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Simple Summary: Poultry laying performance depends on the normal development of ovarian
follicles. Lipid metabolism and steroidogenesis in granulosa cells are essential for maintaining
normal follicular development; therefore, a detailed understanding of the molecular mechanisms
underlying granulosa cell functions may provide a basis for improving production. In the present
study, we investigated the effects of miR-202-5p, which show expression changes during follicular
development, on lipid metabolism and steroidogenesis in goose hierarchical follicular granulosa cells.
We found that miR-202-5p significantly inhibited lipid deposition and steroid hormone production in
goose hierarchical follicles granulosa cells via ACSL3. These results revealed the important role of
miR-202-5p in the regulation of goose granulosa cell functions and demonstrate that this miRNA is a
potential target for molecular breeding.

Abstract: miRNAs are critical for steroidogenesis in granulosa cells (GCs) during ovarian follicular
development. We have previously shown that miR-202-5p displays a stage-dependent expression
pattern in GCs from goose follicles of different sizes, suggesting that this miRNA could be involved
in the regulation of the functions of goose GCs; therefore, in this study, the effects of miR-202-5p
on lipid metabolism and steroidogenesis in goose hierarchical follicular GCs (hGCs), as well as its
mechanisms of action, were evaluated. Oil Red O staining and analyses of intracellular cholesterol
and triglyceride contents showed that the overexpression of miR-202-5p significantly inhibited lipid
deposition in hGCs; additionally, miR-202-5p significantly inhibited progesterone secretion in hGCs.
A bioinformatics analysis and luciferase reporter assay indicated that Acyl-CoA synthetase long-
chain family member 3 (ACSL3), which activates long-chain fatty acids for the synthesis of cellular
lipids, is a potential target of miR-202-5p. ACSL3 silencing inhibited lipid deposition and estrogen
secretion in hGCs. These data suggest that miR-202-5p exerts inhibitory effects on lipid deposition
and steroidogenesis in goose hGCs by targeting the ACSL3 gene.

Keywords: miR-202-5p; ACSL3; lipid; steroid hormone; goose granulosa cell

1. Introduction

The egg-laying performance of poultry is mainly determined by the growth and devel-
opment of ovarian follicles, which are related to the differentiation of granulosa cells (GCs)
and oocyte maturation [1–3]. During follicular growth, maturation, and ovulation, GCs
transport follicular nutrients, provide mechanical support, and synthesize steroids [4,5];
additionally, investigations of lipid profiles in both follicular cells (including cumulus,
granulosa, and theca cells) and follicular fluid by mass spectrometry suggest that lipid
metabolism in GCs is also pivotal for follicular development and oocyte maturation [6–8].
In birds, lipid metabolism in GCs may be particularly crucial given the large amounts
of liver-synthesized yolk precursors (mainly lipids) [9,10]. De novo lipogenesis has been
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observed in GCs. These synthesized fatty acids may be transported to oocytes through gap
junctions, membrane fusion, or binding to oocyte membrane receptors and participate in
oocyte maturation, lipid deposition, the maintenance of membrane integrity and fluidity,
and other regulatory processes during the normal development of follicles [11,12]. De novo
lipogenesis has also been detected in goose GCs [13,14]. Lipid metabolism in GCs is also
closely related to the synthesis and secretion of steroid hormones. Steroidogenesis requires
a constant supply of cholesterol as a precursor for conversion to steroids. There are multiple
sources of cholesterol for steroidogenesis, including de novo synthesis within the ER and
delivery from circulating low-density lipoprotein and high-density lipoprotein [15,16]; it
is, therefore, of great importance to clarify the mechanisms underlying lipid metabolism
in GCs.

microRNAs (miRNAs) are endogenous RNAs of approximately 23 nucleotides. They
function via interactions with protein-coding genes to direct their posttranscriptional
repression by imperfectly binding to the 3′ untranslated regions (3′UTRs) [16,17]. miRNAs
play significant regulatory roles in various organisms, including roles in development
and host–pathogen interactions as well as cell differentiation, proliferation, apoptosis, and
tumorigenesis [18]. Microarray chips, high-throughput sequencing, northern blotting, and
other technical means have recently been used to confirm that miRNAs exist in almost all
vertebrate ovarian tissues. They are the most abundant small RNA molecules in the ovary.
After the knockout of the Dicer gene (encoding the key enzyme for miRNA cleavage and
maturation) in mouse GCs, the number of ovarian primordial follicles decreased sharply
and the number of atretic follicles increased [19], confirming that miRNAs are necessary to
maintain the normal growth and development of follicles; furthermore, it has also been
reported to regulate steroid hormone synthesis and lipid metabolism [16,20–22]. MiR-202-
5p expression is much higher in the granular layer than in the membrane layer, according to
our previous study, and its expression pattern increases initially and then decreases in the
4–6 mm, 8–10 mm, and F5 granular layers [23,24]. These results suggest that miR-202-5p is
an important regulator during goose follicle development.

In the present study, the effects of miR-202-5p on lipid metabolism and steroid hor-
mone secretion in GCs were investigated by lipid droplet staining and the detection of
intracellular cholesterol, triglyceride, extracellular estradiol, and progesterone levels. More
importantly, we determined the downstream target gene of miR-202-5p and its effects on
lipid deposition and steroid hormone secretion in GCs. These data provide insights into
the role of miR-202-5p in lipid metabolism and steroidogenesis in goose GCs.

2. Materials and Methods
2.1. Animals

The healthy maternal line of Tianfu meat geese (Anser cygnoides), laying at least
two and three eggs regularly, was used. The Waterfowl Breeding Experimental Farm at
Sichuan Agricultural University (Chengdu, China) provided food and water to the geese
under natural light and temperature conditions. The laying cycles of each goose were
recorded, and ovarian follicles were collected from all geese in the same laying cycle. All
selected geese were euthanized by the inhalation of carbon dioxide and cervical dislocation,
performed by competent, experienced personnel who applied the technique correctly. Based
on diameters, the ovarian follicles were divided into two classes: pre-hierarchical (6 to
10 mm in diameter) and hierarchical (F5–F1, F1 > F2 > F3 > F4 > F5 in diameter) follicles.

2.2. Granulosa Cell Culture

According to a previous study, the granulosa layer of each follicle is separated from
the theca layer [25]. The granulosa layers separated from F2 to F4 follicles were washed
with PBS (pH 7.4) and dispersed in 0.05% type II collagenase (Sigma, St. Louis, MO, USA).
The cells were diluted to 6 × 105/mL by Dulbecco’s Modified Eagle’s Medium/Nutrient
Mixture (F12, containing 3% fetal bovine serum; Sigma) and then cultured in 12-well or
96-well culture plates in a humidified atmosphere of 5% CO2 and 95% air at 37 ◦C.
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2.3. Cell Transfection

Hierarchical granulosa cells (hGCs, F2-F4) were cultured in fresh medium before RNA
transfection. Mimic (UUUCCUAUGCAUAUACUUAUUUU), mimic-NC (UUGUACUA-
CACAAAAGUACUG), inhibitor (AAAGAAGUAUAUGCAUAGGAAA), inhibitor-NC
(CAGUACUUUUGUGUAGUACAA), and siRNAs (Table 1) were transfected into cells us-
ing Lipofectamine 3000 (ThermoFisher Scientific, Carlsbad, CA, USA, according to the man-
ufacturer’s instructions. Cells were harvested for RNA extraction 24 h post-transfection.

Table 1. ACSL3 siRNAs.

Sense (5′–3′) Anti-Sense (5′–3′)

si-ACSL3-587 GAGGUGACCACCAUCAUUATT UAAUGAUGGUGGUCACCUCTT
si-ACSL3-1341 CAGCAACCCAGCGAUUUAUTT AUAAAUCGCUGGGUUGCUGTT
si-ACSL3-1877 GCUCGAAAGAAAGGAUUUATT UAAAUCCUUUCUUUCGAGCTT

2.4. RNA Extraction and qRT-PCR Analysis

After total RNA was extracted by TRIzol reagent (Invitrogen, Carlsbad, CA, USA), the
quality, purity, and concentration of RNA were determined by spectrophotometry; after
that, PrimeScript RT kit (TaKaRa, Dalian, China) was used to synthesize cDNA from total
RNA once the RNA quality met the requirements for subsequent use, according to the
manufacturer’s instructions; then, qRT-PCR was performed using 2 SYBR Premix Ex Taq II
(TaKaRa). As stated in the introduction, for 0.5 µL of each gene-specific primer (10 µM), we
prepared 12 µL of reaction solution by mixing 1 µL cDNA with 6.25 µL SYBR Ex Taq and
4.25 µL ddH2O [26]. Transcript levels of each sample were normalized to GAPDH using
the 2∆∆ Ct method. The primers used in qRT-PCR are summarized in Table 2.

Table 2. Primers for qRT-PCR.

Genes Primers
(5′–3′)

Tm
(◦C) Size (bp)

GAPDH F: TTTCCCCACAGCCTTAGCA R: GCCATCACAGCCACACAGA 60 90
PPARγ F: CCTCCTTCCCCACCCTATT R: CTTGTCCCCACACACACGA 59 108
ACCα F: TGCCTCCGAGAACCCTAA R: AAGACCACTGCCACTCCA 56.6 163
FASN F: TGGGAGTAACACTGATGGC R: TCCAGGCTTGATACCACA 57 109

DGAT1 F: CCTGAGGAACTTGGACACG R: CAGGGACTGGTGGAACTCG 59 265
DGAT2 F: CGCCATCATCATCGTGGT R: CGTGCCGTAGAGCCAGTTT 60 113
CPT1 F: GTCTCCAAGGCTCCGACAA R: GAAGACCCGAATGAAAGTA 56 193
ATGL F: TCGCAACCTCTACCGCCTCT R: TCCGCACAAGCCTCCATAAGA 60 300
APOB F: CTCAAGCCAACGAAGAAG R: AAGCAAGTCAAGGCAAAA 56 153
SCD1 F: GCCATCGGTCCTACAAAGC R: AGCCAATGTGGGAGAAGAAA 60 180

SREBP F: CGAGTACATCCGCTTCCTGC R: TGAGGGACTTGCTCTTCTGC 60 92

STAR F: AGAATCTTGAC-
CTCTTTGACGCTG R: GAGACGGTGGTGGATAACGGA 60 87

3βHSD F: GACCTGGGGTTTGGAATTGAG R: TAGGAGAAGGTGAATGGGGTGT 60 170

CYP11A1 F: AGGGAGAAGTTGGGTGTC-
TACGA R: CGTAGGGCTTGTTGCGGTAGT 60 89

2.5. Oil Red O Staining and Detection of Intracellular Lipids

The difference in lipid droplet deposition after 48 h of transfection with mimic/inhibitor/
siACSL3 was detected by using Oil Red O staining. According to the previously described
protocol, following three washes with PBS, the cells were fixed with 4% formaldehyde for
30 min at room temperature; afterward, dye was used with 0.3% filtered Oil Red O for 1 h at
room temperature, and washed with 60% isopropanol for 10 s to remove free Oil Red O; then
we added a suitable amount of PBS, and took photos under the microscope (Olympus, Tokyo,
Japan). After removing the PBS and extracting the Oil Red O for 20 min with isopropanol, the
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supernatant was transferred to 96-well culture plates; finally, absorbance was measured at
510 nm using a spectrophotometer [14].

2.6. Measurement of Intracellular Triglyceride and Cholesterol Concentrations

Total protein isolated by radioimmunoprecipitation assay (RIPA) buffer (Thermo
Fisher Scientific, Waltham, MA, USA) and phenylmethanesulfonyl fluoride (PMSF) was
collected to determine the concentrations of intracellular triglycerides (TG) and total choles-
terol (CH) by using the Goose TG and CH ELISA Assay Kits (Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China). Results were evaluated by the colorimetric method [27].

2.7. Determination of Progesterone and Estradiol Production

The production of Progesterone (P4) and Estradiol (E2) in the supernatant culture
medium was detected using the Goose P4 and E2 ELISA Kit (Huding Biotechnology,
Shanghai, China), according to the manufacturer’s instructions.

2.8. Prediction of MiR-202-5p Target Genes

Target genes of gga-miR-202-5p (5′-UUUCCUAUGCAUAUACUUCUUU-3′) were
analyzed for sites complementary to the miR-202-5p seed sequence by using both miRDB
(http://mirdb.org/, accessed on 19 January 2022) and TargetScan (https://www.targetscan.
org/vert_80/, accessed on 19 January 2022). Genes predicted by both miRDB and Tar-
getScan were considered potential target genes of miR-202-5p.

2.9. Dual Luciferase Assays

The dual luciferase assays were used to confirm the binding site of miR-202-5p. Accord-
ing to the previous procedure, the plasmid (wild-type or mutant pmiRGLO-3′UTR-ASCL3)
and miR-202-5p mimic or mimic negative control were co-transfected into HEK293T cells
in 48-well plates using Lipofectamine 3000. After 48 hours of transfection, the activity of
the luciferase was measured by Dual-Luciferase Reporter Assay Kit (Beyotime Biotech-
nology, Haimen, China) on a fluorescence/multi-detection microplate reader (US BioTek
Laboratories, Shoreline, WA, USA) [28]. Three different experiments’ data are presented as
means and standard deviations.

2.10. Statistical Analysis

All experimental data were analyzed by ANOVA or nonparametric tests, according to
the results of homogeneity of variance tests. IBM SPSS Statistic (version 20, Chicago, IL,
USA) was used for all statistical analyses. Results are presented as the mean ± SEM. The
differences were considered significant at p < 0.05.

3. Results
3.1. Identification and Characterization of the Goose miR-202-5p Precursor Sequence

The mature miR-202-5p sequence obtained by miRNA sequencing was consistent with
the mature miR-202-5p sequence in chicken; therefore, primers for amplifying the goose
miRNA-202-5p precursor sequence were designed based on the chicken miRNA-202-5p
precursor sequence. After PCR amplification and cloning, the target fragment met the
expected length and was successfully cloned (Figure 1A). Further forward and reverse
sequencing results showed that the goose miR-202-5p sequence contained 96 bases, with
5 base mutations compared with the chicken precursor sequence (Figure 1B); however, it
contained a complete mature miRNA-202-5p sequence, identical to the mature miR-202-5p
sequence of chicken. The precursor sequence was further compared to that of the Pink-
footed goose (Anser brachyrhynchus), showing that miR-202-5 was located between the
DNTT and ADGRA genes, consistent with the position of miR-202-5p in chickens, mice,
humans, pigs, and other taxa (Figure 1C).

http://mirdb.org/
https://www.targetscan.org/vert_80/
https://www.targetscan.org/vert_80/
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(B) comparation of the miR-202-5p precursor between goose and chicken, and (C) genomic alignment
and secondary structure prediction of goose miR-202-5p precursor.

3.2. miR-202-5p Suppressed Lipid Deposition and Steroidogenesis of Goose hGCs

To further investigate the biological functions of miR-202-5p in hGCs, the miR-202-
5p mimic and inhibitor were used to control the expression of miR-202-5p (Figure 2A).
qRT-PCR showed that miR-202-5p significantly increased the relative expression levels
of peroxisome proliferation activated receptor alpha (PPARγ) and diacylglycerol acyl-
transferase 1 (DGAT1), which promote lipid synthesis. The knock-down of miR-202-5p
significantly elevated the mRNA levels of PPARγ and DGAT2 (Figure 2B). This indicated
that miR-202-5p may inhibit hGC lipid synthesis; therefore, we quantified the contents
of intracellular CH and TG by ELISA and found that the overexpression of miR-202-5p
significantly reduced the TG content in hGCs (p < 0.05, Figure 2B). Similarly, Oil Red
O staining showed that the miR-202-5p mimic significantly decreased lipid deposition
(p < 0.01), and the lipid deposition level increased significantly after miR-202-5p inhibitor
transfection (p < 0.01, Figure 2C). These results indicated that miR-202-5p can inhibit lipid
deposition in hGCs.

A qRT-PCR analysis also showed that the miR-202-5p mimic significantly inhibited
the expression of the steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid
dehydrogenase (3βHSD) (Figure 3A), suggesting that it has a regulatory role in steroid
hormone synthesis. The effects of transfection with the miR-202-5p mimic or inhibitor on
P4 and E2 secretion were also determined. The overexpression of endogenous miR-202-5p
led to a significant decrease in P4 production (p < 0.01, Figure 3B,C). These data revealed
that miR-202-5p inhibits steroid hormone secretion in hGCs.
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3.3. miR-202-5p Inhibits Lipid Deposition and Steroidogenesis by Targeting ACSL3

To ascertain the mechanism by which miR-202-5p inhibits hGC lipid synthesis, func-
tional target genes of miR-202-5p were predicted using the miRDB and TargetScan databases.
Among the predicted target genes of miR-202-5p, long-chain acyl CoA synthetase 3 (ACSL3)
catalyzes the conversion of free long-chain fatty acids to acyl CoA esters (Figure 4A) [29].
This suggested that miR-202-5p may regulate lipid synthesis in hGCs by targeting ACSL3.
qRT-PCR showed that the miR-202-5p mimic significantly inhibited the expression of ACSL3
(p < 0.05), while the inhibitor significantly increased its expression (p < 0.01, Figure 4B);
furthermore, to validate the targeted binding sites between miR-202-5p and ACSL3, a
luciferase reporter assay was performed. As shown in Figure 4C, the luciferase activity of
cells co-transfected with ACSL3-wt (wild type) and the miR-202-5p mimic was significantly
lower than that of the miR-202-5p mimic-NC group, with no effect on the luciferase activity
of cells transfected with the mutant-type binding site (p < 0.05). These results suggested
that ACSL3 is a downstream target gene of miR-202-5p.
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Figure 4. Identification of the targeting relationship between miR-202-5p and ACSL3. (A) predicted
target genes from TargetScan and miRDB, and identification of candidate miR-202-5p target genes,
(B) effect of miR-202-5p on the expression level of ACSL3 in GCs, and (C) experimental validation
of the binding site of miR-202-5p in the 3′-UTR of ACSL3 by a luciferase reporter gene assay. wt,
wild-type; mt, mutant-type. * p < 0.05, ** p < 0.01.

The functions of ACSL3 in hGCs were investigated using three ACSL3-siRNAs (namely,
si-ACSL3-587, si-ACSL3-1341, and si-ACSL3-1877) targeting different sites in the coding
region. As displayed in Figure 5A, the decrease in ACSL3 mRNA expression was greatest
for si-ACSL3-1877 (p < 0.01, Figure 5A); accordingly, si-ACSL3-1877 was selected for the
following experiments; subsequently, the effects of si-ACSL3-1877 on lipid metabolism-
related gene expression were evaluated by qRT-PCR. After ACSL3 mRNA expression was
knocked down by si-ACSL3-1877, the mRNA expression levels of PPARγ and DGAT2
decreased significantly (p < 0.05, Figure 5B), indicating that ACSL3 may be involved in the
regulation of lipid synthesis in goose hGCs. ACSL3 interference also significantly decreased
the level of TG in hGCs. Oil Red O staining showed that lipid deposition levels were also
significantly reduced in hGCs with ACSL3 interference (Figure 5C). These findings revealed
that ACSL3 enhances lipid synthesis in hGCs.
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A qRT-PCR analysis of steroidogenesis-related genes showed that si-ACSL3-1877
significantly reduced StAR mRNA expression (Figure 6A); furthermore, analyses of extra-
cellular E2 and P4 levels by ELISA revealed that the knock-down of ACSL3 also significantly
inhibited the secretion of E2 (Figure 6B). These data indicate that ACSL3 promotes steroid
hormone synthesis in hGCs.
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4. Discussion

While chickens, ducks, and various other birds lay about 300 eggs a year, the highest
annual egg production of geese is only about 100. Most geese lay 20–40 eggs a year, which
is a bottleneck restricting the development of the goose industry. The key molecular event
that determines the annual egg production of poultry is selective dominance during fol-
licular development, which was closely related to lipid and steroid hormone synthesis of
granulosa cells; therefore, understanding the molecular mechanism regulating lipid and
steroid hormone synthesis of granulosa cells can not only provide a theoretical basis for
understanding the physiological mechanism of poor egg-laying performance of geese but
also have important theoretical and practical significance for improving the egg production
of geese. MiR-202-5p was first identified in the human testis, where it plays a key role in
spermatogenesis. In ruminants, miR-202 shows restricted expression in bovine ovaries,
with elevated expression in large healthy follicles, particularly in GCs [30]; furthermore,
miR-202-5p levels are positively correlated with CYP19A1 expression levels in goat ovarian
follicles [31], indicating that miR-202-5p may play a critical role in GCs during follicle devel-
opment. Lipid metabolism of GCs has a bi-directional effect on folliculogenesis and oocyte
maturation. Increased levels of some lipids are a protective factor for folliculogenesis due to
the requirement for fatty acids in meiotic resumption and fertilization in oocytes [32]. Our
results showed that miR-202-5p significantly inhibited the expression of PPARγ, DGAT1,
and DGAT2 in hGCs. PPARγ is important in lipid metabolism and it regulates genes
involved in the release, transport, and storage of fatty acids, such as lipoprotein lipase
and the fatty acid transporter CD36 [33]. Diacylglycerol acyltransferase 1 (DGAT1) and
DGAT2 both catalyze the final, committed step of TG synthesis (the acylation of diacylglyc-
erol with a fatty acyl-CoA) [34]; furthermore, the biogenesis of starvation-induced lipid
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droplets requires DGAT1 [35]. DGAT2 can also relocalize around lipid droplets, where it
appears to be required for lipid droplet-localized TG synthesis [36]. This indicated that
miR-202-5p may participate in lipogenesis of hGCs by inhibiting the expression of PPARγ,
DGAT1, and DGAT2; furthermore, as determined by Oil Red O staining, miR-202-5p had a
significant inhibitory effect on lipid deposition in goose hGCs; furthermore, miR-202-5p
significantly decreased the level of intracellular TG. Follicular GCs are one of the main sites
of ovarian steroid synthesis [37]. Steroidogenesis is a complex process by which cholesterol
is transported to mitochondria and is converted via a series of enzymatic steps to steroid
hormones [38,39]; therefore, lipid metabolism in GCs is closely related to the synthesis
of steroid hormones. Our results showed that the overexpression of miR-202-5p could
significantly inhibit the expression of steroidogenic acute regulatory protein (StAR). StAR
is responsible for mediating the rate-limiting step in the movement of cholesterol from the
outer to the inner mitochondrial membrane for steroidogenesis [38,40]. More importantly,
we detected the effect of miR-202-5p on P4 and E2 synthesis in hGCs. The overexpression of
miR-202-5p significantly inhibited the synthesis of P4. Collectively, these results suggested
that miR-202-5p inhibits lipid deposition and P4 synthesis in hGCs.

To further reveal the molecular mechanism by which miR-202-5p inhibits lipid depo-
sition in goose GCs, its potential target genes were predicted using the miRDB [41] and
TargetScan [42] databases. Among the predicted target genes, ACSL3 has been reported
to be involved in regulating the conversion of free long-chain fatty acids (MUFAs) to acyl
CoA esters [25], implying that ACSL3 also participates in the regulation of lipid synthesis
in GCs. The qRT-PCR analysis showed that miR-202-5p could inhibit the expression of
ACSL3. A dual-luciferase assay further revealed that miR-202-5p can inhibit the function
of ACSL3 by binding to its 3′-UTR. ACSL3-mediated acyl CoA esters exert a variety of
cellular functions, including the regulation of energy and lipid metabolism and signal
transduction [29]. It is distributed at the site of lipid droplet formation in the endoplasmic
reticulum and participates in lipid droplet synthesis [43,44], and it affects the expression of
steroid hormone synthesis-related genes in prostate cancer cells [45]. In the present study,
we found that when ACSL3 expression was knocked down, levels of both lipid droplets and
intracellular TG were significantly reduced in goose hGCs; furthermore, ACSL3 interference
significantly decreased the E2 levels. ACSL3 was a target gene of miR-202-5p and promoted
lipid deposition and E2 secretion in goose hGCs.

5. Conclusions

In conclusion, we found that miR-202-5p can significantly inhibit lipid deposition and
estradiol production in goose-hierarchical follicular GCs; furthermore, we demonstrated
that miR-202-5p could directly target ACSL3 by binding to its 3’UTR seed sequence. ACSL3
can promote the deposition of lipid droplets, increase intracellular triglyceride levels, and
increase the production of progesterone. These results suggest that miR-202-5p inhibits
lipid and steroid hormone synthesis of hGCs by targeting ACSL3. In addition to clarifying
the functions of miR-202-5p in follicular development, we expect these results to guide
molecular breeding aimed at improving egg production in geese.
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