby reduce their emission to the environment [3]. Recent in vitro studies
have demonstrated that AKG exerts a pro-osteogenic effect on osteoblast cells, which is
responsible for bone matrix formation in vivo [12,13]. Piglets exhibit a swift progression in
terms of bone growth and development. In the present study, we explored the potential ben-
eficial effects of AKG supplementation on bone growth in piglets. Our results showed that
dietary 1% AKG supplementation increased the BMD, length, and weight of the femur and
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tibia, which suggests that AKG supplementation is effective in accelerating bone growth
and development in piglets. Consistent with this, a recent study reported that dietary
AKG improves bone growth and development in intrauterine growth retarded (IUGR)
piglets [17]. Our previous study found that dietary AKG supplementation improves bone
density in growing pigs [20].

Bone growth and development are closely related to the growth performance of do-
mestic animals. Research has shown that promoting bone growth and development can
improve the growth performance and health status of piglets, and reduce the duration
to get them to the market [35–37]. Our previous study has shown that dietary 1% AKG
supplementation improves ADG and the ratio of feed to weight gain in weaning piglets [29].
Similarly, a recent study also demonstrated that dietary AKG supplementation improves
body weight in IUGR piglets [17]. In this study, we found that dietary 1% AKG supple-
mentation improves ADG and ADFI in piglets. Therefore, AKG’s potential to foster bone
growth could provide a new avenue to improve the growth performance of piglets.

The influence of nutritional intervention on bone growth and development should
ultimately be reflected in the geometrical and strength properties of bone. We determined
the geometrical and strength properties of the femur and tibia by the three-point bending
test, which suggests that dietary AKG improves the breaking strength and maximum
elastic force of both the femur and tibia. The growth and development of bones in youth
are crucial to the health of bones in adulthood. Studies have shown that increasing bone
density as much as possible in youth can effectively ameliorate age-related osteoporosis,
which results in a high risk of osteoporotic fracture in the aged population [38,39]. Of note,
lameness and boar claw have a high-prevalence rate in aged sows and boars and shorten
the service longevity of sows and boars [40]. The decrease in bone strength is one of the
major contributing factors to lameness and boar claw in aged sows and boars [41]. Dietary
AKG supplementation in young sows and boars may provide a new nutritional strategy
for treating lameness and boar claw in aged sows and boars. In addition, this intriguing
discovery encourages us to further explore the potential protective effects of dietary AKG
supplementation on lameness and boar claw in aged sows and boars in the future.

Changes in bone metabolism can be observed through certain biomarkers in the
blood. Osteocalcin is secreted to the extracellular environment by osteoblasts during
bone turnover, and the release of osteocalcin will also increase with the increase of bone
resorption by osteoclasts [42]. The level of osteocalcin in serum not only reflects the state of
bone formation but also represents the activity of bone turnover [43]. In the present study,
we found that AKG supplementation increased the levels of serum osteocalcin. However,
AKG supplementation did not affect the serum levels of PINP (a marker of bone formation),
β-CTX (a marker of bone resorption), Alp, Ca, or P. It is possible that these indicators are
relatively insensitive to alterations in bone homeostasis caused by AKG supplementation.
Collectively, these results suggest that dietary AKG supplementation accelerates bone
turnover and metabolism.

Bone tissue is composed of numerous collagen, of which glycine, proline, and hydrox-
yproline are the most common amino acids in collagen [44]. Studies conducted in the past
have revealed that dietary AKG supplementation can result in a heightened concentration
of glycine and proline in the serum of animals after eating [45,46]. Moreover, an early
study directly demonstrated that dietary AKG supplementation effectively stimulates bone
collagen synthesis in young growing piglets [19]. However, the effect of AKG supplemen-
tation on the concentration of serum glycine and proline after an overnight fast in piglets is
unclear. Our results showed that dietary AKG supplementation did not affect serum amino
acid profiles. This finding further indicated that glycine and proline in serum increased by
dietary AKG supplementation can be timely used for collagen synthesis. We also found
that AKG supplementation caused a decrease in serum NH3 concentrations. This finding
agrees with previous reports that dietary AKG supplementation improves the utilization of
nitrogen in both a normal and a low-protein diet in pigs [20,47].
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Although many in vivo studies have demonstrated that supplementations of AKG
or its derivatives have positive effects on the bone under normal or pathological con-
ditions, the effect of AKG supplementation on mineral concentrations of bone remains
unclear [7]. To our knowledge, this is the first study to explore the effect of dietary AKG
supplementation on the macrominerals and microminerals of bone. Our results showed
that AKG supplementation increased the concentration of Zn in the metatarsal. However,
AKG supplementation had no effect on macrominerals, including Ca, P, Na, and Mg, and
microminerals, including Fe, Sr, Cr, and Mn. Zn supplementation has been reported to
ameliorate osteoporosis in humans and animals by inhibiting osteoclast differentiation [48].
Our findings may provide a new mechanism by which AKG supplementation has positive
effects on bone.

To explore whether dietary AKG supplementation to stimulate bone growth can
improve the utilization of P and Ca in piglets’ diet, we used TiO2 as an indicator to
determine the apparent total tract digestibility of P and Ca. The result showed that AKG
supplementation increased the apparent total tract digestibility of P. In order to further
determine whether AKG supplementation improved the absorption of P in the small
intestine, we measured the apparent ileal digestibility of P and Ca. This result showed
that the apparent ileal digestibility and apparent total digestibility of Ca and P had no
significant difference whether in the control group or in the AKG group, which agrees with
the widely accepted notion that the small is the major site of P absorption [49]. These results
suggest that dietary AKG supplementation enhances the absorption of P and Ca in the
small intestine of piglets. Of note, AKG has two carboxyl groups and can effectively reduce
the pH value of feed, which may promote the digestion and absorption of P and Ca. Many
studies have shown that dietary acidifier supplementation, such as citric acid and lactic
acid, can improve the palatability of feed and thus increase the feed intake of piglets [50,51].
Consistent with this, we found that dietary AKG supplementation increased the ADFI in
piglets for 0–3 weeks. Although AKG is a potential feed additive for piglets, considering its
high price, future research still needs to determine its minimum effective dose.

Evidence is mounting that gut microbiota play a major part in the health status and
growth performance of piglets [21,22]. The colon is the place with the largest micro-
bial population in piglets. However, little is known about the effects of dietary AKG
supplementation on colonic microbiota. In the present study, we found that AKG sup-
plementation increased colonic microbiota α-diversity. An increase in α-diversity has
been demonstrated to be beneficial for intestinal health [52]. We also found that AKG
supplementation promoted the colonization of beneficial bacteria, including Lactobacillus
johnsonii and Clostridium butyricum [53,54]. Functional analysis of the colon microbial
profile showed that AKG supplementation decreased the metabolic pathway involved in
nitrogen fixation and chemoheterotrophy. This result may be related to the fact that AKG
promotes the utilization of N and other nutrients in the small intestine, thereby reducing
the amount of nutrients that enter the colon. We further conducted a Spearman correlation
analysis of femur and tibia density and found that Catenisphaera was negatively correlated
with femur density. SCFAs, the metabolites of colonic microbiota, have been proven to be
beneficial to intestinal and bone health [25,55]. In the present study, we found that AKG
supplementation increased the concentrations of colonic total SCFAs. Collectively, dietary
AKG supplementation improves the colonic microbial profile in piglets.

5. Conclusions

In summary, dietary 10 g/kg AKG supplementation improves bone growth, the
apparent total tract and apparent ileal digestibility of P and Ca, colonic microbial profile,
and growth performance in piglets, which highlights that AKG is a promising feed additive
for diminishing P pollution originating from the pig industry.
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