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Simple Summary: Due to consumer demand for safe aquatic foods and environmental concerns
in aquaculture, aquaculture production can benefit from investigating the use of immunostimulant
b-glucans as feed additives. In this study, we selected laminarin as a feed additive for juvenile
largemouth bass (Micropterus salmoides), and investigated the appropriate dose of supplemented
laminarin in the diet based on the analysis of the growth performance, antioxidant capacity, immune
response and intestinal microbiota of fish. The results indicated that supplemented laminarin in diet
at a low level is suggested as a promising immunopotentiator without negative effects on growth
performance for juvenile largemouth bass.

Abstract: A 28 day feeding trial was conducted to investigate the growth performance, immune
response and intestinal microbiota of laminarin (LAM) supplemented diets in juvenile largemouth
bass (Micropterus salmoides). Four hundred and eighty fish (initial average weight: 0.72 ± 0.04 g)
were randomly divided into four groups (40 fish per tank with three replicates in each group) Four
diets were prepared with LAM supplementation at the doses of 0 (control), 5 g Kg−1 (LL), 10 g Kg−1

(ML) and 15 g Kg−1 (HL), respectively. No significant difference in the specific growth rate (SGR)
and hepatosomatic index (HSI) was observed in fish among the four groups, or in the lipid and ash
content of fish flesh. In addition, fish in the LL group exhibited much higher antioxidant capacity
(p < 0.05), while the diets with the inclusion of 5 and 10 g Kg−1 LAM remarkably decreased the
antioxidant capacity of fish (p > 0.05). Dietary LAM at the dose of 5 g Kg−1 inhibited the transcription
of interleukin-1β (il-1β) and tumor necrosis factor-α (tnf-α), while promoting the expression of
transforming growth factor-β (tgf-β) in fish intestine. Moreover, the beneficial intestinal bacteria
Bacteroide, Comamonas and Mycoplasma abundance significantly increased in fish from the LL group,
while the content of opportunistic pathogens Plesiomonas, Aeromonas and Brevinema in fish of the HL
group was substantially higher than the control group. Overall, the appropriate dose of supplemented
LAM in the diet was 5 g Kg−1, while an excessive supplementation of LAM in the diet led to microbial
community instability in largemouth bass.

Keywords: Micropterus salmoides; laminarin; antioxidant capacity; intestinal microbiota; immune response

1. Introduction

In the last decades, largemouth bass (Micropterus salmoides) has been an important
economic fish and is widely accepted by consumers all over the world [1–3]. The frequent
outbreaks of diseases caused by various pathogens have become a limiting factor for the
development of largemouth bass farming [3]. The application of antibiotics effectively de-
creases the outbreaks of diseases, while it presents harmful effects, such as the development
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of resistant bacteria and the accumulation in the natural environment [4]. With the demand
of consumers for safe aquatic food, as well as the requirement of environmental security,
there is a prerequisite to develop safe and efficient dietary additives that can promote the
physiology and health of the farmed aquatic animals.

Laminarin (LAM) is a β-glucan extracted from brown algae, and is composed of β-1,
3-glucan with β-1, 6-linkages [5]. Lines of evidence have reported that specific physico-
chemical properties play a vital role in determining the magnitude of β-glucan binding
to macrophage receptor(s) and how it modulates the immune responses [6]. Moreover,
published reports have demonstrated that LAM features antioxidant, immunopotentiator,
antitumor and antivirus properties [7]. In addition, a large number of research works
revealed that LAM displayed immune-modulatory effects in fish because of its binding ca-
pacity to different receptors on leukocytes, leading to the stimulation of immune responses
including bactericidal activity, cytokine productivity, and survival fit ability at cellular
levels [7–11]. For example, dietary LAM significantly increased the alkaline phosphatase
activity, as well as enhanced the superoxide dismutase (SOD) activity of the Pearl gentian
grouper [7]. Similarly, the supplementation of LAM in the diet significantly improved
the SGR, as well as the lysozyme (LZM), catalase and superoxide dismutase activities of
the grouper (Epinephelus coioides) [9]. More recently, Jiang et al. demonstrated that the
expression levels of Toll-like receptor 5 and insulin-like growth factor 2 were remarkably
promoted in Channel Catfish (Ictalurus punctatus) fed laminarin at a dose of 4 g kg−1 [11].
The above findings suggested that LAM could act as a beneficial supplement in the fish
diet. However, little information is currently available about the impact of dietary LAM on
the physiology and immune response of juvenile largemouth bass.

Furthermore, growing evidence revealed that dietary β-glucan could affect the intesti-
nal flora of fish [12–16]. Meanwhile, the diversity and richness of intestinal microbiota
affect a wide range of host physiological states including growth performance and immune
response of the aquatic host [17–19]. For instance, Jung et al. stated that dietary β-glucan
increased the diversity of the intestinal microbial community, which helps common carp
(Cyprinus carpio) to prevent pathogenic microbes invasion [13]. Similarly, metagenomic
analysis revealed that dietary β-glucan water (0.1 mg L−1) sharply increased the Chao
richness value (p < 0.05), with a larger content of the Vibrionaceae family in Nile tilapia
(Oreochromis niloticus) [15]. By contrast, a reduction of the intestinal microbiota richness
was observed in common carp fed a β-glucan inclusion diet [12]. Therefore, the effect
of dietary LAM on juvenile largemouth bass may also be associated with the intestinal
microbiota variation.

In this study, four experimental diets were prepared with LAM supplementation levels
of 0 (control), 5 g Kg−1 (LL), 10 g Kg−1 (ML) and 15 g Kg−1 (HL). A 28 day feeding trial was
conducted to evaluate the effect of LAM on growth performance, antioxidant capacity and
immune response, and explore how LAM influences the intestinal microbiota of juvenile
largemouth bass.

2. Materials and Methods
2.1. Experimental Diets

Laminarin was purchased from Xiya Reagent (Xiya Reagent Co., Ltd., Linyi, China)
with a purity of at least 99.5%, and laminarin was extracted from Laminaria digitateusing
using the warm-water extraction method. Four diets were prepared with the supplementa-
tion of LAM: 0 (control), 5 g Kg−1 (LL group), 10 g Kg−1 (ML group) and 15 g Kg−1 (HL
group). According to the formulation (Table 1), all ingredients were crushed through a
200 µm mesh and then blended with the fish oil and water through a mixing device [3].
Subsequently, pellets with a size of 1.0–2.0 mm were produced by using the pelletizer
(KCHL-10, Kcth Group, Beijing, China) [19]. Then, the particle feed was dried in the air
thermal dryer (50 °C) (Longhe Machinery, Chaozhou, China) for further use.



Animals 2023, 13, 459 3 of 13

Table 1. Formulation and proximate composition of the experimental diets *.

Ingredients (g kg−1)
Diets

Con LL ML HL

Fishmeal 550 550 550 550
Shrimp meal 100 100 100 100

Laminarin 0 5 10 15
Corn protein 130 130 130 130
Soybean meal 60 60 60 60
Soluble starch 40 40 40 40

Fish oil 80 80 80 80
Ca(H2PO4)2 10 10 10 10

Mineral premix 1 10 10 10 10
Vitamin premix 2 8 8 8 8

Cr2O3 4 4 4 4
Choline chloride 3 3 3 3

Threonine 3 3 3 3
Methionine 2 2 2 2

Proximate composition (%)

Dry matter 94.11 94.17 94.03 94.18
Crude protein 49.77 49.43 49.21 49.09

Crude lipid 9.53 9.50 9.44 9.39
Ash 10.78 10.62 10.72 10.69

* Con means control diet. LL, ML, and HL means 5 g Kg−1, 10 g Kg−1 and 15 g Kg−1 laminarin was supplemented
into diets, respectively. 1 One kilogram of vitamin premix provided: zeolite, 638 mg; FeSO4·H2O, 300 mg;
ZnSO4·H2O, 200 mg; MnSO4·H2O, 100 mg; NaCl, 100 mg; KIO3 (10%), 80 mg; Na2SeO3 (10% Se), 67 mg;
CuSO4·5H2O, 10 mg; CoCl2·6H2O, 5 mg. 2 One kilogram of vitamin premix provided: vitamin C, 400 mg; vitamin
E, 200 mg; inositol, 200 mg; niacinamide, 100 mg; calcium pantothenate, 40 mg; vitamin A, 20 mg; vitamin B6,
15 mg; vitamin B1, 12 mg; vitamin B2, 10 mg; folic acid, 10 mg; vitamin K3, 10 mg; vitamin D3, 10 mg; vitamin
B12 (1%), 8 mg; biotin (2%), 2 mg.

2.2. Experimental Design

Juvenile largemouth bass (initial average weight: 0.72 ± 0.04 g) were obtained from
Huzhou Baijiayu Biotech Co., Ltd. (Huzhou, China). The fish were cultured in circulating
resin tanks with a constant water flow (100 L h−1) during the experimental period. Juvenile
fish were fed with a commercial diet (Tianma Co., Ltd., Fuzhou, China) for a week before
being fed experimental diets. A total of 480 juvenile fish were randomly assigned to
four groups (40 fish per tank with 3 replicates in each group). They were fed regularly
thrice daily (8:00 a.m., 14:00 p.m. and 20:00 p.m.) until apparent satiation. The feeding trial
lasted 28 days, with the water temperature at 27.0 ± 1.0 °C, pH = 7.2–7.5 and dissolved
oxygen < 5.0 mg L−1.

2.3. Sampling

Before sampling, all juvenile largemouth bass were fasted for 24 h, and then anes-
thetized with tricaine methanesulfonate (MS-222) at a dose of 55 mg/L. Subsequently, all
fish were sampled and sacrificed to measure the individual physiology. Twenty-four fish
per replicate were dissected under sterile conditions to pull out the intestine, and then the
mid intestine was cut into small pieces and washed with phosphate-buffered saline (PBS)
(pH 7.5) to harvest the intestinal tissues and contents (four samples (each sample contains
6 fish) in each tank). Then, both of them were immediately stored at −80 ◦C in TRIzol
reagent (Tiangen, Beijing, China) for RNA extraction. Nine fish per replicate were sampled
and frozen by liquid nitrogen, and was stored in a −80 ◦C refrigerator for the analysis of
flesh composition and antioxidant capacity, respectively.

2.4. Flesh Composition and Antioxidant Capacity Analysis

The AOAC method (AOAC, 2000) was used to analyze the proximate composition
of flesh following our previous report [3]. The antioxidant indices of intestine, including
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superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and total antioxidant
capacity (T-AOC), were measured by using commercial kits obtained from Jian Cheng
Bioengineering Institute, (Nanjing, China) [20].

2.5. Relative Gene Expression Analysis

The relative expression of genes related to immune response in intestine was measured
as described in our previous report [19]. Briefly, the primer sequences of tgf-β, tnf-α, il-1β
and β-actin were designed as listed in Table 2. Total RNA was extracted from the intestinal
tissues using Trizol reagent (Tiangen, Beijing, China). The final RNA was eluted in an
appropriate amount of 0.1% diethyl pyrocarbonate (DEPC) treated water (Sigma-Aldrich,
St. Louis, MO, USA). The RNA amount was determined using a Nanodrop 2000. Then,
the cDNA was synthesized with the reverse transcription [19]. Subsequently, RT-qPCR
was operated with following steps: 95 ◦C for 30 s; 40 cycles of 95 ◦C for 5 s, 60 ◦C for 30 s,
and 72 ◦C for 30 s. Expression of the selected genes was normalized to β-actin (internal
reference) and reported as 2−∆∆Ct [21].

Table 2. Real-time PCR primers sequences *.

Gene Sequence (5′-3′) Tm (°C) Product Size (bp) Accession Number

il-1β F: CGTGACTGACAGCAAAAAGAGG 60
166 XM_038733429.1

R: GATGCCCAGAGCCACAGTTC 61
tnf-α F: CTTCGTCTACAGCCAGGCATCG 63

162 XM_038710731.1
R: TTTGGCCACACCGACCTCACC 65

tgf-β F: GCTCAAAGAGAGCGAGGATG 58
118 XM_038693206.1

R: TCCTCTACCATTCGCAATCC 57
β-actin F: TGGAAGGGACCTCACAGACTAC 61

231 MH018565
R: GGGCAACGGAACCTCTCAT 60

* il-1β, interleukin-1β; tnf-α, tumor necrosis factor-α; tgf-β, transforming growth factor-β.

2.6. Sequencing of Intestinal Microorganisms

The intestinal contents were prepared for 16S rRNA sequence [19]. Briefly, the primers
338F 5′-ACTCCTACGGGAGGCAGCAG-3′ and 806R 5′-GGACTACHVGGTW TTAAT-3′

were used to amplify the V3-V4 region of the 16S ribosomal RNA gene. After purifying the
amplicon DNA, the SMRTbell libraries were established by blunt-end ligation, which were
then sequenced by Biomarker Technologies (Beijing, China). Finally, the intestinal microbiota
analysis, including Principal component analysis (PCA), Venn diagram, Microbial community
bar plots (MCBP) and Linear discriminant analysis Effect Size (LEfSe) were performed using
the BMKCloud software (www.biocloud.net) (accessed on 8 November 2022).

2.7. Statistics Analysis

The data were shown as the mean ± standard deviations. Statistical analysis was
performed by one-way ANOVA and Duncan’s multiple range test (DMRT), using the
SPSS software (Version 20.0; SPSS, Inc). Differences with p < 0.05 were regarded to be
statistically significant.

3. Results
3.1. Growth Performance

At the end of the feeding trial, the SGR of juvenile largemouth bass in the LL group
was slightly higher than that of control, while dietary LAM inclusion at a dose of 15 g Kg−1

(HL group) remarkably increased the feed conversation rate (FCR) (p < 0.05), as well as
marginally decreasing the SGR (p > 0.05). Moreover, juvenile fish in the LL group exhibited
a considerably higher condition factor (CF) than that of fish in the ML and HL groups

www.biocloud.net
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(p < 0.05). Meanwhile, no remarkable difference in HSI was observed among the four
groups (p > 0.05) (Table 3).

Table 3. Growth performance of juvenile largemouth bass fed the experimental diets for 28 days *.

Item Con LL ML HL

IBW(g) 0.72 ± 0.04 0.73 ± 0.02 0.72 ± 0.04 0.71 ± 0.04
FBW(g) 2.88 ± 0.21 3.00 ± 0.15 2.84 ± 0.30 2.75 ± 0.30

WGR(%) 297.38 ± 29.58 311.81 ± 19.85 296.37 ± 42.18 285.15 ± 42.30
SGR(%/day) 4.92 ± 0.56 5.05 ± 0.17 4.90 ± 0.37 4.80 ± 0.40

Total feed intake (g) 90.72 ± 2.12 92.62 ± 1.34 88. 19 ± 1.71 90.58 ± 1.86
FCR 1.05 ± 0.02 b 1.02 ± 0.04 b 1.04 ± 0.03 b 1.11 ± 0.02 a

CF(g/cm3) 1.04 ± 0.07 ab 1.07 ± 0.07 a 0.98 ± 0.06 b 1.00 ± 0.05 b

HSI(%) 1.76 ± 0.28 1.64 ± 0.04 1.67 ± 0.19 1.69 ± 0.14
* Data are shown as mean ± standard error (SEM; n = 3). Values in the same row with different superscripts are
significantly different (p < 0.05). IBW means the initial body weight; FBW means the final body weight; WGR
means the weight gain rate; SGR means the specific growth rate; FCR means the feed conversation rate; HSI
means the hepatosomatic index; CF means the condition factor. Con means control diet. LL, ML, and HL mean
5 g Kg−1, 10 g Kg−1 and 15 g Kg−1 laminarin was supplemented into diets, respectively.

3.2. Flesh Composition

In this study, no significance of moisture and crude lipid content in fish flesh among
four groups was observed (p > 0.05). Nevertheless, the minimum of flesh crude protein
content was observed in the HL group (p < 0.05) (Table 4).

Table 4. Effects of dietary laminarin inclusion on flesh composition of juvenile largemouth bass fed
the experimental diets for 28 days *.

Item Con LL ML HL

Moisture (%) 73.54 ± 0.36 73.97 ± 0.17 73.86 ± 0.22 73.50 ± 0.31
Crude protein (%) 15.74 ± 0.45 a 16.41 ± 0.38 a 15.72 ± 0.33 ab 15.42 ± 0.29 b

Crude lipid (%) 3.76 ± 0.14 3.84 ± 0.07 3.75 ± 0.07 3.72 ± 0.09
* Data are shown as mean ± standard error (SEM; n = 3). Values in the same row with different superscripts
are significantly different (p < 0.05). Con means control diet. LL, ML, and HL mean 5 g Kg−1, 10 g Kg−1 and
15 g Kg−1 laminarin was supplemented into diets, respectively.

3.3. Antioxidant-related Enzyme Activities

Compared with the control group, juvenile largemouth bass in the LL group exhibited
considerably higher SOD, GSH and T-AOC activity, while fish in the ML and HL groups
displayed significantly lower SOD and CAT activity (p < 0.05) (Figure 1).

3.4. Relative Expression Levels of Immune Response Related Genes

The expression of il-1β and tnf-α was dramatically down-regulated in fish of the LL
group, while it sharply increased in fish of the ML and HL groups (p < 0.05). Meanwhile,
dietary LAM inclusion substantially increased the expression of tgf-β in fish of the LL group
(p < 0.05) (Figure 2).

3.5. Intestinal Microbiota Changes

The 16 sRNA sequence analysis showed that 1,320,788 raw reads and 1,316,678 clean
reads were obtained from 16 samples, with an average of 82,292 clean reads for each sample
(Table S1). The microbiota diversity was calculated from the OTUs (Table 5), which revealed
that these four indexes were significantly affected in LAM supplemented groups, where
fish in the HL group exhibited the minimum values (p < 0.05). The heat map showed that
the dominant genera were altered in LAM inclusion groups and the intra group differences
are acceptable (Figure 3). Additionally, the PCA showed that the intestinal microbiota of
fish in four experimental groups was grouped separately (Figure 4A).
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Table 5. Alpha diversity of intestinal microbiota of juvenile largemouth bass fed the experimental
diets for 28 days *.

Item Con LL ML HL

ACE 3931.84 ± 735.78 a 1722.66 ± 130.31 c 2976.99 ± 137.85 b 221.94 ± 43.89 d

Shannon 10.74 ± 0.16 a 8.00 ± 0.27 c 9.03 ± 0.04 b 2.91 ± 0.14 d

Simpson 1.00 ± 0.00 a 0.97 ± 0.02 b 0.99 ± 0.00 a 0.78 ± 0.01 c

Chao1 3927.94 ± 732.99 a 1720.83 ± 130.43 c 2966.06 ± 138.33 b 220.46 ± 44.03 d

* Con means control diet. LL, ML, and HL mean 5 g Kg−1, 10 g Kg−1 and 15 g Kg−1 laminarin was supplemented
into diets, respectively. Different letters on the bars indicate statistically significant differences (p < 0.05).
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bass. (A) The principal component analysis. (B) The Venn diagram. Con means control diet. LL, ML,
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Moreover, the Venn diagram showed that fish in the control group had the largest num-
ber of OTU, while fish in the LL group exhibited the minimum OTU (Figure 4B). MCBP dis-
played that Proteobacteria was the dominant phyla in the control and LL groups, followed
by Firmicutes and Bacteroidetes at phylum level (Figure 5A). The Firmicutes/Bacteroidetes
ratio in the control, LL, ML and HL groups was 1.40, 4.00, 0.88 and 19.05, respectively
(Table S2). Moreover, unclassified_Bacteria was the major taxon, followed by unclassi-
fied_Cyanobacteriales and Bacteroides in the control group. Mycoplasma was the main taxon
in the LL group, followed by Comamonas and Plesiomonas. Plesiomonas was the dominate
taxon in the ML group, followed by unclassified_Cyanobacteriales and Cyanobium. In the
HL group, Aeromonas was the primary taxon, followed by Plesiomonas and Mycoplasma at
genus level (Figure 5B). The LEfSe analysis showed that the Bacteroide, Comamonas and
Mycoplasma content in the LL group, and the Aeromonas, Brevinama and Plesiomona content
in the HL groups, was remarkably higher than that of the control at genus level (p < 0.05)
(Figure 5C–E).
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Figure 5. Intestinal microbiota changes between control and laminarin supplemented groups of
juvenile largemouth bass. (A) The bar plots at phylum level. (B) The bar plots at genus level.
(C) The Lefse analysis of differential flora between control and laminarin Scheme 4. 0. (D) The LDA
scores of different microbes between control and laminarin supplemented groups. (E) The relative
abundance of microbes with significant difference. Values in rows with different superscript letters
have significant differences (p < 0.05). Con means control diet. LL, ML, and HL mean 5 g Kg−1,
10 g Kg−1 and 15 g Kg−1 laminarin was supplemented into diets, respectively.

4. Discussion

LAM supplementation has been shown to improve growth in a variety of animals,
including weaned piglets [22–24], grouper (E. coioides) [9], Channel Catfish (I. punctatus) [11],
and Pearl gentian grouper (Epinephelus lanceolatus ♀× Epinephelus fuscoguttatuss ♂) [6]. In
aquatic animals, previous study has demonstrated that dietary LAM inclusion at 5 and
10 g kg−1 dramatically increased the WGR of grouper (mean weight 90± 2.6 g) compared to
that of fish in the 15 g kg−1 inclusion group and control group for 48 days [9]. Similar results
have been determined in studies of Channel Catfish (average weight is 1.3 ± 0.3 g), with a
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significant increase of WGR and SGR in fish fed LAM at 4 and 8 g kg−1 for 45 days [11]. In
our study, no significant differences of WGR and SGR were observed in juvenile largemouth
bass fed with LAM (p > 0.05), while dietary LAM inclusion at 15 g kg−1 considerably
increased the FCR (p < 0.05) for 28 days. These discrepancies may be attributable to the
fish species and developmental stages difference, as well as the short period of the feeding
trial in this study, so the effect of LAM on juvenile largemouth bass in a longer feeding trail
(8 weeks or more) should be investigated in further research. Meanwhile, the results also
indicated that a high level of LAM additive in the diet may negatively affect fish growth
and other physiological functions. In addition, juvenile fish in the LL group exhibited
significantly higher CF than that of fish in the ML and HL groups (p < 0.05), which might
be due to the higher concentration of crude protein and lipids in the diet of the LL group.

β-glucan has been previously assessed as an immunopotentiating agent for enhancing
fish immunity to stress and disease [24–28]. Antioxidant capacity is the fundamental cyto-
protective mechanism against oxidative stress in fish tissues [29,30]. Previous reports have
demonstrated that a higher level of activities of SOD and CAT was determined in common
carp after intraperitoneal injection with β-glucan for 15 days [26]. As an oral additive,
fucoidan (10 g kg−1) and Halymenia 9ilatate-derived polysaccharide (1.0 and 2.0 g kg−1)
supplemented in diet enhanced the antioxidant capacity of O. niloticus, respectively [31,32].
Similarly, dietary chitosan (5.0 g kg−1 feed) also significantly increased the antioxidant
enzyme activity in loach fish (Misgurnus anguillicadatus) [33]. Consistently, in our work, di-
etary LAM at a dose of 5.0 g kg−1 remarkably enhanced the T-AOC, SOD and GSH activity,
while high dose supplementation (10 and 15 g kg−1) significantly decreased the CAT and
SOD activity. This tendency of the low concentration to promote antioxidant capacity and
high concentration inhibition antioxidant capacity was similar to that of the experiment in
red swamp crayfish [34]. The reason that higher levels of LAM supplementation in the diet
decreased the CAT and SOD activity might be that the feed composition greatly changed,
which should be investigated in further research.

Receptor-bound β-glucan may mediate the production of inflammatory cytokines
(interleukins, interferons and tumor necrosis factor). These signaling proteins are believed
to aggravate the phagocytic activity of immune cells through oxidative burst and natural
cytotoxic liquidation [6]. tnf-α is a key pro-inflammatory cytokine, which acts as an impor-
tant mediator in the regulation of inflammatory response, and induces the gene expression
of some pro-inflammatory factors, such as il-1β [35]. A published report demonstrated that
lower expression patterns of il-1β and tnf-α were found in juvenile carp fed with β-glucan
supplements (6 mg kg−1 body weight) for 14 days [36]. Similar depressed expression
patterns of il-1β and tnf-α were also determined in turbot (Scophthalmus maximus) fed in-
clusion with β-glucan for 24 days [13]. Consistently, the expression of tnf-α and il-1β were
significantly decreased in largemouth bass fed a diet containing 5 g Kg−1 LAM for 28 days
in the present study. Nevertheless, Yin et al. informed that dietary LAM at a low dose
(0.5%) for 48 days sharply reduced the mRNA level of il-1β in grouper [8]. Collectively,
the above finds suggested that the effect of LAM on fish immune related gene expression
might rely on the fish species and administration period. Moreover, dietary LAM at a
low dose (5 g Kg−1) remarkably increased the expression of tgf-β in this work. It was
well demonstrated that tgf-β could depress the production of pro-inflammatory cytokine,
and further inhibit the inflammatory response in teleost [37]. This opposite change trend
of il-1β and tgf-β expression was similar to the result in some other fish species [38,39].
Overall, the down-regulated expression of il-1β and tnf-α, up-regulated expression of tgf-β,
as well as the elevated antioxidant enzyme activity, confirmed the contribution of dietary
LAM inclusion at the concentration of 5 g Kg−1 in enhancing the immune response and
antioxidant capacity of juvenile largemouth bass.

Notably, dietary LAM inclusion can modify intestinal microbiota in the present study.
Our microbiota analysis displayed that Proteobacteria and Firmicutes were the two domi-
nant taxon in the control and LL groups at phylum level, which is consistent with published
reports on juvenile largemouth bass [20,40,41]. However, with the increase of LAM addi-
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tion, the Proteobacteria content remarkably increased in ML and LL groups. Published
reports have confirmed that an increase in Proteobacteria is often considered an impor-
tant symbol of intestinal microbiota instability, which may give rise to nutritional and
metabolic disorders of the host [41,42]. Moreover, the Firmicutes/Bacteroidetes ratio was
1.40, 4.00, 0.88 and 19.05 in the Con, LL, ML and HL groups, respectively. It was reported
that the Firmicutes/Bacteroidetes ration reflected the ability of nutrient transportation and
utilization [43,44], while in the HL group most of the identified species of Proteobacteria
were Plesiomonas, Aeromonas and Brevinema, which usually exist in intestines of aquatic
animals, and are recognized as potential pathogens of fishes [45–47]. Moreover, our data
also revealed that the Mycoplasma, Bacteroide and Comamonas abundance in LL groups was
remarkably higher than that of the control. Growing evidence showed that Mycoplasma was
the major species existing in healthy largemouth bass intestine [3,40,48–51], which might
play a certain role in the growth and reproduction of fish [52,53]. Bacteroides can generate
many organic acids [54,55], which have been evidenced successfully in alleviating intestinal
inflammation in fish [56]. Comamonas is extensively distributed in soil and contributes
to organic biodegradation by reducing Fe3+/HS, which is considered a beneficial intesti-
nal bacteria [57] and can be employed as a probiotic additive [58]. Overall, these results
suggested that dietary LAM (5 g Kg−1) can increase the beneficial bacteria abundance
in the intestine and, further, may positively affect the physiological performance, while
an excessive addition of LAM led to an increase of pathogenic bacteria in the juvenile
largemouth bass intestine.

5. Conclusions

The present complementary analysis of growth performance, immune response and
intestinal microbiota in LAM supplemented diets in juvenile largemouth bass indicated
that the supplementation of the LAM at the dose of 5 g Kg−1 is suggested as a promis-
ing immunopotentiator without negative effects on the growth performance for juvenile
largemouth bass.
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