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Simple Summary: The study focused on improving the detection of clinical bovine mastitis, the
inflammation of the udder in cows as a response to intramammary infection, which can be identified
by the presence of clots in the milk. Currently, automated milking systems do not detect this
important disease very accurately. To address this, we developed a clots detection program using
a neural network. This neural network was trained to recognize clots in milk samples from dairy
cows by using a large number of pictures of milk filter socks, some with and some without clots.
These pictures were divided into different sets for training, validating, and testing the program,
respectively. The settings of the neural network were optimized using a genetic algorithm. The
program’s interpretations were explained using a method called integrated gradients. The program
was found to be 100% accurate in identifying clots in the test pictures. This suggests that the method
could be very useful for automatically checking for clinical mastitis on dairy farms, although further
field validation through integration into the existing systems is needed.

Abstract: Automated milking systems (AMSs) already incorporate a variety of milk monitoring and
sensing equipment, but the sensitivity, specificity, and positive predictive value of clinical mastitis
(CM) detection remain low. A typical symptom of CM is the presence of clots in the milk during
fore-stripping. The objective of this study was the development and evaluation of a deep learning
model with image recognition capabilities, specifically a convolutional neural network (NN), capable
of detecting such clots on pictures of the milk filter socks of the milking system, after the phase in
which the first streams of milk have been discarded. In total, 696 pictures were taken with clots and
586 pictures without. These were randomly divided into 60/20/20 training, validation, and testing
datasets, respectively, for the training and validation of the NN. A convolutional NN with residual
connections was trained, and the hyperparameters were optimized based on the validation dataset
using a genetic algorithm. The integrated gradients were calculated to explain the interpretation
of the NN. The accuracy of the NN on the testing dataset was 100%. The integrated gradients
showed that the NN identified the clots. Further field validation through integration into AMS is
necessary, but the proposed deep learning method is very promising for the inline detection of CM
on AMS farms.

Keywords: deep learning; clinical mastitis; automated milking systems; image recognition; clots
in milk

1. Introduction

From an economic viewpoint, mastitis is one of the most important diseases in dairy
cows [1–5], due to its effects on animal health and the subsequent losses in milk production,
as well as the need to discard abnormal milk or milk from diseased cows (European Union
Directive EC/853/2004 and US Food and Drug Administration Grade A pasteurized milk
ordinance). Depending on the study, the cost of each clinical mastitis (CM) varies between
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USD65 and 930 [2–4]. The early detection of CM can reduce both the economic impact and
the long-term impact on cow health and welfare [6,7].

Many dairy farms are transitioning to automated milking systems (AMSs), with
around 38,000 units installed worldwide in 2017 [8]. When using AMSs, there are fewer
opportunities for the farmer to detect CM in individual animals. The current AMS incorpo-
rates a variety of milk monitoring and sensing equipment, but the sensitivity and specificity
of its CM detection capabilities remain relatively low, with most systems having a sensi-
tivity between 47 and 90% and a specificity between 56 and 99% [9,10]. For reference, the
International Standards Organization (ISO) describes a standard target of 90% sensitivity
and 99% specificity for the detection of abnormal milk (ISO/FDIS (Final Draft Interna-
tional Standard) 20966 [11]), Annex C (Automatic Milking Installations—Requirements
and Testing). Most of these sensor systems try to detect mastitis by measuring and an-
alyzing indirect parameters, such as (but not limited to) electrical conductivity, somatic
cell count, milk flow rate, changes in milk color, milk yield per hour or quarter, and cow
activity [7,10,12–15].

A typical symptom of CM is the presence of clots in the milk during pre-milking,
which has been proposed as the gold standard for the detection of CM [16,17]. Therefore,
we propose to use an in-line camera to detect such clots in the filter after the pre-milking
phase. A similar sensor has been proposed in the past but was limited in its capabilities
of detecting the clots on the filter, as it was developed to score the quality of the milk
and needed to be adapted for instances of different detriments occurring in the milk [18].
Another study proposed to measure clot density in quarter milk samples, which could be
useful in monitoring milk quality and clinical mastitis [19]. The researchers used in-line
filters to collect quarter milk samples and visually scored the clot density, based on the
coverage of the filter area. They showed that high scores clustered within certain cows and
periods, suggesting a potential threshold for detecting abnormal milk. The objective of the
present study was the development and evaluation of a neural network (NN) capable of
detecting such clots on pictures of the filters of the milking system after the pre- and/or
milking phase at the cow level.

2. Materials and Methods
2.1. Experimental Data

The data for this study were generated by adding debris (including straw, hay, manure,
bedding material, mud, teat sealer, calcium, and/or flies) and/or clots from used milk
filters of AMSs to milk, before passing this milk through a circular milk filter (Universal
Hygia Favorit filters, Universal dairy equipment) mounted in a PVC tube. Debris and clots
were collected from 40 filters, half of which had clots and half of which did not. These
samples were gathered from multiple AMSs and various cows. A vacuum pump provided
suction for pulling the milk through the filter. The filters were painted blue for better
visualization of the clots. An iPhone 6s was mounted in the PVC pipe to take a photo with
the flashlight after each pass of milk. In total, 696 pictures were taken from filters with clots,
and 586 pictures from filters without clots.

2.2. Image Analysis

For the training dataset, the images without clots were randomly resampled using the
built-in python random.uniform function to obtain an even number of images with and
without clots for balancing the NN weights. In total, 1676 images were used for training,
validating, and testing. During the training of the NN, the images were augmented by
random rotations, flipping, rescaling, zooming, and shearing (Table 1), using the Keras
ImageDataGenerator function.
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Table 1. Image augmentation parameters used by the Keras ImageDataGenerator function during
training of the neural network.

Augmentation Type Value

Random rotation 60◦

Random shift in width 10%
Random shift in height 10%

Random zoom 100–130%
Horizontal flip probability 50%

Vertical flip probability 50%
Shear range 20◦

Fill mode nearest

To avoid the NN learning features from outside of the filter, e.g., milk spatters on the
PVC pipe, the PVC pipe was removed from the picture using OpenCV v4.1. The image
was then rescaled to 500 × 500 pixels as the NN input (Figure 1).
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Figure 1. Image pre-processing steps on filter image after the passage of milk with clots. Panel
(A): original image taken with a resolution of 4032 × 3034 pixels. Panel (B): image after applying
a black mask on the region of the PVC pipe. Panel (C): resulting image used for the neural
network after rescaling to 500 × 500 pixels.

A genetic algorithm was used to optimize the hyperparameters of the NN (Figure 2)
based on the validation dataset. A non-dominated sorting genetic algorithm II (NSGA-II)
was used, with a population size of 20 and 10 optimization generations, using the accuracy
as the fitness value [20]. The training of each child NN of the algorithm was ended after
50 epochs or when the training stopped improving for three epochs. Optimization was used
for the following hyperparameters: the number of filters, the width of convolution and
subsampling for each convolutional layer, the number of neurons for each fully connected
layer, L2 regularization, and the dropout used for training (Table 2).

For training, the SoftMax cross entropy was used to calculate the loss with the Adam
optimizer and with the default parameters at a learning rate of 0.0001 for updating the
weights of the network [21]. The network was trained using parameters optimized by the
genetic algorithm, with each epoch evaluated using a validation dataset. This process was
repeated for 100 epochs, selecting the best network weights based on validation results,
to avoid overfitting the training dataset. The testing dataset was employed for statistical
analysis. The network was built in Keras with a TensorFlow v2.0.1 backend [22]. The batch
size was set to 16. Afterwards, the integrated gradients of the NN were calculated and
compared to a completely black baseline image to obtain an insight into the input–output
behavior of the neural network. The attribution of the input pixels to the output labels was
projected as a mask over the input image using the OpenCV toolbox (Figure 3).
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Table 2. Hyperparameters selected by the genetic algorithm after 10 optimization generations. For the
convolutional layers, the first number indicates the residual block and the second number indicates
the convolutional layer within the block. Abbreviations: Conv: convolutional layer.

Layer Hyper Parameter Value

All Dropout 0.2
Conv 1.1 Filters 8

Kernel size 4
Subsampling 2

Conv 1.2 Filters 8
Kernel size 1

Subsampling 1
Conv 2.1 Filters 16

Kernel size 4
Subsampling 1

Conv 2.2 Filters 16
Kernel size 1

Subsampling 1
Conv 3.1 Filters 24

Kernel size 4
Subsampling 1

Conv 3.2 Filters 24
Kernel size 1

Subsampling 1
Conv 4.1 Filters 32

Kernel size 4
Subsampling 1

Conv 4.2 Filters 32
Kernel size 1

Subsampling 1
Conv 5.1 Filters 40

Kernel size 4
Subsampling 1

Conv 5.2 Filters 40
Kernel size 1

Subsampling 1
Conv 6.1 Filters 48

Kernel size 4
Subsampling 1

Conv 6.2 Filters 48
Kernel size 1

Subsampling 1
Conv 7.1 Filters 48

Kernel size 4
Subsampling 2

Conv 7.2 Filters 48
Kernel size 1

Subsampling 1
Conv 8.1 Filters 48

Kernel size 4
Subsampling 1

Conv 8.2 Filters 48
Kernel size 1

Subsampling 1
Dense 1 Number of neurons 64

L2 regularization 0.1
Dense 2 Number of neurons 32

L2 regularization 0.01
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Figure 2. High-level architecture of the neural network. CONV: convolutional block; BN: batch
normalization; RELU: rectified linear activation unit; Max Pool 2D: Max pooling operation; Dense:
fully connected layer; Softmax: Softmax activation block with the two different output classes.

Animals 2023, 13, x FOR PEER REVIEW 5 of 9 
 

 
Figure 2. High-level architecture of the neural network. CONV: convolutional block; BN: batch nor-
malization; RELU: rectified linear activation unit; Max Pool 2D: Max pooling operation; Dense: fully 
connected layer; Softmax: Softmax activation block with the two different output classes.  

For training, the SoftMax cross entropy was used to calculate the loss with the Adam 
optimizer and with the default parameters at a learning rate of 0.0001 for updating the 
weights of the network [21]. The network was trained using parameters optimized by the 
genetic algorithm, with each epoch evaluated using a validation dataset. This process was 
repeated for 100 epochs, selecting the best network weights based on validation results, 
to avoid overfitting the training dataset. The testing dataset was employed for statistical 
analysis. The network was built in Keras with a TensorFlow v2.0.1 backend [22]. The batch 
size was set to 16. Afterwards, the integrated gradients of the NN were calculated and 
compared to a completely black baseline image to obtain an insight into the input–output 
behavior of the neural network. The attribution of the input pixels to the output labels was 
projected as a mask over the input image using the OpenCV toolbox (Figure 3). 

 

Figure 3. Visualization of the integrated gradients by an attribution mask over the original input
image. Yellow indicates a high attribution of the indicated pixels to the output label of the neural
network (NN). Panel (A) shows the integrated gradients of the currently used NN. Here the pixels
(around) the clots attribute the most to the output label. Panel (B) shows the integrated gradients
of a NN which was trained on images where the PVC pipe was not removed from the image. This
‘cheating’ NN used the milk spats on the PVC pipe to identify if this was an image with clots.
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2.3. Statistical Analysis

The dataset was randomly divided into a training subset containing 60% of the data, a
validation dataset containing 20%, and a holdout subset containing 20%, which was not
used for tuning the model; this resulted in 1006 training, 335 validation, and 335 holdout
images. The following metrics were calculated on the holdout dataset: accuracy, positive
and negative predictive values, specificity, and sensitivity.

3. Results

The accuracy, specificity, positive and negative predictive values, and sensitivity re-
sults of the NN on the testing dataset were 100% (Table 3). The integrated gradients
showed that the NN identified the clots and accurately distinguished the clots from
other materials including straw, hay, manure, bedding material, mud, teat sealer, calcium,
and flies.

Table 3. Coherence matrix of results.

Predicted Negative Predicted Positive

True negative 182 0

True positive 0 153

4. Discussion

The accuracy, positive- and negative predictive value, specificity, and sensitivity of the
NN on the holdout dataset are a clear improvement, in comparison with other milk-based
CM detection methods. Since the proposed method can reliably detect clots in foremilk, this
method could be a feasible approach to detect CM in AMSs. Since clots during foremilking
are considered the gold standard for detecting CM, the current approach has the potential
to be a more reliable CM detection implementation for AMSs, in comparison with current
CM detection sensors, which try to detect CM with other parameters, including electrical
conductivity, L-lactate dehydrogenase, milk color, and somatic cell counting [9,16]. Many
different sensors and algorithms have been proposed for the detection of CM, but, thus
far, none of the published CM detection methods achieved the ISO target of at least 80%
sensitivity and 99% specificity [23].

One of the main benefits of the current approach is the extremely high accuracy. The
main frustration of dairy farmers is the current high number of false alarms made by the
available CM detection sensors in AMSs [24]. Due to the low prevalence of (severe) CM,
the majority of alerts will indeed be false positives, leading to a potential underreporting of
CM cases, as farmers may stop investigating all alerts [23–25]. With the proposed sensor,
the detection and management of severe mastitis on AMS farms could be significantly
improved, reducing the number of false-positives and ensuring that all cases of severe
CM are accurately identified and treated and that milk is separated. Even if the practical
implementation of the current sensor would not have an accuracy/precision of 100%, a
NN, as we have proposed, can be adapted in order to maximize the accuracy, by penalizing
false positive results during the training process or by calculating the receiver operating
characteristic curve and setting a manual threshold for the minimal required specificity [26].
An additional benefit of using a NN is their robustness for the presence of a variety of
detriments (such as straw, manure, udder or tail hair, sawdust, sand, and the remainders
of internal teat sealants) on the image, without the need to retrain the algorithm for every
possible detriment. This is in contrast with the previous proposed work, in which the
fuzzy logic algorithm had to be adapted to recognize the different detriments [18]. If
environmental changes (e.g., change in filter type) would overwhelm the robustness of the
NN, the weights of the NN could be updated on-site using transfer learning to adapt to the
new environment [27]. If the farmer receives multiple false positive results from the sensor,
he could initiate an update of the algorithm remotely based on the incorrectly classified
images without the need to re-engineer the algorithm. In addition, the proposed NN
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approach could also use an optional reference image to differentiate and track animals with
varying mastitis cases. The algorithm identifies changes in clots by comparing new images
with the reference image, which would not be possible with the fuzzy logic algorithm.

If a 3D representation of the filter could be created, e.g., by adding a second camera
for 3D stereovision, the NN could also be adapted to calculate the volume of the clots.
Calculation of the animal’s clot volume allows us to monitor diseased animals with CM over
time and to estimate the severity of the disease and clinical recovery, and, hypothetically,
even the likelihood of a bacteriological cure. For example, if the clot volume of a diseased
animal is decreasing between consecutive milkings, the animal is likely to be recovering.
If few clots are present, increasing milking frequency may suffice as treatment, reducing
antibiotic use. On the other hand, treatment can be necessary when many clots in milk are
detected. Monitoring the dynamics, as well as the gradual increase in the densities, of the
clots on the filter over a period of time could also be a valuable tool to identify cows with
chronic mastitis [19].

The integrated gradients showed that the NN identified the region of the clots as an
input feature (Figure 3). Neural networks are notorious for having a “black box” approach.
It is difficult to attribute the prediction of an NN to its input features and, thus, to know
why an NN tells us which pixels of an image are responsible for picking a certain label [28].
The aim of explainable artificial intelligence (AI) is to understand the input–output behavior
of NNs. One such explainable AI method is the integrated gradients approach, in which
the attribution of each pixel is calculated by summing the gradients (a partial derivative
of each variable, while all others are held constant) of the network on different points at
the path between a baseline image (e.g., a black image) to the actual input image (e.g., the
image of the filter with clots). If the PVC pipe had not been removed from the input images,
the integrated gradients would have clearly shown that the NN had learned to recognize
the different milk spatter patterns instead of recognizing the clots.

The current study encountered limitations due to the relatively small dataset, which
lacked diversity. Although image augmentation techniques were applied to introduce
variability, such approaches do not compare to the larger, more complex datasets typically
utilized in deep learning studies [29]. Furthermore, the consistency of the recording setup
throughout the study, i.e., exclusively using an iPhone’s flash for illumination, has left the
model’s robustness to alternate lighting conditions untested; this is a notable concern since,
in field conditions, lighting can be inconsistent and obstructed. Consequently, the findings
presented here should be interpreted as preliminary, serving as an exploratory investigation
into the application of deep learning for mastitis detection. It is recommended that future
research be conducted with more extensive datasets gathered from field conditions in
AMSs, to thoroughly evaluate the model’s performance and practicality.

While our proposed milk sensor can greatly enhance the detection and management of
severe mastitis on AMS farms, it is important to remember that, due to the sudden onset of
severe CM, sensor information based solely on changes in milk and measurements collected
during milking may not be sufficient for all cases [23]. Cows with severe CM may not visit
the AMS. Therefore, a combination of several sensor-based (including activity sensors) and
AMS-based indicators may have to be incorporated to meet the necessary demands. It
is worth noting that other proposed methods already work at the quarter level [10], and
by incorporating additional filters and cameras into the AMS at the quarter, we could
potentially enhance the performance of our proposed detection system to also achieve
this level of monitoring. The performance of a sensor-based detection system may also
be enhanced by the combination of sensor-based or automatic milking-based monitoring
systems with additional monitoring strategies, such as visual observations. Therefore,
while our sensor offers significant advancements, it should be used in conjunction with
other tools and strategies for optimal results.



Animals 2023, 13, 3783 8 of 9

5. Conclusions

The current paper proposed an inline CM detection sensor for AMSs. Further valida-
tion and integration on farms with AMSs are necessary, but the proposed method appears
to be very promising for the accurate inline detection of CM on AMS farms.
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