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Simple Summary: The aim of this experiment was to investigate the effects of different LED light
colors on the growth performance, intestinal morphology, cecal short-chain fatty acid concentration,
and microbiota in broilers. The results showed that blue and blue–green composite light would
have better feeding advantages, as demonstrated by the fact that blue and blue–green composite
light could improve ileal morphology and affect SCFAs concentration by changing the abundance of
genus-level flora to improve growth performance.

Abstract: This study aimed to explore the effects of light-emitting diode (LED) light colors on growth,
intestinal morphology, and cecal microbiota in broilers. A total of 360 healthy male Arbor Acres (AA)
broilers with similar weights were selected and divided into four groups with six replicates in each
group and 15 broilers in each replicate: LED white light (W), LED green light (G), LED blue light (B),
and LED blue–green composite light (BG). The experimental period was 42 d, the light cycle of each
treatment group was 23L:1D (23 h of light, one hour of darkness) from 1 to 3 d, and the light cycle
from 4 to 42 d was 16L:8D; light intensity was 20 Lux. The results showed that the average daily feed
intake and final weight of broilers receiving the B group were the highest in 21 d and 42 d compared
with other groups. The average daily feed intake of the BG group was lower than that of the B group.
In the same light color, small intestine villus height grows with age. On days 21 and 42, compared
with other groups, the ileal villus height was higher, the crypt depth was lower, and the V/C ratio
(villus to crypt ratio) was higher in the BG group. The combination of blue–green composite light was
beneficial to increase the content of propionate, isobutyrate, butyrate, isovalerate, and valerate in the
cecum of 21-day-old broilers and the content of isobutyrate in the cecum of 42-day-old broilers, and a
decrease in cecal short-chain fatty acid concentrations with age. The B group and the BG group had
higher abundances of Bacteroidetes at day 21 of age and lower abundances of Phascolarctobacterium
at day 42. However, no cecal microbiota differences were detected by the Bonferroni-corrected test. In
general, our research results showed that light color could promote the growth of broilers by affecting
intestinal morphology, microbiota abundance (needs to be validated by further experiments), and
cecal short-chain fatty acid concentrations. And blue and blue–green composite lights are more
suitable for broiler growth.

Keywords: broilers; feed efficiency; intestinal histology; short-chain fatty acid; cecal microbiome

1. Introduction

The biological clock adjusts the biological state according to the environment [1]. The
exogenous rhythm is regulated by various factors, such as climate, temperature, light,
and feed. However, the endogenous rhythm produces rhythmic fluctuations of biological
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processes that are not affected by exogenous rhythm factors in 24 h [2–4]. For the circadian
rhythm, the endogenous rhythm and the exogenous rhythm are often synchronized [5].

Light is the most sensitive exogenous factor regulating circadian rhythm and sig-
nificantly affects physiological and behavioral activities [2]. Broilers are susceptible to
light because of the photoreceptor cells in their retinas and the photoreceptors of the deep
brain [6]. Light stimulates photoreceptors and transmits information to the suprachiasmatic
nucleus (SCN) in the hypothalamus, which interprets retinal light signal information and
provides direct and indirect rhythmic cues to the rest of the body [7]. The opsins in the
eyes of broilers are sensitive to light color with different wavelengths. Light color stimula-
tion can significantly affect broilers’ growth [8]. Different light colors will have different
effects on broilers. The current research showed that blue light and green light are more
conducive to the growth of the broilers because green or blue light can significantly pro-
mote the myogenic process of satellite cells [9,10]. In addition to monochromatic light, the
study of combined monochromatic light showed that white LED supplemental blue/green
LED or switching light from green (blue) to blue (green) leads to further weight gain in
broilers [11,12].

The function of the gut and the stability of the microflora reflect the health of the
digestive tract [13]. Maintaining gut health is critical for promoting body growth. In
recent years, the research around intestinal tissue has been a hotspot. The complex neuro-
endocrine network called the brain–gut axis connects the brain and the gastrointestinal
tract. The brain–gut axis is a bidirectional regulatory axis between gastrointestinal function
and the central nervous system [14]. A number of animal and human studies show that
intestinal microflora is a key regulator of the brain–gut axis, and short-chain fatty acid
(SCFAs) is a potential mediator [15]. Recent studies showed that light exposure changes
affected gut microbes’ circadian rhythm [16,17].

According to the above research status, it can be found that most of the current research
on the effect of light color in broilers is focused on monochromatic light, monochromatic
light converted to another monochromatic light or two monochromatic lights superimposed;
there is a lack of research on the composite light. And there is a gap in the research on light
regulation of the broiler gut (microbiota and their metabolites).

We wanted to preliminarily investigate whether composite light affects gut microbiota
and promotes growth in broilers. The purpose of this study was to provide information on
a proper lighting system for the efficient production of broilers. We study how the LED
white light, LED green light, LED blue light, and LED blue–green composite light affect the
growth performance, intestinal morphology, cecal SCFAs concentrations, and microbiota of
broilers, comparing the feeding advantages of different LED lights.

2. Materials and Methods
2.1. Animals and Experimental Design

The study was carried out in compliance with the National Institutes of Health (Chang-
sha, China) guidelines for the care and use of experimental animals, with approval from
the Institution Animal Care and Use Committee of the College of Animal Science and
Technology, Hunan Agricultural University (Changsha, China).

In a randomized complete block design, a total of 360 1-day-old healthy male Arbor
Acres (AA) broilers were equally distributed by weight of origin into four treatment groups.
Broilers were divided into 4 treatments: LED white light (W), LED green light (G), LED
blue light (B), and LED blue–green composite light (BG). Treatments were arranged in four
isolated spaces, which were demarcated by shading cloth. Each treatment had 90 broilers
kept in six replicated pens (15 broilers per pen) with a density of 15 broilers/m2 (Stocking
densities of 32–35 kg/m2 are expected by day 42). The experimental period was 42 days, the
light cycle of each treatment group was 23L:1D (23 h of light, one hour of darkness) from 1 to
3 d, and the light cycle from 4 to 42 d was 16L:8D, 20Lux at the level of broilers’ head is. LED
(The light-emitting diode) was the only light source and the spectral characteristics involved
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in this study are shown in Figure 1. The composition of diets is shown in Supplementary
Table S1.
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light (BGL).

2.2. Growth Performance

Each broiler was weighed and recorded on an empty stomach at 07:00 on the 1st, 21st,
and 42nd day of the experiment. Broilers fasted for 12 h while drinking water ad libitum
on the day before sampling.

During the experiment, the weight of feed and residual in each pen were accurately
weighed weekly. The final body weight (FBW), average daily gain (ADG), average daily
feed intake (ADFI), and feed conversion rate (FCR) per broiler for the ages of 21 d and 42 d
were calculated.

2.3. Intestinal Histomorphology

On the 21st and 42nd day of the experiment, one broiler from each replication close
to the average body weight (the average body weight of the groups is shown in Supple-
mentary Table S2) of the group was selected and killed by cervical dislocation followed
by decapitation (24 individuals per age). After dissection, the duodenum, jejunum, and
ileum of the intestinal tissues were collected, fixed with 4% polyoxymethylene for 24 h,
embedded in petrolin, and cut into 2–3 µm sections. Following prior methods, the sections
were stained with hematoxylin first, then counterstained with eosin, and lastly examined
under an optical microscope. On 10 intact, well-oriented villi per intestinal section, the
villus height (the distance from the apex of the villus to the junction of the villus and crypt)
and crypt depth (the distance from the junction to the basement membrane of the epithelial
cells at the bottom of the crypt) were measured, and the villus height/crypt depth (V/C)
ratio was calculated.
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2.4. Cecal Sampling and Short-Chain Fatty Acid Measurement

The killing method was in accordance with the aforementioned details. After dissec-
tion, the contents of the cecum were collected, placed in a 5 mL sterile cryopreservation
tube, quickly put into liquid nitrogen, and then stored in the freezer at −80 ◦C.

According to the method described by [18], the concentration of short-chain fatty acids
(SCFAs) was measured in each replication, including acetic acid, propionic acid, butyric
acid, pentanoic acid, isobutyric acid, and isovaleric acid.

2.5. Cecal Microbiota

The killing method and cecal sampling were in accordance with the aforementioned details.
The 338F—806R region of the bacterial 16S rRNA gene were conducted to PCR (338F:

5′-ACTCCTACGGGAGGCAGCAG-3′; 806R: 5′-GGACTACHVGGGTWTCTAAT-3′). The
PCR components contained 5×FastPfu Buffer (4 µL), 2.5 mM dNTPs (2 µL), 0.8 µL of
Forward Primer (5 µM) and Reverse Primer (5 µM), FastPfu Polymerase (0.4 µL), BSA
(0.2 µL), Template DNA (10 ng) and supplement ddH2O to 20 µL. Cycling parameters
were 95 ◦C for 3 min, followed by 27 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C
for 45 s, and a final extension at 72 ◦C for 10 min. Duplicate PCR products were mixed
and further verified with 2% agarose gel electrophoresis. PCR products were recovered
using an AxyPrepDNA gel recovery kit (AXYGEN Co., Ltd., San Francisco, CA, USA).
PCR products were quantified by reference to preliminary electrophoretic quantification
using the QuantiFluor™-ST Blue Fluorescence Quantification System (Promega Co., Ltd.,
Madison, WI, USA). The library built by NEXTFLEXRapidDNA-SeqKit was carried out for
16s rRNA sequencing by Illumina’s MiseqPE300 platform.

2.6. Statistical Analysis

The data were analyzed by IBM SPSS Statistics 23, using the two-way ANOVA. The
interactions of the two factors were tested by the Duncan multiple comparison post hoc
test when appropriate. All data were tested for normal distribution and homogeneity
before further analysis; the results are expressed as “mean ± standard deviation (SD)”.
p-values < 0.05 were used to indicate statistical significance.

Alpha and Beta diversity were analyzed with Mothur (v.1.30.2) and displayed with
R software (v3.3.1). In addition, the differences in cecal microbiota among groups were
compared using the Kruskal–Wallis H test; p-values < 0.05 were used to indicate statistical
significance. To obtain a more rigorous interpretation, we also use the Bonferroni correction
(post hoc test: Tukey–Kramer). Although above the Bonferroni-corrected significance
threshold, p-values < 0.05 were considered suggestive of evidence for a potential association.

3. Results
3.1. Effects of LED Light Colors on the Growth Performance

The effect of different color LED lights on the growth performance of the broilers is
summarized in Table 1.

The growth performance was significantly affected by age (p < 0.001). The BW was
significantly higher in the B group than in the G group (p < 0.05) at 21 days of age. At day
42 of age, the highest BW was observed in the B and BG groups, while broilers receiving
the green light had lowered BW compared with other groups (p < 0.05). The ADFI was
significantly higher (p < 0.05) for 21 d with the blue light compared to the other groups. The
difference in ADFI between the B group and W group for 42 d was not significant (p > 0.05);
the B group was significantly higher than the G and BG groups (p < 0.05). At the age of 21 d,
the ADG of the B group was significantly higher than the G and BG groups (p < 0.05). The
ADG was significantly higher in the B and BG groups than in the W and G groups (p < 0.05)
at 42 d, and the W group was significantly higher than the G group (p < 0.05). There was no
significant difference (p > 0.05) in the FCR across different treatments at 21 d. However, the
FCR of the BG group was significantly lower than other groups at 42 d. (p < 0.05). There
was a significant age × light color effect on BW and ADG (p < 0.001).
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Table 1. Effects of broilers’ growth performance with the different LED lights.

Items White Light Green Light Blue Light Blue-Green Light
p-Value

Age Light Color Age × Light Color

BW 1/g
21 d 806.03 ± 27.57 Bab 779.92 ± 23.34 Bb 822.97 ± 5.59 Ba 796.29 ± 16.80 Bab

<0.001 <0.001 <0.00142 d 2338.89 ± 75.78 Ab 2212.68 ± 29.61 Ac 2492.53 ± 74.23 Aa 2456.06 ± 119.67 Aa

ADFI 2/g
21 d 48.73 ± 1.30 Bb 48.13 ± 1.08 Bb 51.06 ± 0.68 Ba 48.19 ± 2.25 Bb

<0.001 <0.001 0.11142 d 82.72 ± 2.16 Aab 77.45 ± 4.94 Ab 86.28 ± 4.11 Aa 78.83 ± 5.20 Ab

ADG 3/g
21 d 36.20 ± 1.22 Bab 34.95 ± 1.56 Bc 37.19 ± 0.48 Ba 35.48 ± 0.43 Bbc

<0.001 <0.001 <0.00142 d 54.59 ± 1.78 Ab 51.59 ± 0.69 Ac 58.25 ± 1.78 Aa 57.38 ± 2.81 Aa

FCR 4

21 d 1.37 ± 0.21 B 1.34 ± 0.05 B 1.37 ± 0.12 B 1.35 ± 0.06 B
<0.001 0.028 0.07942 d 1.52 ± 0.06 Aa 1.50 ± 0.09 Aa 1.48 ± 0.10 Aa 1.38 ± 0.09 Ab

Mean values with different superscripts (a–c) in the same row differ within light color treatments (p < 0.05). Mean
values with different superscripts (A,B) in the same column differ within Age (p < 0.05). 1 BW: The final body
weight; 2 ADFI: Average daily feed intake; 3 ADG: Average daily gain; 4 FCR: Feed conversion rate.

3.2. Effects of LED Light Colors on the Intestinal Morphology

The intestinal histomorphology parameters, such as villus height, crypt depth, and
villus/crypt ratio, are shown in Table 2 and Supplementary Figure S1.

Table 2. Effects of different LED light colors on intestinal morphology of broilers.

Items Stage White Light Green Light Blue Light Blue–Green Light
p-Value

Age Light Color Age × Light Color

Duodenum

Villus Height/µm 21 d 1016.82 ± 163.83 B 957.12 ± 140.73 B 1023.87 ± 133.83 B 1056.44 ± 26.92 B
<0.001 0.559 0.94942 d 1300.90 ± 219.90 A 1258.40 ± 71.89 A 1380.93 ± 219.18 A 1343.38 ± 216.58 A

Crypt Depth/µm 21 d 96.77 ± 4.62 83.14 ± 6.45 94.59 ± 16.54 102.06 ± 22.79
0.428 0.063 0.52142 d 99.36 ± 17.77 86.12 ± 10.23 85.76 ± 10.32 92.72 ± 5.61

V/C 1 21 d 10.51 ± 1.19 B 12.62 ± 3.00 B 11.46 ± 2.54 B 10.78 ± 2.74 B
<0.001 0.008 0.14642 d 12.14 ± 1.00 Ac 15.45 ± 1.17 Aab 17.40 ± 2.70 Aa 14.18 ± 0.45 Abc

Jejunum

Villus Height/µm 21 d 957.39 ± 95.65 Bab 809.95 ± 91.03 Bb 1103.88 ± 174.57 Ba 992.64 ± 168.35 Ba
<0.001 0.038 0.36342 d 1301.59 ± 279.39 A 1076.72 ± 230.86 A 1178.98 ± 57.39 A 1244.10 ± 117.57 A

Crypt Depth/µm 21 d 75.76 ± 5.94 B 76.13 ± 7.49 B 83.84 ± 9.59 B 75.38 ± 7.06 B
0.006 0.037 0.98942 d 81.71 ± 2.13 A 83.30 ± 5.99 A 89.00 ± 7.78 A 81.70 ± 6.12 A

V/C
21 d 12.74 ± 1.93 11.61 ± 2.33 13.39 ± 2.99 13.36 ± 3.12

0.193 0.266 0.41642 d 16.12 ± 3.88 12.61 ± 3.53 12.64 ± 2.71 14.28 ± 2.90

Ileum

Villus Height/µm 21 d 805.18 ± 64.25 Bab 744.07 ± 40.46 Bb 836.21 ± 75.90 Ba 873.58 ± 40.13 Ba
0.004 0.184 0.25542 d 879.85 ± 224.98 A 971.87 ± 134.63 A 857.75 ± 62.91 A 1017.64 ± 150.49 A

Crypt Depth/µm 21 d 100.64 ± 16.21 a 80.05 ± 11.41 bc 87.90 ± 9.39 ab 72.09 ± 3.07 c
0.614 0.001 0.00242 d 82.08 ± 6.00 b 83.18 ± 11.27 b 98.32 ± 3.80 a 82.98 ± 5.08 b

V/C
21 d 8.55 ± 1.47 b 9.43 ± 1.20 b 10.04 ± 2.04 ab 11.83 ± 0.67 a

0.076 0.002 0.04442 d 10.72 ± 2.66 ab 11.73 ± 1.34 a 8.69 ± 0.55 b 12.31 ± 2.00 a

Mean values with different superscripts (a–c) in the same row differ within light color treatments (p < 0.05). Mean
values with different superscripts (A,B) in the same column differ within Age (p < 0.05). There is no significant
difference in unmarked letters (p > 0.05). 1 V/C: Villus height/Crypt depth ratio.

Age causes the villus in the ileum, jejunum, and duodenum to grow higher (p < 0.001,
p < 0.001, p = 0.004). The V/C ratio of the duodenum and depth of the jejunum crypt among
the four groups were increased at 42 d compared with 21 d (p < 0.001, p = 0.006).

At 21 d of age, the effects of the four light colors on the morphology of the duodenum,
the depth of the jejunal crypt, and the ratio of villus to crypt were insignificant (p > 0.05).
The villous height of the jejunum and ileum in the B and BG groups were significantly
higher than the G group (p < 0.05) but did not have a significant difference with the W
group (p > 0.05), the difference between the W group and G group was not significant
(p > 0.05). The depth of the ileal recess in the W and B groups was significantly higher than
that in the BG group (p < 0.05); the BG and G groups did not have a significant difference
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(p > 0.05). The V/C ratio of ileum in the BG group was significantly higher than that in the
W and G groups (p < 0.05), but there was no significant difference in the B group (p > 0.05).

At 42 d of age, a significant difference was found between the B group and W/BG
group on the V/C ratio of the duodenum (p < 0.05). The ileal recess depth was significantly
decreased in the W, G, and BG groups (p < 0.05), and the ileal V/C ratio in the G and BG
groups was significantly higher than that in the B group (p < 0.05). There was no significant
difference in the villus height and crypt depth of the duodenum, jejunum, and ileum
villus height in broilers with different LED light colors. There was a significant interaction
between age and light color treatments on ileal recess depth and V/C ratio (p< 0.05).

3.3. Effects of LED Light Colors on the Cecal SCFAs Concentrations

The impacts of LED light colors on the cecal SCFA concentrations are presented in
Table 3. With increasing broiler age, the cecal short-chain fatty acid concentrations were
decreased in the same light environment (p < 0.001). On day 21, the concentrations of
propionate, isobutyrate, butyrate, and isovalerate in the BG group were significantly higher
than those in other groups (p < 0.05), but there was no significant difference among G, B,
and W groups (p > 0.05). The concentration of valerate in the BG group was significantly
higher than that in the B and W groups, but there was no significant difference between the
BG and G group (p > 0.05). On day 42, the concentrations of isobutyrate in the BG group
were significantly higher than that in other groups (p < 0.05), but there was no significant
difference among the G, B, and W groups (p > 0.05). There was no significant difference
in the concentrations of acetate, propionate, butyrate, isovalerate, and valerate among the
four groups. There was a significant interaction between age and light color treatments on
propionate, isobutyrate, butyrate, and valerate (p < 0.05).

Table 3. Effects of different LED light colors on cecal short-chain fatty acid concentrations of broilers.

Items White Light Green Light Blue Light Blue–Green Light
p-Value

Age Light Color Age × Light Color

Acetate, mmol/L
21 d 61.85 ± 8.51 A 66.64 ± 5.09 A 64.79 ± 13.67 A 79.93 ± 25.72 A

<0.001 0.174 0.30842 d 16.24 ± 6.20 B 26.59 ± 10.64 B 17.69 ± 0.42 B 19.99 ± 9.02 B

Propionate, mmol/L
21 d 15.23 ± 1.04 Ab 17.49 ± 1.26 Ab 17.21 ± 5.31 Ab 26.66 ± 9.13 Aa

<0.001 0.009 0.00242 d 3.31 ± 1.85 B 3.77 ± 2.18 B 2.48 ± 0.35 B 2.59 ± 1.43 B

Isobutyrate, mmol/L
21 d 2.93 ± 0.25 Ab 3.35 ± 0.12 Ab 3.04 ± 0.24 Ab 5.05 ± 1.52 Aa

<0.001 <0.001 0.00442 d 0.37 ± 0.18 Bb 0.53 ± 0.21 Bb 0.38 ± 0.05 Bb 0.88 ± 0.24 Ba

Butyrate, mmol/L
21 d 6.60 ± 0.59 Ab 7.48 ± 0.85 Ab 6.61 ± 1.10 Ab 10.09 ± 3.04 Aa

<0.001 0.006 004242 d 1.85 ± 1.02 B 2.14 ± 1.02 B 2.21 ± 0.40 B 2.44 ± 1.12 B

Isovalerate, mmol/L
21 d 2.55 ± 0.25 Ab 3.01 ± 0.16 Ab 2.82 ± 0.49 Ab 4.12 ± 1.22 Aa

<0.001 <0.001 0.05142 d 0.35 ± 0.16 B 0.37 ± 0.18 B 0.43 ± 0.07 B 0.71 ± 0.46 B

Valerate, mmol/L
21 d 2.36 ± 0.19 Abc 2.57 ± 0.14 Aab 2.29 ± 0.18 Ac 2.70 ± 0.06 Aa

<0.001 0.077 0.01442 d 0.33 ± 0.10 B 0.27 ± 0.15 B 0.30 ± 0.02 B 0.28 ± 0.13 B

Mean values with different superscripts (a–c) in the same row differ within light color treatments (p < 0.05). Mean
values with different superscripts (A,B) in the same column differ within Age (p < 0.05).

3.4. Species Annotation and Assessment in Cecal Microbiota

The 16S rRNA gene amplicon sequences from cecal contents of samples on day 21
and day 42 were conducted to investigate the effects of different light colors on the ce-
cal microbiota of broilers. The results of the day 21 and day 42 analyses show that the
rarefaction curve of the Sobs index and Shannon index flattened with increasing sequenc-
ing depth, which indicated that our samples covered most microbial species information
(Supplementary Figure S2).
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Illumina Miseq sequencing of the 338F—806R regions of bacterial 16S rRNA genes
generated 10,524,203 and 1,129,642 high-quality sequences at day 21 and day 42, respec-
tively. Four hundred and sixty-five OTUs (day 21) and 618 OTUs (day 42) were obtained,
respectively (basis of 97% sequence similarity). As shown in the Venn diagram about day
21, we identified 324, which appeared to be present in all the samples. The W group had
397 OTUs, with 17 unique OTUs; the G group had 395 OTUs, with 11 unique OUTs; the B
group had 394 OTUs, with 8 unique OTUs. The BG group has 396 OTUs, with 12 unique
OTUs (Figure 2A). On day 42, we observed that 485 OTUs were shared across all treatments.
The W group had 579 OTUs, with 5 unique OTUs; the G group had 572 OTUs, with 3 unique
OUTs; the B group had 550 OTUs, with 2 unique OTUs. The BG group had 551 OTUs, with
6 unique OTUs (Figure 2B).
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The α-diversity mainly reflects the species richness and diversity of the microbial
community. Indexes of indexes Shannon, Simpson, Ace, and Chao were calculated as the
α-diversity to evaluate the microbial diversity. There were no significant differences in the
four indexes among all treatments, whether at 21 d or 42 d. Next, the β-analysis was used
to determine the degree of dispersion of the microorganisms between the different light
treatment groups; the PCoA analysis was conducted and illustrated based on unweighted
Unifrac distances (Figure 3A,B). There were no significant differences in species abundance
distribution among the four groups of samples on day 21. On day 42, there were significant
differences in β-analysis among the groups.

3.5. Effects of LED Light Colors on the Cecal Microbiota at the Phylum Level

A total of nine phyla were detected on the experimental day 21 and eight phyla on
day 42, respectively. The dominant phyla bacteria detected (greater than 0.1%) in the cecal
contents of 21-day-old broilers mainly included Bacteroidota and Firmicutes. On day 42,
besides Bacteroidota and Firmicutes, Cyanobacteria and Proteobacteria were also found to be
the dominant bacteria (Figure 4A,B). There was no significant difference in the relative
abundance of cecal microorganisms at the phylum level among the four groups on day 21
and day 42.
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3.6. Effects of LED Light Colors on the Cecal Microbiota at the Genera Level

A total of 118 genera were detected on the experimental day 21 and 133 genera on
day 42, respectively. At day 21, 19 genera with relative abundance greater than 0.1%
were found (Figure 5A). Except for Bacteroidetes (p = 0.011, p-adjust = 1.000), there was
no significant difference in the cecal microbial community at the genus level among the
four groups (p > 0.05). The relative abundance of Bacteroides in the cecum at the genus
level of the BG group was significantly higher than that of the G group and the W group
(p < 0.05, Figure 6A) but not significantly different from the B group (p > 0.05, Figure 6A).
At day 42, 26 genera with relative abundance greater than 0.1% were found (Figure 5B).
Only Phascolarctobacterium showed a tendency to differ between the four groups (p = 0.006,
p-adjust = 0.818). The relative abundance of Phascolarctobacterium in the cecum at the genus
level of the G group was significantly higher than that of the B group and the BG group
(p < 0.05, Figure 6B), but not significantly different from the W group (p > 0.05, Figure 6B).
There was no significant difference in Phascolarctobacterium among the B group, BG group,
and W group (p > 0.05, Figure 6B). No phascolarctobacterium was found in the B group or the
BG group.
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3.7. Correlations between Cecal Microbiota and SCFAs

The results of day 21 are shown in Figure 7A (for the microorganisms with the total
abundance in the top 19). Bacteroides is positively correlated with acetate and propionate,
while Lactobacillus is negatively correlated with acetate and propionate. At the same time,
norank _f_norank_o_Clostridia_UCG-014, norank_f_norank_o_RF39, and Subdoligranulum are
also negatively correlated with acetate. Unclassified_ f_Lachnospiraceae is positively corre-
lated with valerate. The Ruminoccus_torques_group is negatively correlated with isobutyrate,
butyrate, isovalerate, and valerate.
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The results of day 42 were shown in Figure 7B (for the microorganisms with the total
abundance in the top 26). unclassified_f_Lachnospiraceae and unclassified_f_Oscillospiraceae
are negatively correlated with acetate. norank_f_norank_o_Gastranaerophilales is positively
correlated with propionate and valerate. Blautia and Lachnoclostridiumis are positively
correlated with isovalerate, while Bacteroides is negatively correlated with isovalerate.
Blautia is positively correlated with butyrate.

4. Discussion
4.1. Growth Performance

Light color plays a crucial role in affecting the growth performance of broilers. The
eyes of birds can sense a wider wavelength range compared to mammals. Therefore,
poultry is more sensitive to light stimuli. Many studies revealed that colored light promotes
broiler growth more than white light, and short wavelength (blue light and green light)
stimulates growth rapidly [12,19]; long wavelength (red light and orange light) accelerates
development and sexual maturation [20]. In the current study, the B group had the highest
ADFI at both 21 d and 42 d, indicating that blue light could promote broiler feed intake,
thereby improving their growth and development.

At the age of 21 days, the feed intake of the BG group was significantly lower than that
of the B group, but the final weight was maintained at a similar level to that of the B group,
indicating that the blue–green composite light may have better nutrient metabolism levels
for 21-day-old broilers. At the age of 42 days, the F/G of the BG group was significantly
lower than that of other experimental groups, and the advantage of the BG group on the
production performance of 42-day-old broilers was better than that of the W and G groups,
which represents the advantage of blue–green composite light to reduce F/G and improve
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broiler performance. It has been shown that combining the advantages of monochromatic
light can affect the growth of broilers [11,21]. Similarly, the blue-green composite light
selected in this experiment realized the growth promotion of broilers.

4.2. Intestinal Morphology

The small intestine plays a significant role in digestion and absorption, and its devel-
opment directly affects the growth of the body. Villus height, crypt depth, and V/C ratio
can reflect intestinal health and functional status [22,23]. Therefore, a high V/C ratio can
also indicate that the intestinal digestion and absorption capacity is strong. Early-life gut
well can maximize the impact on the growth potential of broilers [24]. Thus, early-life gut
morphology and function are beneficial for broiler growth performance [25]. The results of
this study indicate that the height of small intestinal villi increased with age in the same
light color environment. Liao et al. suggested that the villous height in the duodenum,
jejunum, and ileum all increased with age [26]. The results were similar to ours.

Previous studies have suggested that blue light and green light enhanced the growth
of villus height [27], as Yang et al. [28] reported that blue light enhanced the digestive
and absorptive capacity of the jejunum and increased goblet cells, villus height, and V/C
ratios. Our study showed an increase in the villus height of the jejunum at 21 d and V/C
ratios of the duodenum at 42 d in the B group. Intestinal morphology is an indicator of
intestinal health, and its values indicate digestive and absorptive capacity. The proximal
small intestine is the main site for the digestion and absorption of nutrients like fat, protein,
and sugars [29]. Therefore, our results suggest that nutrient uptake enhancement in the
small intestine and broiler weight gain in the B group matched the results obtained by
growth performance.

Meanwhile, the results of this study demonstrated that the blue–green composite light
significantly reduced crypt depth and increased V/C ratios of ileal in broilers, which the
blue–green composite light has the effect of improving the intestinal morphology of the
ileum of broilers either 21 d or 42 d. The higher the V/C value, the stronger the digestion
and absorption capacity. Although the feed intake of the BG group was significantly lower
than that of the B group, the FBW could be maintained at a level similar to that of the
B group, which may be related to good intestinal development. A well-developed gut
can facilitate nutrient absorption. In addition, studies show that mixing blue and green
light can combine the advantages of both wavelengths, showing better stimulation than
monochromatic light [28]. Our results are in agreement with previous studies that the
blue-green composite light is beneficial for broilers. In brief, it can promote better intestine
in broilers.

4.3. Cecal SCFAs Concentrations

SCFAs are metabolites produced by intestinal microbiota. It plays an important role
in the energy metabolism of the host, which can provide nutrition for intestinal cells,
thus maintaining epithelial barrier function, regulating epithelial hyperplasia, maintaining
intestinal immune homeostasis, and promoting skeletal muscle growth, thus maintaining
the health of livestock and poultry in an all-round way and promoting their growth and
development [30–32]. Experiments on mice and humans have shown that SCFAs decline
with age [33,34], and our results also present significantly lower SCFAs at 42 d than at 21 d
in each group. This is in contrast to the findings of Liao et al. [26], who argued that most
cecal SCFAs increased, but isobutyrate decreased with age.

In this study, the results showed that blue–green composite light could significantly
promote the production of propionate, isobutyrate, butyrate, isovaleric, and valerate in
the cecum of 21-day-old broilers. Based on the growth performance data of 21-day-old
broilers, the results showed that the high concentrations of SCFAs in the cecum of broilers
in the BG group promoted higher energy acquisition, which was beneficial to the intestinal
development, maintained intestinal health, and promoted body growth. Isobutyrate also
belongs to branched-chain fatty acids (BCFAs) [35]. There are differences in the identifica-
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tion of BCFAs. According to some studies, the BCFAs can lead to high protein catabolism,
which leads to a high obesity rate. The increase of BCFAs in the colon indicates that it is
not conducive to nutritional metabolism [36]. However, in rat models, Yan et al. found
that BCFAs could reduce the incidence of necrotizing enterocolitis, increase the content
of IL-10 in intestinal anti-inflammatory cells, and change the microbial ecology of the
gastrointestinal tract [37]. The blue–green composite light could promote the production
of isobutyrate in the cecum of broilers so as to protect the intestinal barrier, improve the
absorption of nutrients, and promote growth. This result was consistent with the growth
performance data of 42-day-old broilers; the broilers in the BG group had less food intake
but higher weight gain. And the results of the interaction proved that the effect of age on
propionate, isobutyrate, butyrate, and valerate were influenced by light color. It is possible
that this is the cause of the difference between our results and those of Liao et al. [26].

4.4. Cecal Microbiota

The gut microbiota is an important factor in promoting animal growth and devel-
opment and changes with the influence of the surrounding environment, diet, circadian
rhythm, and other factors, but the core microbiota of adult animals remains stable [38,39].
For broilers, the differences in the microbiome were no longer significant after 14 days
of age, and the gut microbiome reached a plateau at 21 days of age [40,41]. Most of the
current research results show that Firmicutes and Bacteroidota are the two phyla with the
highest relative abundance in the gut of broilers [42]. Consistent with the results of most
studies, in the analysis of 21-day-old broiler caecum microbial composition, it was found
that Bacteroidota and Firmicutes were the most abundant in cecal content samples of broiler
chickens raised under different LED light colors and remained the most abundant until
42 days of age. Bacteroidota and Firmicutes were also relatively stable in abundance among
groups. In experiments with mice, aging was accompanied by an increase in the abundance
of Proteobacteria and cyanobacteria in the gut [43]. Compared with day 21, this experiment
also found that Proteobacteria and Cyanobacteria were increased in the caeca of broilers at
day 42.

Bacteroidetes can produce SCFAs by breaking down carbohydrates, and these SCFAs
are absorbed by the cecal epithelium into the blood circulation to provide energy for the
body [40]. The SCFAs’ and Bacteroidetes’ relative abundance of the cecum in the BG
group was higher at the age of 21 days, and through correlation analysis, we found that
Bacteroides are positively correlated with acetate and propionate. The results indicate that
the cecal microorganisms of the broiler groups may affect the SCFAs’ production. Zhang
et al. found that perfusion of sodium propionate could inhibit the feed intake of growing
pigs but can increase the ratio of villous crypt in the jejunum [44]. The results of this
experiment showed a similar phenomenon. Therefore, the lower feed intake of broilers
in the BG group might be due to the high cecal propionate. But, the BG group had better
intestinal development and finally reached a level similar weight to that in the B group.
On day 42, Phascolarctobacterium was only found in the white light group and the green
light group. Studies have shown that body weight and fat mass negatively correlate with
Phascolarctobacterium abundance [45,46]. The W group and the G group had lower body
weight, which may be related to the presence of Phascolarctobacterium. The results of the
correlation analysis showed that there was a correlation between cecal microorganisms
and SCFAs. However, there was no significant correlation between the differential SCFAs
(Isobutyrate) and the differential cecal microorganisms (Phascolarctobacterium) in the four
groups, which might be due to the existence of unknown intermediate cecal microorganisms
and their metabolites in the regulatory process, the specific mechanism needs further
systematic and in-depth experimental investigation.

Bacteroidetes are from the phylum Bacteroidota, and Phascolarctobacterium is from the
phylum Firmicutes. The elevated ratio of Firmicutes and Bacteroides is associated with fat
deposition and affects SCFA production and carbohydrate metabolism [47]. Compared
with the W group and the G group, the B group and the BG group had a higher abundance
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of Bacteroides at 21 days of age and lower Firmicutes at 42 days of age, so the ratio of
Firmicutes and Bacteroides decreased in the BG group and B group, which was beneficial
to improve fat deposition and promote the production of SCFAs. Therefore, the blue light
and the blue–green composite light may improve the growth performance by affecting the
bacterial groups involved in the SCFA metabolic pathway.

It is worth noting that there is a possibility of a false negative for the Bonferroni-
corrected test. Our study revealed that Bacteroidetes and Phascolarctobacterium are affected
by light colors. However, these significances disappeared after the Bonferroni-corrected
test. We suppose that this is an exploratory study; the unadjusted p-values suggest potential
significance levels, which should be validated in future studies.

5. Conclusions

Our results demonstrated that the effects of light colors on growth performance,
intestinal morphology, cecal SCFAs, and microbiota in the broilers were carried out in this
study. We observed that broilers reared in the blue light could promote broiler feed intake,
thereby improving their growth and development, and the blue–green composite light has
the advantage of reducing F/G and improving broiler performance. Therefore, our results
suggest that nutrient uptake enhancement in the small intestine and broiler weight gain
with blue light and blue–green composite light can improve the morphology of the ileum
in broilers, promoting better intestinal health of broilers.

The further analysis of the cecal microbiota among four groups at two experimental
points (day 21 and day 42) revealed that blue light and blue–green composite light can
affect SCFA concentrations by changing the abundance of genus-level flora and improving
growth performance. Of course, this requires further experiments to validate and explore
the mechanisms involved.
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nutrient levels of diets; Table S2: The average body weight of the groups.
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