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Simple Summary: Food availability plays a significant role in modulating populations, especially in
species relying on human-generated food sources like landfills. Sudden changes in food access can
negatively impact vital parameters such as survival. For long-lived scavenger species, understanding
how different age groups respond to these changes is essential since landfills are condemned to
be closed. We studied the response in terms of apparent survival of griffon vultures to a decline
in landfill organic matter after a waste treatment center became operational. The proportion of
transients increased in all age groups. Survival dropped in juveniles and adult residents but increased
in immature residents. These findings suggest that vultures permanently emigrated at higher rates
due to intensified competition after the reduction in food. Intriguingly, immature resident vultures
showed resilience, indicating the presence of high-quality individuals despite the food scarcity. The
reasons behind reduced survival in adult residents during the final four study years remain unclear
but are potentially linked to non-natural mortality. This research highlights the challenges facing
scavengers as European landfill sites close, thereby stressing the need for food scarcity studies and
timely conservation measures.

Abstract: Food availability shapes demographic parameters and population dynamics. Certain
species have adapted to predictable anthropogenic food resources like landfills. However, abrupt
shifts in food availability can negatively impact such populations. While changes in survival are
expected, the age-related effects remain poorly understood, particularly in long-lived scavenger
species. We investigated the age-specific demographic response of a Griffon vulture (Gyps fulvus)
population to a reduction in organic matter in a landfill and analyzed apparent survival and the
probability of transience after initial capture using a Bayesian Cormack-Jolly-Seber model on data
from 2012–2022. The proportion of transients among newly captured immatures and adults increased
after the reduction in food. Juvenile apparent survival declined, increased in immature residents, and
decreased in adult residents. These results suggest that there was a greater likelihood of permanent
emigration due to intensified intraspecific competition following the reduction in food. Interestingly,
resident immatures showed the opposite trend, suggesting the persistence of high-quality individuals
despite the food scarcity. Although the reasons behind the reduced apparent survival of resident
adults in the final four years of the study remain unclear, non-natural mortality potentially plays
a part. In Europe landfill closure regulations are being implemented and pose a threat to avian
scavenger populations, which underlines the need for research on food scarcity scenarios and proper
conservation measures.
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1. Introduction

Food availability is a key factor that shapes demographic parameters and influences
the life-history evolution of vertebrates by modulating survival, breeding performance, and,
ultimately, population dynamics [1]. In general, animals may exhibit improved survival
and reproductive rates when food is abundant [2,3]. Conversely, when food is limited,
density-dependent processes may operate and increase both intraspecific competition and
emigration probability, resulting in a reduction in the apparent survival probability of
individuals [1,2,4,5]. Food can also influence age-dependent survival of species. Non-adult
individuals naturally exhibit lower survival performance than adults and survival rates
usually improve with age due to the selective disappearance of poor-quality phenotypes
and an age-related increase in competence [6,7], which is followed by a progressive decline
in survival with age due to physiological senescence [8,9]. While acquiring essential
foraging and competitive skills, early-age individuals tend to exploit predictable and
abundant food resources as density-dependence is relatively low [10–14]. However, during
food shortages, density-dependence intensifies and increases the likelihood of early-age
individuals becoming transients (i.e., emigrating permanently from the site) [1,4,14].

Ecosystems worldwide have been modified by human food subsidies, which have
had the greatest impact in regions where most food is wasted [15]. Food subsidies such
as fisheries discards, supplementary feeding stations or landfills are abundant and highly
predictable in space and time (also known as predictable anthropogenic food subsidies,
hereafter PAFS) and attract large numbers of species [15–17]. Several studies have shown
that PAFS can enhance the survival probability of local populations and, above all, that
of young individuals [15,18–20]. However, a progressive or drastic food reduction can
occur in PAFS due to the application of local or regional regulations that may have negative
demographic consequences for species exploiting these resources. Good examples include
sanitary regulations that prohibited leaving cattle carcasses in the wild or in supplemen-
tary feeding sites for scavengers during the bovine spongiform encephalopathy (BSE)
outbreak [21–24], the establishment of trawling moratoriums [1], and, more recently, the
reduction in organic waste and the closure of landfills due to the planning of the European
circular economy [14,25,26], which are all evidence of the negative effects of food limitation
on survival and population dynamics. Even so, the age-specific demographic response to
a depletion of food subsidies is still poorly understood [14,23], particularly in PAFS such
as landfills.

Landfills acting as PAFS represent a continuous food source that benefits numerous
opportunistic species [17]. This surplus food enhances population survival by provid-
ing sustenance year-round and, importantly, for specific age cohorts during periods of
natural food scarcity (e.g., juvenile vultures during winter since the use of PAFS is en-
ergetically less demanding than searching for wild carrion) [15,27–31]. Yet, feeding in
landfills though is hazardous, and may only provide low-quality and polluted food, with
the associate risk of exposure to solid waste ingestion (e.g., plastic, rubber, glass or metals)
and pathogens [32–35]. In addition, in some ecological systems and species, feeding on
landfills could have a detrimental effect on chick and juvenile survival since individuals
of these ages are more susceptible than adults to the abovementioned risks (e.g., [36,37].
Nevertheless, for long-lived scavengers such as vultures, the overall trade-off seems to be
positive, as current evidence supports the idea that landfills represent an important food
source that may partially support some populations [27,30,38–40].

Vultures are long-lived vertebrates and are among the most threatened scavenger
species, with more than 80% of species listed as Threatened or Near Threatened on the IUCN
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Red List [41–43]. In a transitioning scenario towards a worldwide circular economy model
that aims to reduce waste and close landfills, it is imperative to evaluate the effects that
these regulations may have on the demographic parameters of the vulture populations that
have adapted to feed in these infrastructures [26,38]. Previous studies have demonstrated
that a drastic reduction in food availability can increase vulture mobility and decrease
the apparent survival of adults [44,45]. However, information is still lacking on whether
food reduction in landfills may affect individuals in a population in terms of their age,
which could have important demographic consequences given that population dynamics
are primarily influenced by adult survival [24].

The aim of the present study was to estimate the age-specific apparent survival and
the proportion of transients in a local Griffon vulture (Gyps fulvus) population in Central
Catalonia (NE Iberian Peninsula), where nearly 3500 individuals were banded over an 11-
year period (2012–2022 included) at an open landfill that shifted organic waste management.
In mid-2015, in accordance with European policies aimed at closing landfills (Directive
2008/98/EC and Directive (EU) 183 2018/850), a waste treatment center (WTC) was opened
to reduce the amount of organic matter that is dumped in this landfill, thereby providing a
natural experiment for studying the effects of predictable food shortages on the age-specific
apparent survival of griffon vultures. Available data suggest that other environmental
factors such as food availability did not change in the area of influence around the landfill
since sanitary regulations only allow livestock corpses to be left in the field in ZPAEN areas
(protection zones for the feeding of scavenging birds), which are mostly concentrated at
high altitude in the north-west pre-Pyrenean and Pyrenean Mountains, and wild ungulates
seems to form a low fraction of the diet of the griffon vulture population in this area. A
previous study [26] reported a decrease in apparent survival from 82% to 76% between
2012–2018 following the installation of the WTC (which led to an 84% reduction in organic
matter from mid-2015 to 2018). This was primarily interpreted as being due to increased
permanent emigration as the data was collected from a single site. Apparent survival was
estimated for the whole resident local population (i.e., individuals recaptured at least once)
without distinguishing between adult and non-adult individuals for whom survival is
known to vary (e.g., [46]).

Based on available theory and evidence, we formulated several predictions to be
tested in the present study. Capture sessions performed at a single site imply that some
captured individuals might opportunistically visit the landfill and do not return (hereafter
transients; [47,48]). While transients (i.e., individuals that are never recaptured) are usually
accounted for to avoid both lack of fit in the model and underestimation of survival
probability, they can also be informative of biological processes occurring at the study
site [48,49]. Thus, with declining organic waste, we first predicted that the proportion of
adult and non-adult (i.e., juveniles and immatures) transients captured in the landfill would
increase, meaning that the site would progressively become less attractive and that newly
marked individuals would be more prone to becoming transients after the installation of the
WTC [49]. Moreover, PAFS tend to attract and benefit non-adult individuals [15,18,30,50–52]
since this age fraction is less constrained in their foraging behavior as they are non-breeders
and not bound to a specific territory. Consequently, a reduction in food at the landfill
may lead to increased density-dependent intraspecific competition at the site, resulting
in a higher rate of permanent emigration (reduced site fidelity) since non-adults are less
competitive and experienced than adults [52–54]. By contrast, adults typically have more
restricted home ranges, exhibit stronger fidelity to their breeding territory and surroundings
(i.e., are more knowledgeable of their foraging grounds), and are physically stronger and
more experienced than non-adults [51,53]. Even though the reduction in organic waste
in the landfill may lead to increased density-dependent intraspecific competition, adults
are likely to be less affected since they can more easily monopolize resources over young
individuals [52–54]. Hence, our second prediction is that with decreasing organic matter in
the landfill, the apparent survival of adults should be less affected than that of non-adults.
Additionally, given that experience and competence are expected to increase with age [6,7],
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we predict that the apparent survival of immatures should be higher and less affected
than that of juveniles after the food shortage. To assess these predictions, we employed
a Bayesian hierarchical model with the Cormack-Jolly-Seber (CJS) formulation and age-
specific effects to produce estimates of the resident apparent survival probability and the
proportion of transients at the studied landfill.

2. Materials and Methods
2.1. Study Area and Sampling

Capture-mark-recapture (CMR) sessions were conducted in the Orís open landfill
(42.07◦ N, 2.20◦ E, Central Catalonia, NE Spain), where an organic waste management
shift occurred in 2012–2022. The landfill opened in 1995 and currently receives substantial
amounts of waste from approximately 70,000 households in the counties of Osona and El
Ripollès. Up to 2015, unsorted organic waste and other recyclable materials were dumped
directly in the landfill, providing food for a large number of opportunistic species including
common ravens (Corvus corax), yellow-legged gulls (Larus michahellis), and various vulture
species, including the griffon vulture [26,40]. In compliance with European directives
(Directive 2008/98/EC and Directive (EU) 183 2018/850), a waste treatment center (WTC)
was constructed in mid-2015 to reduce the amount of waste dumped in the landfill, in
which led to a significant reduction in the organic matter available for scavengers and other
species. The amount of organic waste was drastically reduced with the opening of the
WTC, decreasing from 17,942 tons in 2012 to 450 tons in 2022 (Appendix A).

Due to its location and the amount of waste it receives, the Orís landfill annually ac-
commodates a significant proportion of the population from the central-northern Catalonia
and surrounding areas, including the south of France. It is estimated that the number of
vultures visiting the landfill has increased steadily each year (up to 2300 individuals) in line
with the growth that this population has experienced in recent decades [26]. A permanent
roosting site exists on cliffs above the landfill, and there are breeding colonies from 18 km
to over 200 km away from the site.

Vultures were captured using a walk-in trap located approximately 200 m from the
landfill. Bait consisting of 30–50 kg sheep and cattle carcasses was regularly supplied to
attract the vultures. When captured, vultures were marked with a metal and distance-
reading band and age was determined by molt plumage patterns, eye and bill coloration,
and the type of feathers on their ruffs [55,56]. To ensure accurate age assignment, photos of
vultures taken in the field were examined a posteriori. The CMR sessions were conducted
year-round, usually once or twice a month, with an average of approximately 15 sessions
per year.

2.2. Ageing of Vultures and Sampling Interval

Age was initially assigned according to the calendar year, using five age-classes: 1st
calendar year (cy), 2nd cy, 3rd cy, 4th cy, and 5th cy or more [56]. Preliminary analyses
(not presented here) using the five age-classes showed that some parameters were non-
identifiable, particularly during the first years of the study and for the 2nd–4th cy age-
classes. This was due to the low number of vultures identified as 2nd–4th cy ages during
the initial years of the study (2012, 2013, and 2014). Therefore, we decided to combine these
three age classes into one (see [57]). We pooled these three ages based on the assumption
that their biology is similar, given that they are all non-breeders and non-territorial (i.e., low
site fidelity). This assumption is supported by the known behavior of wild Griffon vultures
in Spain, where they typically recruit into a population during their fifth or sixth calendar
year and then become territorial (i.e., high site fidelity, [58]). Individuals of unknown
ages, of which the majority were captured during 2012 and 2013 and only comprised 8.5%
of the database, were removed from the analyses. For the analyses, we pooled captures
into six-month periods (January–June and July–December, two semesters per year). It has
been shown that for slow-living species such as vultures, the precision of estimates can
significantly improve with larger pooling intervals [59–61]. Given the six-month interval,
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we reassigned ages based on a calendar year that was closer to a biological cycle, in which
each individual vulture changes age at the beginning of the second semester. Although in
the Mediterranean region mean hatching dates are in spring, nestlings only begin to leave
the nest in summer and autumn and so are more likely to be captured in the landfill during
the months of the second semester of any given year [62–64]. Thus, the age classes used for
analyses were as follows: “juveniles”, 1-year-old individuals; “immatures”, 2- to 4-year-old
individuals; and “adults”, individuals aged 5 years and older.

2.3. Apparent Survival Analysis

We initially tested the goodness-of-fit of the full time-dependent CJS model (i.e.,
apparent survival and recapture probability vary on each occasion) using U-CARE software
v2.2 [65]. As suspected, the data fitted the model poorly (χ2 = 413.16, df = 155, p < 0.001).
Heterogeneity was mainly due to the presence of transients in apparent survival (Test3.SR,
p < 0.001) but also for trap-dependence in recapture probability (Test2.CT, p < 0.001, trap-
happiness: z = −6.81), which suggested that our model should account for both effects.

We employed a hierarchical Bayesian state-space Cormack-Jolly-Seber model to esti-
mate age-specific apparent survival and recapture probabilities [66–69]. The state-space
formulation provides a framework for explicitly modeling the biological state and the
observation process as realizations of Bernoulli trials. The state process is composed of
variables zi,t and fi, where zi,t is a matrix describing the true biological state of individual
i at time t, and fi, a variable that describes the state of individual i on the first capture
occasion, being zi,fi = 1. The states are modeled as Bernoulli trials in subsequent occasions,
considering the product of the survival probability of individual i alive at t that survives
until occasion t + 1 and the state at the previous occasion zi,t. To model transients and
residents’ age-specific apparent survival, we applied a time-varying individual age covari-
ate with five categories: four that account for newly-marked (a mixture of transients and
residents), and previously marked individuals (i.e., residents) for immatures and adults
age classes, and one category for juvenile individuals. Newly-marked juveniles were not
differentiated from previously marked ones to avoid unidentifiable estimates of individuals
captured for the first time during the first semester of a given year because, in the following
semester, juveniles change to immature state and so a ‘juvenile resident’ estimate is then
non-estimable for these individuals. Therefore, our residents’ juvenile parameter was
confounded with transient individuals. Age covariate values were stored in matrix Ai,t,
with i = 1, . . ., n, where n is the number of individuals and t = 1, . . ., k − 1, where k is the
last capture occasion. Transitions to older ages is deterministic in Ai,t covariate, where ages
changes from the second semester. Thus, juveniles can only be in the juvenile state from the
second semester and change to immature state during the second semester of the following
year, and to the adult state after three years of being immature; in this way we guarantee
that no reversion from older to younger ages occurs. The probability of an individual alive
at the first occasion t that survives until the occasion t + 1 is φAi,t , where Ai,t takes the value
of 1 if juvenile, 2 or 3 if a newly-marked or resident immature, respectively, or 4 or 5 if a
newly-marked or resident adult, respectively. The state process is formally defined as:

zi,t+1|zi,t ∼ Bernoulli
(

zi,t × φAi,t

)
, (1)

The information of the observation process is provided by the CMR matrix yi,t, being
i = 1, . . ., n, where n is the number of individuals, and t = 1, . . ., k, where k is the last capture
occasion, and relates with the state matrix as Bernoulli trials in subsequent occasions with
probability of Pi,t (t = 2, . . ., k). We utilized an individual covariate to model age-specific
immediate trap-response in recapture probability Ti,t (see [68]). The Ti,t matrix contains as
many columns as recapture parameters and takes the value of 1, 2 or 3 if the individual
i at time t, was captured at the previous occasion (t − 1) as juvenile, immature or adult,
respectively, and 4, individuals not captured in the previous occasion. Therefore, we
identified a ‘trap-happy’ response if recapture estimates of previously captured juveniles,
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immatures, or adults were higher than not-previously captured individuals, or ‘trap-shy’ if
they were lower. The equation of the observation process is described as follows:

yi,t|zi,t ∼ Bernoulli
(

zi,t × PTi,t

)
, (2)

To assess how the shift in waste management at the landfill after the opening of the
WTC affected the apparent survival and recapture probabilities, we constrained occasions
into three periods: (1) the period before the WTC from 2012 to mid-2015, (2) the first
after-WTC period from mid-2015 to 2018, and (3) the second after-WTC period from 2018
to 2022. We chose this three-period structure because it provides more accurate estimates
than the time-dependent model for some age classes, as well a clearer trend for before and
after the opening of the WTC in relation to the reduction of organic matter available as food
for scavengers. In the two after-WTC periods there was a reduction by 84.14% (a period
of substantial reduction) and 96.42% (a period of extreme reduction) of organic matter
dumped in the landfill and relative to the before-WTC period (Appendix A). Therefore, the
apparent survival (φ) was modeled as follows:

logit
(

φAi,t

)
= βA,WTC + εAi ,WTCi , (3)

εAi ,WTCi ∼ Normal
(

0, σ2
φ

)
,

where φAi,t is the logit apparent survival probability of the ith individual of age A captured
in tth interval, and βA,WTC is the intercept whose values are the logit mean apparent survival
of individuals within each age class A during each period of the WTC implementation.
εAi ,WTCi is an individual random effect that accounts for heterogeneity among individuals
of a given age and σ2

φ is the variance of logit apparent survival among individuals of each
age and period [68,70,71]. When using an individual random effect, we assume that each
individual has its own underlying mortality risk (or ‘frailty’). Consequently, individual
fitness is considered by incorporating individual variability into the survival estimate.
This approach contrasts with age-group-specific classical modelling that assumes that all
individuals of a given age are of equal quality [70,72,73]. Thus, the proportion of transients
among newly marked individuals for each age class and WTC period was estimated as
in [47]:

τAWTC = 1− φ
′
AWTC(x)

/φAWTC(x)
, (4)

where φ′AWTC(x)
and φAWTC(x)

are the newly marked and previously marked apparent
survival estimates of age A, respectively, in a given WTC(x) period.

Recapture probability (P) was modelled as follows:

logit
(

PTi,t

)
= αT,WTC + ωTi ,WTCi , (5)

ωTi ,WTCi ∼ Normal
(

0, σ2
P

)
,

where pTi,t is the logit recapture probability of the ith individual of age-specific trap-
response category T on the tth occasion, and αTi ,WTCt is the intercept with values indicating
the logit mean recapture probability of each previously captured individuals of a given age
class and mean recapture probability of individuals not-previously captured. Again, we
corrected for heterogeneity among individuals with an individual random effect ωTi ,WTCi
to prevent biased survival estimates [74] where σ2

P was the variance of logit recapture
probability among individuals in each trap-response category and period.

We fitted the model using vague priors, including a uniform distribution (0, 1) for
values on the probability scale with logit-1(β) and logit-1(α), as well as normal distributions
(0, σ2) for the variances of individual random effects with a uniform distribution (0, 10)
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in standard deviations [68]. Estimates were obtained by sampling from the posterior
probability distribution, taking every 10th sample from 95,000 iterations of three chains,
following a burn-in period of 40,000 iterations, using Markov chain Monte Carlo (MCMC)
algorithm. Analyses were conducted in JAGS [75] implemented through the R package
“jagsUI” [76], in R [77]. To ensure convergence, we inspected chains visually by examining
posterior density plots and checking the Gelman-Rubin statistic (
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3. Results

A total of 3,414 marked vultures and 1,531 recaptures from 2012 to 2022 were used
for modeling. At first capture, 637 were aged as juveniles, 1,104 as immatures, and 1673 as
adults (Appendix B). Overall, 66.6% (n = 424) of juveniles, 72.5% (n = 800) of immatures,
and 76.2% (n = 1274) of adults were never recaptured, while approximately one-third of
juveniles and one quarter of both immatures and adults were recaptured at least once.

Apparent survival of juveniles declined after the opening of the WTC, with a difference
of 0.02 (95%BCI:−0.16–0.19) during the first after-WTC period and 0.14 (−0.09–0.38) during
the second after-WTC period relative to the before-WTC period (Figure 1). By contrast,
immatures’ apparent survival tended to increase by 0.07 (−0.007–0.17) during the first
after-WTC period and 0.06 (−0.03–0.16) during the second after-WTC period relative to
the before-WTC period (Figure 1). Resident adults’ apparent survival increased by 0.04
(−0.04–0.10) during the first after-WTC period with a subsequent decrease of 0.14 (0.07–0.21)
during the second after-WTC period, and 0.17 (0.13–0.21) relative to the first after-WTC
period (Figure 1) (Appendix C).
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Figure 1. Apparent survival of juveniles, immatures, and adults before (2012–mid 2015), during (mid
2015–2018) and after (2018–2022) the waste treatment center (WTC) was opened. Estimates for newly
marked (“Transients”) and previously marked (“Residents”) individuals are only differentiated for
immatures and adults (see Methods). Error bars represent the 95% Bayesian credible interval.

The proportion of transients among newly marked immatures tended to increase by
0.20 (−0.11–0.52) during the first after-WTC period and by 0.13 (−0.15–0.44) during the
second after-WTC period, while newly marked adults increased by 0.07 (−0.25–0.42) and
0.24 (−0.12–0.59) during both after-WTC periods (Figure 2) (Appendix C). Recapture prob-
abilities for previously and not-previously captured individuals increased after the WTC
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was opened (Figure 2). Juveniles’ trap-response was similar to not-previously captured
individuals before the WTC opened but changed to ‘trap-shy’ during the first after-WTC
period and ‘trap-happy’ in the second after-WTC period. Immatures behaved ‘trap-happy’
before the WTC implementation and ‘trap-shy’ during both after-WTC periods. However,
adults were ‘trap-happy’ before the WTC, ‘trap-shy’ during the first after-WTC period, and
‘trap-happy’ in the last after-WTC period (Figure 2) (Appendix C).
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Figure 2. (a) Proportion of transients among newly-marked immatures and adults, and (b) recapture
probability accounting for age-specific trap-response and individual heterogeneity, before (2012–mid
2015) and during the two periods after (mid 2015–2018 and 2018–2022) the waste treatment center
(WTC) was opened. NPC = not-previously captured individuals, PC-Ad = previously captured adult
individuals, PC-Imm = previously captured immature individuals, and PC-Juv = previously captured
juvenile individuals. Error bars represent the 95% Bayesian credible interval.

4. Discussion

We evaluated the age-specific demographic response of a long-lived scavenger species
to a drastic reduction in food in a PAFS in terms of its apparent survival and the percentage
of individuals that permanently emigrated from the site after the first capture. We used
as a natural experiment a local population of ringed griffon vultures that rely on an open
landfill where a shift in organic waste management occurred after a waste treatment
center (WTC) became operational. This shift caused a progressive reduction from 14,389 to
514 metric tons in the amount of organic matter dumped in the landfill and available as
food for vultures during the final four years after the change in waste management (a 96.4%
reduction in food availability). In accordance with our first prediction, the proportion of
transients among newly marked immature and adult vultures increased over time, thereby
indicating that individuals of these ages were more likely to become transients after their
first capture due to the diminishing availability of organic matter in the landfill. Regarding
our second prediction, the food reduction in the landfill implied a decrease of juveniles’
apparent survival. However, immature residents’ apparent survival increased after the
WTC became operational but decreased for adult residents during the final WTC period.
Additionally, we explored the immediate trap-response in the three age classes to the
reduction in food in the landfill, where each age class behaved differently after the WTC
was opened. These findings were made possible by our long-term (11 years) banding
effort, which involved approximately 3500 vultures ringed in the landfill. Furthermore, the
versatility of the state-space formulation of the Cormack-Jolly-Seber (CJS) model within
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a Bayesian framework allowed us to fit complex models with individual covariates [68].
This approach enabled us to simultaneously estimate age-specific apparent survival for
resident individuals and recapture probabilities while accounting for common sources of
heterogeneity in Capture-Mark-Recapture (CMR) studies such as the presence of transients,
immediate trap-response, temporary emigration, and individual heterogeneity among age
classes [47,79,80].

The proportion of transients among immature and adults increased after the WTC
opened and was particularly high for adults, as has been observed in other long-lived
bird species [4,49]. Transients are generally high in number when the study area is rel-
atively small as in our case and in long-lived birds such as vultures that exhibit large
home ranges [81–85]. As with stressful environmental conditions, food availability also
modulates the probability a bird will become transient after the first capture, with a low
probability when food is abundant and a higher one when food is scarce. In this way, the
local decrease in food can cause an increase of density-dependent effects such as more
intense intraspecific competition leading individuals to permanently emigrate after the first
capture, this effect being particularly notable in adults [4,49]. Several hypotheses have been
proposed to explain the biological meaning of transients in adults, including the cost of
first reproduction, a marking and handling effect, or transiting individuals (true transients).
The interpretation varies depending on the specific study system and species [48,49]. In
our case, the distances from our marking site to nearby griffon vulture colonies range from
18 km to over 200 km. Given that (i) the landfill is a predictable feeding site that attracts
a significant number of individuals, including some from distant populations (e.g., some
individuals marked in the landfill have come from as far as France and other parts of Spain),
and that (ii) vultures are known to visit multiple feeding sites and cover daily foraging
distances of 120 to 300 km, a plausible explanation for transients in our system is that it
comprises a mixture of true transients (i.e., individuals passing through without belonging
to our study population including dispersing non-territorial adults) and individuals from
relatively distant colonies prospecting this feeding site.

Our findings suggest that juveniles were negatively affected by the reduction in food at
the landfill. Previous studies have demonstrated the positive influence of PAFS on survival
rates of several species, with young individuals often being particularly attracted to these
sites due to the relative ease of feeding compared to foraging for natural and unpredictable
food sources [10–13,15,18,19]. Typically, after a significant reduction in food availability, it
is the juvenile segment of the population that is most affected, resulting in an increased
mortality rate or a higher rate of permanent emigration [1,22,23,25]. In our case, however,
food reduction was very local and given that juveniles are the most mobile age fraction of
the species and not restricted to a specific territory [51,86], the negative apparent survival
trend may more likely to be due to a greater permanent emigration rate from the landfill
rather than mortality. This suggests a density-dependent effect resulting from reduced
food resources, leading to increased intraspecific competition at the site since younger
individuals are usually less competitive when compared than their older counterparts; as
well, interspecific competition is unlikely as the griffon vulture is typically dominant in
the scavenger guild [52–54]. Consequently, the landfill may have become less attractive for
these young individuals and made them less likely to return.

Contrary to our prediction, the apparent survival of resident immatures did not de-
crease despite the reduction in available food. Although immatures are generally more
experienced and knowledgeable of alternative foraging grounds than juveniles, it is ex-
pected that they will also be negatively affected by a food shortage since they are more
dependent of PAFS than older vultures, are not strongly bound to a territory, and are
usually subordinate to adults when a food source is poor or scarce [15,87]. Other studies
of long-lived species exposed to changes in food availability have yielded results that are
similar to our findings, which suggests that individual quality within age classes may play
a role. For example, [25] observed that after the closure of landfills, the apparent survival
of immature Yellow-legged Gulls (Larus michahellis) increased in nearby colonies. Simi-



Animals 2023, 13, 3529 10 of 20

larly, [24] evaluated the long-term dynamic of a griffon vulture colony before-, during- and
after-BSE outbreak in density-dependent and density-independent scenarios, and found
that immatures’ apparent survival also increased. Both studies and our results suggest
that in some systems part of the immature cohort exhibits a demographic response similar
to older ages due the disappearance of poor-quality phenotypes of juvenile age. Albeit
not restricted to a territory or as experienced as adults, some juveniles may have more
knowledge of the foraging grounds and more experience than others, as well a variety
of feeding sites within their home ranges that improves their survival probabilities [6,7].
Therefore, among resident immatures, some individuals may behave differently and either
revisit the site or permanently leave after the food shortage. Furthermore, the gradual
decrease in estimated variances among immature individuals in each period (see Figure A2)
suggests that the variability within the resident population lessened after the WTC became
operational. This change can be attributed in part to the initial exclusion of transients
from residents, as well as the potential persistence of high-quality, experienced individuals
that thrive despite the density-dependent effects of a significant food reduction. Hence, a
substantial proportion of resident immatures may prefer to frequent and compete for food
at the landfill since organic matter may still be enough and available (514 metric tons on
average during the last four years of the study) to attract and sustain the large number of
vultures that frequent the site each year [26].

The apparent survival of resident adults, on the other hand, partially met our predic-
tion. During the first four years following the food reduction, this parameter remained
unaffected and even increased, consistent with findings from prior studies [24,25]. However,
during the subsequent four years of extreme food reduction, apparent survival decreased.
Although the factors affecting adults are not entirely clear, one reasonable explanation is
that the amount of food available at the landfill no longer satisfied the energy requirements
of this age class [23]. Thus, the site became less attractive for vultures, especially those
nesting at a considerable distance from the landfill that, consequently, shifted their foraging
preferences to more viable food sources such as other PAFS and non-predictable (e.g., wild
carrion) feeding sites where they can monopolize resources more easily [52–54]. Alter-
natively, this reduction in apparent survival during the second after-WTC period could
also be the product of non-natural mortality of individuals. Adults feed more frequently
on unpredictable food sources than young birds, which makes them vulnerable to toxic
impacts [18,23]. Adult griffon vultures are potentially susceptible to lead ingestion from
game animal carcasses [87], veterinary drugs from extensive livestock production, and
anticoagulant rodenticides applied in intensive livestock production facilities and land-
fills [88–91]. The ingestion of these toxic substances may cause death or induce sub-lethal
effects, which may increase the risk of mortality from other causes such as collisions with
wind turbines [87,92–94]. For example, 28 out of 42 ringed individuals (67%) in the Orís
landfill and found dead elsewhere were adults (individuals excluded from this analysis).
However, only in nine of them (32%) was their apparent cause of death identified, being
primarily due to electrocution, collision with powerlines, and wind turbines (authors’ un-
published data). Recovering and determining the actual cause of death for marked vultures
can be challenging due to the difficulty in locating their carcasses, which sometimes may
lack markings, thereby rendering them unidentifiable [95,96]. Additionally, when carcasses
are found, their partial or extensive deterioration can make necropsy inconclusive, particu-
larly regarding toxic substances. Nevertheless, if non-natural mortality is the cause of the
decline of adults’ apparent survival in the landfill, it could have serious consequences for
the population dynamics of the species as adult mortality can have a substantial impact on
population size [24].
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Trap-dependence is one of the most common sources of heterogeneity in recapture
probability [97]. The trap-happiness observed in our GOF-test was expected because the
captures in this study were made using baited traps [97]. Additionally, the presence of
transients in the data (for which p = 0, significantly differing from individuals recaptured
multiple times), along with the scenario of food shortage [98], further contributed to this
expectation. Differentiating recapture probability between previously captured and not-
previously captured individuals is a widely used method to account for trap-response
derived from capture and handling methods, as well as for temporary emigration such as
that caused by the possible seasonal movement patterns of our study population [85]). In
our analysis, we employed an individual categorical covariate to explore the age-specific
trap-response associated with food reduction in the landfill. This approach allowed us to si-
multaneously address unmeasured individual heterogeneity by incorporating an individual
random effect in recapture probability, thereby producing unbiased survival estimates [74].
Our findings indicate that recapture probabilities increased after the implementation of the
WTC for both not-previously captured and previously captured individuals in all three age
classes (see Figure 2 and Table A3). This trend suggests that vultures were more likely to
be recaptured after the food reduction, possibly because the baited walk-in-trap became
more attractive and functioned as a predictable feeding site (extrinsic heterogeneity due
to the capture method). This shift in behavior has been observed in small mammals [98].
Furthermore, the immediate trap-response for each age class varied during the three peri-
ods evaluated and suggests that the trap-response initially diagnosed with the GOF-test
(i.e., trap-happiness), may not fully reflect the full nature of this phenomenon. Instead,
trap-response can be dynamic in a system, with individuals within groups (e.g., age classes)
displaying shifts from ‘trap-happy’ to ‘trap-shy’ and vice versa over time [98]. For instance,
some immature and adult individuals were ‘trap-happy’ before the WTC was opened.
However, during the next two after-WTC periods, all three ages behaved differently and
were ‘trap-shy’ during the first-WTC period, and ‘trap-happy’ for juveniles and adults,
and ‘trap-shy’ for immatures during the second-WTC period. Unraveling the reasons for
this variability are beyond the scope of our study due to the lack of individual covariates
other than age, which could explain part of this heterogeneity during modeling (intrinsic
heterogeneity, such as sex, mass, or personality) [73,98], and the absence of temporal envi-
ronmental covariates that may modulate trap-response at the site (e.g., landfill machinery
activities and daily food regimes). However, it is important to emphasize that trap-response
can be highly variable over time and among individuals within each age class.

5. Conclusions

In summary, our study provides valuable evidence of the age-specific detrimental
impacts of food reduction on the demographic parameters of a long-lived scavenger
bird species specialized in feeding on predictable anthropogenic food subsidies. From a
conservation perspective, the closure of landfills is a desirable objective that will reduce
the adverse effects on both the environment and the species that rely on this food resource.
These effects are evident at the level of life history traits [17], health [34,35,87], and human-
wildlife conflicts [99]. While our study suggests that the observed negative effect may be
largely associated with permanent emigration due to a diminished food supply, it is worth
noting that European regulations calling for the reduction of food in landfills are being
implemented across the whole of Catalonia (Appendix D, Figure A4). This synchronized
reduction in food resources could have significant consequences for demographic rates
and ultimately threaten an important food source for numerous species that rely on these
facilities and, in particular, for the griffon vulture population in the northeast Iberian
Peninsula. These vultures are highly specialized and feed on carcasses originating from
extensive livestock farming and landfills [26,38] and younger age classes being particularly
dependent on landfills, especially during periods of wild food scarcity such as winter [27,
28,30,31,100]. As a result, the reduction in food and the potential closure of landfills may
lead to a dramatic shift in trophic strategy among scavenger species, forcing them to
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rely more on less predictable food sources (and, to some extent, predictable ones like
supplementary feeding sites for scavengers), as previously predicted for Egyptian vultures
(Neophron percnopterus) [40]. To mitigate these impacts, conservation measures should be
considered, such as the establishment of a network of randomly distributed supplementary
feeding stations to encourage natural foraging [101] or the expansion of protection zones
for the feeding of scavenging birds (known as ZPAEN zones) in areas that are currently
underrepresented [102]. These efforts should be pursued at a regional level to prevent
undesirable negative effects on the population dynamics of these species.

Author Contributions: Conceptualization, D.J.A.-A., J.R. and A.H.-M.; methodology, D.J.A.-A., J.R.,
S.M., J.A., C.D. and A.H.-M.; formal analysis, D.J.A.-A. and A.H.-M.; investigation, D.J.A.-A., J.R.,
S.M. and A.H.-M.; data curation, D.J.A.-A. and C.D.; writing—original draft preparation, D.J.A.-A.;
writing—review and editing, D.J.A.-A., J.R., S.M., J.A., C.D. and A.H.-M.; visualization, D.J.A.-A.;
supervision, A.H.-M. and J.R.; project administration, J.R.; funding acquisition, J.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was funded by the Ministry of Science and Innovation of Spain (PID2020-
117909RB-I00 funded by MCIN/AEI/10.13039/501100011033).

Institutional Review Board Statement: The study was conducted in accordance with relevant
national and international guidelines, and conforms to the legal requirements. The animal study
protocol has been carried out in compliance with the Ethical Principles in Animal Research and
following the standards of the Catalan Institute of Ornithology. Thus, protocols, amendments and
other resources have been done according to the guidelines approved by the Catalan Autonomous
government following the Real Decreto 1201/2005 (10 October 2005, BOE 21 October 2005) of the
Ministry of Presidency of Spain.

Data Availability Statement: The data presented in this study are available in this article and from
the corresponding author upon reasonable request.

Acknowledgments: We extend our heartfelt gratitude to all the naturalists of the Grup d’Anellament
de Calldetenes-Osona (GACO) who have participated in vulture captures and the Institut Català
d’Ornitologia (ICO) for sharing the ringed vulture database. We are in debt to Jaume A. Badia-Boher
from Swiss Ornithological Institute for guidance on Bayesian modelling. We thank Jordi Baucells from
Gestió de Residus i Biodiversitat, SL, Anna Riera of the Consorci per a la Gestió dels Residus Urbans
d’Osona, Verònica Tomàs of Ferrovial and Mar Segret of Consell Comarcal d’Osona for providing
Orís landfill waste data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Metric tons of organic matter and total waste data from 2012 to 2018 were obtained
from [26], and calculations for 2019 to 2022 were done following supplementary material
from [26], and using trimestral reports provided by the Consorci per a la gestió de residus
urbans d’Osona (Consortium for the management of urban waste in Osona) corresponding
to years 2019, 2020, 2021 and 2022.

After the waste treatment center (WTC) was implemented in mid-2015, organic matter
poured into the landfill and available as food for scavengers was drastically reduced
(Figure A1). According to the three periods analyzed for modelling apparent survival and
recapture probabilities, mean metric tons of organic matter before the WTC implementation
(2012 to mid-2015) was 14,388.67, 2282.41 during the first after-WTC period (mid-2015 to
2018), and 513.99 during the second after-WTC (2018 to 2022) period (Table A1). Thus, the
reduction of organic matter available as food in the landfill after the WTC implementation
was 84.14% and 96.42%, for the first and second after-WTC periods, respectively, and by
77.48% during the second relative to the first after-WTC period.
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Figure A1. Total metric tons of waste poured into Orís landfill during 2012 to 2022. Red dashed line
indicates the year when the WTC was implemented.

Table A1. Summary of Orís landfill organic waste data during the period 2012 to 2022.
CJS = Cormack-Jolly-Seber.

Periods for CJS Modelling Year Organic Waste * Mean Organic Waste *

Before WTC

2012 17,942.03

14,388.68
2013 17,412.38
2014 17,775.45

2015 (January–June) 4424.85

1st After WTC

2015 (June–December) 3,861.06

2,282.41
2016 2,603.39
2017 1,510.11
2018 1,155.06

2nd After WTC

2019 723.32

514.00
2020 524.55
2021 355.12
2022 452.99

* Metric tons.

Appendix B

Table A2. Marked and recaptured individuals per WTC period. Note that the total number of marked
individuals sum to 3434 and not 3414 as mentioned in Results. We excluded individuals marked in
the last occasion (20 individuals) from the modeling, as they do not contribute to the likelihood [68].

Periods for CJS Modelling Years Marked Recaptured

Before WTC 2012 to 2015 (January–June) 1268 239
1st After WTC 2015 (June–December) to 2018 1174 513
2nd After WTC 2019 to 2022 992 779

Appendix C

Statistics of the posterior samples of Markov chain Monte Carlo (MCMC) for each
parameter derived from the state-space Cormack-Jolly-Seber. In Table A2, the proportion
of transients among newly captured immatures (%TranImm) and newly captured adults
(%TranAdult) were calculated following the Equation (4). For calculations, we used the
MCMC posterior samples of φ′AWTC(x)

and φAWTC(x)
(and not the means), which allowed us
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to propagate uncertainty from the samples and thus the estimation of standard deviation
and Bayesian credible intervals for these parameters.

Table A3. Mean, posterior standard deviation (SD) and 95% Bayesian credible interval (95%BCI) from
the state-space CJS model parameters and derived estimates for the three periods tested: before the
WTC implementation (2012 to mid-2015), first after-WTC period (mid-2015 to 2018), and second after-
WTC period (2018 to 2022). φJuv, φRes-Imm, φRes-Adult, φTran-Imm, and φTran-Adult are apparent survival
of juveniles, previously marked immatures, previously marked adults, newly marked immatures, and
newly marked adults, respectively. %TranImm and %TranAdult are the proportion of transients among
newly captured immature and adult individuals, respectively. PNPC is the recapture probability of
not previously captured individuals, and PPC-Juv, PPC-Imm, PPC-Adult are the recapture probabilities
of previously captured juveniles, immatures, and adults, respectively.

Period Parameter Mean SD
95%BCI

Lower Upper

Before-WTC
(2012 to mid-2015)

φJuv 0.8752 0.0808 0.6983 0.9918
φRes-Imm 0.8139 0.1100 0.5922 0.9796
φRes-Adult 0.9145 0.0360 0.8468 0.9881
φTran-Imm 0.7539 0.0503 0.6443 0.8434
φTran-Adult 0.4569 0.1418 0.1944 0.7616
%TranImm 0.1176 0.0856 0.0058 0.3150
%TranAdult 0.5004 0.1586 0.1662 0.7900

PNPC 0.0622 0.0126 0.0392 0.0896
PPC-Juv 0.0663 0.0517 0.0013 0.1853
PPC-Imm 0.0963 0.0423 0.0220 0.1772
PPC-Adult 0.1424 0.0416 0.0455 0.2091

1st after-WTC
(mid-2015 to 2018)

φJuv 0.8594 0.0778 0.7037 0.9848
φRes-Imm 0.8332 0.0301 0.7758 0.8950
φRes-Adult 0.9468 0.0158 0.9157 0.9775
φTran-Imm 0.6026 0.1571 0.2878 0.9010
φTran-Adult 0.4019 0.1233 0.1628 0.6544
%TranImm 0.3176 0.1688 0.0279 0.6721
%TranAdult 0.5751 0.1313 0.3131 0.8283

PNPC 0.1264 0.0100 0.1071 0.1466
PPC-Juv 0.0898 0.0625 0.0036 0.2211
PPC-Imm 0.0986 0.0394 0.0164 0.1690
PPC-Adult 0.0971 0.0384 0.0226 0.1655

2nd after-WTC
(2018 to 2022)

φJuv 0.7311 0.1205 0.4857 0.9526
φRes-Imm 0.8143 0.0326 0.7513 0.8799
φRes-Adult 0.7764 0.0192 0.7370 0.8131
φTran-Imm 0.6771 0.1573 0.3490 0.9478
φTran-Adult 0.2003 0.1132 0.0320 0.4318
%TranImm 0.2423 0.1588 0.0126 0.6038
%TranAdult 0.7416 0.1463 0.4477 0.9587

PNPC 0.1708 0.0172 0.1370 0.2032
PPC-Juv 0.2420 0.0774 0.0719 0.3811
PPC-Imm 0.1187 0.0411 0.0393 0.1980
PPC-Adult 0.2046 0.0319 0.1391 0.2667
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Figure A4. Annual metric tons (×1000) of waste poured into landfills of Catalonia (NE of Spain)
from 2005 to 2021. Waste data includes only urban waste generated in households, commercial and
non-commercial establishments (excluding construction waste). Data is publicly available from the
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