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Simple Summary: As a national second-class animal in China, it is urgent to protect the wild popu-
lation resources of Sinocyclocheilus. In this study, we constructed the first full-length transcriptome of
Sinocyclocheilus multipunctatus from the molecular perspective, analyzed and inferred its phylogenetic
relationships, divergence time, and whole-genome duplication events, and screened 220 positive
selection genes involved in gene control, signal transduction, immune response, and other pro-
cesses from the A- and B-subgenome of S. multipunctatus. This will provide basic support for future
evolutionary and genomic studies on the cave adaptation mechanism of this species.

Abstract: Sinocyclocheilus multipunctatus is a second-class nationally protected wild animal in China.
As one of the cavefish, S. multipunctatus has strong adaptability to harsh subterranean environments.
In this study, we used PacBio SMRT sequencing technology to generate a first representative full-
length transcriptome for S. multipunctatus. Sequence clustering analysis obtained 232,126 full-length
transcripts. Among all transcripts, 40,487 were annotated in public databases, while 70,300 microsatel-
lites, 2384 transcription factors, and 16,321 long non-coding RNAs were identified. The phylogenetic
tree showed that S. multipunctatus shows a closer relationship to Carassius auratus and Cyprinus carpio,
phylogenetically diverging from the common ancestor ~14.74 million years ago (Mya). We also found
that between 15.6 and 17.5 Mya, S. multipunctatus also experienced an additional whole-genome
duplication (WGD) event, which may have promoted the species evolution of S. multipunctatus.
Meanwhile, the overall rates of evolutionary of polyploid S. multipunctatus were significantly higher
than those of the other cyprinids, and 220 positively selected genes (PSGs) were identified in two
sub-genomes of S. multipunctatus. These PSGs are likely to fulfill critical roles in the process of
adapting to diverse cave environments. This study has the potential to facilitate future investigations
into the genomic characteristics of S. multipunctatus and provide valuable insights into revealing the
evolutionary history of polyploid S. multipunctatus.

Keywords: karst; cavefish; full-length transcriptome; phylogeny; evolution

1. Introduction

Second-generation sequencing platforms represented by Roche 454, Illumina/Solexa,
and ABI SOLiD are widely used in transcriptome sequencing because of the advantages of
their short sequencing time, low cost, high accuracy, and high throughput [1]. However, be-
cause of the shorter read length of second-generation sequencing, it is difficult to obtain the
full-length sequence information of genes without a reference genome. Third-generation
sequencing technology developed in recent years has become a better choice, such as the
single molecule real-time (SMRT) technology of the PacBio sequencing platform, which
has become the primary choice for obtaining full-length transcription sequences [2]. The
main advantage of third-generation sequencing technology is the long-fragment reads
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(average read length is up to 20 kb) [3]. The full-length transcript generated using reverse
transcription does not need to be fragment processed, and the full-length sequence infor-
mation can be obtained directly by single-molecule sequencing [4]. This technology has
been extensively utilized in various aquatic animals, such as Schizothorax lissolabiatus [5],
Gymnocypris namensis [6], Schizothorax prenanti [7].

The freshwater fish genus Sinocyclocheilus (Fang, 1936) (Cyprinidae: Barbinae) is an
endemic allotetraploid fish species [8] in China, mainly distributed in karst areas of south-
west China, including Yunnan Province, Guizhou Province, Guangxi Zhuang Autonomous
Region, and Hubei Province [9]. They are a typical cave-restricted animal that lives in
dark underground environments. Over time, they have evolved to adapt to the cave
environments through a variety of characteristic changes in morphology, behavior, and
physiology [10]. To date, there are 78 effective species in the Sinocyclocheilus genus [11],
which is the largest group of cyprinid fish in China. Nine species of Sinocyclocheilus are
listed on the IUCN Red List of Threatened Species (https://www.iucnredlist.org/, accessed
on 30 September 2023), including two critically endangered (CR), one endangered (EN),
and six vulnerable (VU). Sinocyclocheilus multipunctatus was originally named Schizothorax
multipunctatus by Jacques Pellegrin in 1931 [12]. Subsequently, the species was placed in the
genus Sinocyclocheilus and renamed Sinocyclocheilus multipunctatus [13]. S. multipunctatus
is mainly distributed in the Guiyang and Qiannan Buyei and Miao autonomous prefec-
tures in China. S. multipunctatus is especially threatened by overfishing, water pollution,
and habitat loss due to its limited distribution [14]. Currently, the species is rated as a
near-threatened species in the Red List of China’s Vertebrates [15].

In the current study, PacBio SMRT sequencing was used to generate the first full-
length transcriptome of S. multipunctatus. Open reading frame (ORF) prediction and
long non-coding RNA (lncRNA) identification, transcription factor (TF) prediction, and
simple sequence repeat (SSR) analysis, as well as functional annotation and classification
of transcripts were performed in this study. Comparative analyses with six species were
conducted, focusing particularly on phylogenetic relationships, divergence time, and so
on. Then, the S. multipunctatus whole-genome duplication (WGD) event was determined,
and the evolution of positively selected genes in S. multipunctatus was analyzed. This
study offers a valuable genetic repository of full-length transcripts, serving as a crucial
resource for future studies of adaptive evolution, population genetics, and conservation in
S. multipunctatus.

2. Materials and Methods
2.1. Sample Collection and RNA Preparation

Three wild S. multipunctatus were collected in January 2022 from the Chetian River
(Figure 1). Sampling was approved by the Department of Agriculture and Rural Affairs of
Guizhou Province. After anesthesia with MS222, seven tissues including the brain, spleen,
liver, kidney, gill, muscle, and skin were sampled. Equal amounts of 21 samples were
pooled together and immediately stored in liquid nitrogen until RNA was extracted. The
total RNA was isolated using TRIzol Reagent (Invitrogen, Waltham, MA, USA) according
to the manufacturer’s instructions. RNA degradation and contamination were assessed on
1% agarose gels. The purity, concentration, and integrity of the RNA sample were assessed
using the Nanodrop microspectrophotometer from Thermo Fisher Scientific (Waltham, MA,
USA) and the Agilent Bioanalyzer 4200 system from Agilent Technologies (Santa Clara, CA,
USA).

https://www.iucnredlist.org/
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2.2. PacBio Iso-Seq Library Preparation and Sequencing

After RNA extraction, mRNA was enriched with Oligo (dT) microbeads. The
SMARTer™ PCR cDNA Synthesis Kit (Clontech, Palo Alto, CA, USA) was used to syn-
thesize full-length cDNA. Then, the cDNA was amplified by PCR. Amplified cDNA was
purified using Pronex beads. The SMRTbell Template Prep Kit (Clontech, Palo Alto, CA,
USA) was performed to repair and ligate the purified product. After exonuclease digestion,
a single SMRT library was submitted to the PacBio Sequel platform for sequencing. All
sequencing operations were conducted at the DNA Stories Bioinformatics Center (Chengdu,
China).

2.3. PacBio Iso-Seq Data Processing

Sequence data were processed using the Iso-Seq3 v.4.0.0 (https://github.com/PacificB
iosciences/IsoSeq3, accessed on 8 January 2023) software. Circular consensus sequences
(CCS) were produced from subread BAM files using the parameters of min_length 10, min-
passes 3, top-passes 60, min-rq 0.9, and max_length 50,000. The CCS were then processed
using Lima (v. 2.2.0, https://lima.how/, accessed on 10 January 2023) for primer removal
and demultiplexing. By searching for the presence of poly(A) signal and concatemers, full-
length non-chimera (FLNC) reads were identified from CCS reads. The FLNC reads were
then clustered into clusters by ‘isoseq3 cluster’ [16]. Unclustered singletons, with a quality
score (Q20) of at least 99%, were retained and redundancy removal was performed with cd-
hit-est. Finally, the final full-length transcripts were divided into either clusters or singletons.
Next, to remove the redundancy, the final full-length transcripts were initially used as
queries to TBLASTX [17] search reference genome Cyprinus carpio (GCF_018340385.1) and
then collapsed transcripts by genomic mapping. The filtered alignments were clustered
into independent genic loci.

2.4. Functional Annotation of Transcripts

The open reading frames (ORFs) were identified using TransDecoder (http://github.
com/TransDecoder/TransDecoder, accessed on 12 January 2023) to obtain the coding
sequences (CDS). Within a locus, the longest coding region was selected as representative
of this isoform. When a locus was a noncoding region, only the longest transcript within a
locus was retained for representative transcript. For functional annotation, the represen-
tative transcripts were subjected to similarity search against databases including NCBI
non-redundant protein sequences (NR), Clusters of Orthologous Groups of proteins (KOG),

https://github.com/PacificBiosciences/IsoSeq3
https://github.com/PacificBiosciences/IsoSeq3
https://lima.how/
http://github.com/TransDecoder/TransDecoder
http://github.com/TransDecoder/TransDecoder
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Swiss-Prot, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Non-supervised Orthologous Groups (eggNOG) databases [18].

2.5. Gene Structure Analysis and Annotation

Based on the parameter of E -0.0001, the set of fish transcription factors (TFs) was
identified using Animal TFDB v.2.0 [19]. The HMMER v.3.0 (http://hmmer.janelia.org/,
accessed on 12 January 2023) algorithm was applied to distribute genes to different TF
gene families. In order to predict a more complete SSR, transcripts with a length greater
than 160 bp were selected for SSR analysis and identified by using GMATA software (https:
//sourceforge.net/projects/gmata/?source=navbar, accessed on 12 January 2023) [20]. A
combination of four tools, including CNCI [21], PLEK [22], CPC2 [23], and CPAT [24] were
used to search for lncRNA candidates from conjectured protein-coding RNAs.

2.6. Phylogenetic Analysis

Protein sequences of five species with genome available were downloaded and in-
cluded in our analyses, including Danio rerio (GCF_000002035.6), Megalobrama amblycephala
(GCF_018812025.1), Ctenopharyngodon idellus (GCGD: Grass Carp Genome Database), Cypri-
nus carpio (GCF_018340385.1), Carassius auratus (GCF_003368295.1). For the golden fish, the
1–25 chromosomes were assigned to A-subgenome, while the 26–50 chromosomes were as-
signed to B-subgenome. For the common carp (Cyprinus carpio), we used the A-subgenome
and B-subgenome provided by the authors [25]. The A-subgenome and B-subgenome of
S. multipunctatus were identified using the BLASTN program.

BLASTP [26] with an E-value of 1 × 10−5 was used for self-matching of the sum-
mary protein sequences of genomically available species, and low-quality fragments with
identity <30% and coverage <30% were removed. Orthologous groups were established
by orthofinder2 [27], which was with the default settings based on the screened BLASTP
results. From the orthifinder2 results, we extracted single-copy gene families to obtain
single-copy gene families among S. multipunctatus and the other five species. Then, from
each single-copy gene family, the protein sequences were compared by using MUSCLE
v. 3.8.31 [28] of the default parameters, and the homologous CDS alignments were back-
translated from the homologous protein alignments using PAL2NAL [29]. The Gblocks [30]
software (http://www.phylogeny.fr/one_task.cgi?task_type=gblocks, accessed on 12 Jan-
uary 2023) was applied to extract the conserved CDS alignments. The remaining CDS
sequences of every single-copy family were used for further phylogenetic genomic analyses.

When the phylogenetic tree was constructed, CDS alignments of every single-copy
family were concatenated to produce a super-matrix. RAxML [31] was used to construct the
super-genes from the full-length and 4DTv sites, which performed to produce a maximum
likelihood tree with the GTR + I + Γ model. The linked supergenes were divided into three
regions corresponding to the 1st, 2nd, and 3rd codon sites in the CDS. Considering that the
evolution rate of different codon positions is quite different, the three codon positions of the
connected supergene were regarded as three distinct partitions. The MCMCTREE program
in the PAML4.7 package [32] was supplied to estimate the divergence time under a relaxed
clock model. The divergence times were calibrated with three calibrating points of zebrafish
(Danio rerio) vs. common carp (Cyprinus carpio) ~55.8 Mya, grass carp (Ctenopharyngodon
idellus) vs. common carp 20.5–20.95 Mya, and grass carp vs. Megalobrama amblycephala
9.1–22 Mya [33–36]. Based on the “Independent rates model (clock = 2)” and “JC69” model
in MCMCTREE program, after the burn-in of 2,000,000 iterations, the MCMC process was
run for 6,000,000 iterations. To confirm that the results were similar, each data type ran the
program twice. FigTree v. 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree, accessed on 12
January 2023) was used to produce the chronogram with the first run.

2.7. Detection of Polyploidization Events

The transcriptome sequences of S. multipunctatus were compared with BLASTP (E-
value < 1 × 10−5) to find conserved paralog sequences to detect polypoidization events

http://hmmer.janelia.org/
https://sourceforge.net/projects/gmata/?source=navbar
https://sourceforge.net/projects/gmata/?source=navbar
http://www.phylogeny.fr/one_task.cgi?task_type=gblocks
http://tree.bio.ed.ac.uk/software/figtree


Animals 2023, 13, 3399 5 of 16

in the transcriptome of S. multipunctatus. Protein sequences of Ctenopharyngodon idellus,
Cyprinus carpio, Carassius auratus, and three Sinocyclocheilus species were also analyzed and
used for comparison using the WGDdetector software (https://github.com/yongzhiyang2
012/wgddetector, accessed on 12 January 2023) [37], which has shown high performance in
detecting recent and ancient WGD events; for example, it was applied in the study of WGD
events of Lautoconus ventricosus [38], Xenopus laevis [37], and Cyamopsis tetragonoloba [39].
The protein and CDS sequences within each gene family were automatically compared
using MAFFT [40] and PAL2NAL [29], and assigned the corresponding Ks values to each
pair of similar sequences (gap-stripped comparison length > 90 bp) within each gene
family based on the Nei–Gojobori algorithm. Then, the whole-genome duplication (WGD)
events of each species were estimated based on the Ks distributions. The Ks values were
transferred to the divergence time by the following formula T = Ks/2r, where r refers to the
substitution rate used by S. grahami [41], 5.7–6.4 × 10−9 mutations per site per year [42].

2.8. Positive Selection Analysis

To estimate the branch-specific evolutionary rate for each species, the single-copy
gene families generated by the Gblocks above were further used to explore the Ka, Ks,
and Ka/Ks by running the free-ratio model (model = 1) on each orthologue through the
CodeML program in the PAML package [43]. To obtain a reliable estimate, the estimated
value on the branch was filtered. The filtering condition was the following: (1) synonymous
sites < 1; (2) non-synonymous sites < 1; and (3) Ks ≥ 10. Then, we calculated the Ka/Ks for
tandem sequences of all orthologs based on each orthologue and ten randomly selected
homologues [44]. The Wilcoxon rank-sum test was used to identify GO categories with sig-
nificantly higher Ka/Ks values, and the evolution rates of each lineage were compared [45].
The GO terms involving more than five orthologues were retained, the average Ka/Ks was
calculated, the positive selection genes (PSGs) with p-values of less than 0.05 were screened
out, and the lineage-specific accelerated GO categories were determined.

3. Results
3.1. Summary of FL Reference Transcriptome

In our study, 76,978,307 raw subreads were produced by using PacBio Sequel, with
an average length of 1820 bp and an N50 length of 1957 bp (Table 1). A total of 1,776,276
CCS reads were obtained, with a mean length of 1950 bp. Subsequently, among these CCS
reads, 1,554,240 full-length nonchimeric (FLNC) reads with an N50 length of 1959 bp were
identified. Finally, a total of 232,126 full-length transcripts were obtained, with an average
length of 2075 bp and an N50 length of 2338 bp, including 87,472 distinct clusters and
144,654 distinct singletons. The details are shown in Table 1. The sequences were mapped
against the reference genome and generated 49,672 raw unique alignments.

Table 1. Summary of the transcriptome of S. multipunctatus using the PacBio Sequel platform.

Types Items Number

Subreads Subreads base (G) 259
Number of subreads 76,978,307
Average length (bp) 1820

N50 length (bp) 1957
CCS reads Number of reads 1,776,276

Average length (bp) 1950
N50 length (bp) 2081

FLNC reads Number of reads 1,554,240
Average length (bp) 1827

N50 length (bp) 1959
Full-length transcriptome transcripts number 232,126

Average length (bp) 2075
N50 length (bp) 2338

https://github.com/yongzhiyang2012/wgddetector
https://github.com/yongzhiyang2012/wgddetector
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3.2. Basic Annotation of Transcripts

In order to obtain comprehensive information on gene function, the representative
transcripts were annotated by searching the NR, EggNOG, Swiss-Prot, KOG, GO, and
KEGG databases. In total, 35,076 (70.62%) transcripts were annotated in the KOG; 27,879
(56.13%) were annotated in the GO; 22,599 (45.50%) in the KEGG; 28,940 (58.26%) in the
Swiss-Prot; 26,175 (52.70%) in the EggNOG; and 34,861 (70.18%) in the NR (Figure 2). A
total of 40,487 (81.51%) transcripts were annotated in at least one database, and 14,514
(29.22%) transcripts were annotated in all databases.
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3.3. Detection of SSRs, TFs, and LncRNAs

A total of 70,300 SSRs were identified from the total transcripts, of which 15,042 unique
transcripts contained at least two SSRs. Mononucleotide was the leading repeat motif
(47,021, 66.89%), followed by dinucleotide (18,135, 25.80%), trinucleotide (3514, 5.00%), and
tetranucleotide (1415, 2.01%) (Figure 3). Only 81 (0.11%) and 134 (0.19%) SSRs were detected
in pentanucleotide and hexanucleotide repeats, respectively. Among the mononucleotide
SSRs, T/A accounted for 97.96% more than G/C (Figure 4). AC/GT (7039, 38.81%) was
the richest motif in dinucleotide SSRs, followed by TG/CA (9926, 38.17%), and GA/TC
(1855, 10.23%). For trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide
SSRs, the most abundant motifs were TGA/TCA (359, 10.21%), CAGA/TCTG (128, 9.05%),
GCGTC/GACGC (8, 9.88%) and CTCACA/TGTGAG (11, 8.21%), respectively (Figure 4).
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A total of 2384 TFs were identified, and the zf-C2H2 family (670) was the most repre-
sented, followed by the Homeobox family (222), BTB family (216), and HLH family (148) in
our study (Figure 5). In total, 19,430, 41,010, 43,545 and 40,080 transcripts without protein-
coding potential were identified by PLEK, CNCI, CPC2 and CPAT tools, respectively, and
16,321 overlapping transcripts were identified as assumed lncRNAs (Figure 6).
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3.4. Identification of Orthologous Genes and Phylogenetic Tree

To obtain single-copy gene families for the S. multipunctatus and the other five species
analyzed in this study, we first extracted 2280 single-copy gene families from the or-
thifinder2 results. The conserved CDS alignments were extracted by Gblocks, and a total of
2179 families remained. A total of 2179 single-copy gene families from six fish species were
further identified to build a maximum-likelihood (ML) phylogenetic tree and calculated di-
vergence time. The phylogenetic tree analysis revealed that S. multipunctatus had displayed
a closer relationship to Carassius auratus and Cyprinus carpio; because there was no fossil
correction, we based it on the three calibrating points, and surmised that S. multipunctatus,
Carassius auratus and Cyprinus carpio had a phylogenetic divergence of common ancestors
approximately 14.74 million years ago (Figure 7).
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3.5. Genome Expansion in S. multipunctatus

To research the genome expansion in S. multipunctatus, we analyzed whole-genome
duplication (WGD) events. Ks values were estimated based on the homologous gene
pairs from collinear regions of S. multipunctatus and six other representative cyprinid fish
species. The distribution of Ks in S. multipunctatus showed one peak at Ks values of ~0.2
(Figure 8). Based on the reference nucleotide substitution rate, we estimated that the recent
WGD event in S. multipunctatus was therefore estimated to occur about 15.6–17.5 million
years ago (Mya). The peaks of the four Sinocyclocheilus fishes were very close to those of
Cyprinus carpio, which means the four fish species may have shared the recent genome-wide
duplication events.
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3.6. Accelerated Evolution and Positively Selective Genes in S. multipunctatus

To evaluate the overall evolutionary rates based on concatenated alignments of all
orthologues, we employed CodeML to calculate substitution rates (Ka and Ks) for each
orthologue based on the use of the free ratio model. The Ka/Ks ratio level revealed the
Ka/Ks ratio of the B-subgenome of S. multipunctatus lineage was higher than the other
species (Figure 9), indicating that S. multipunctatus are evolving at a faster rate than other
cyprinid species.
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We used this model in CodeML to obtain the positively selected genes (PSGs) in
codons along the S. multipunctatus sequences. A total of 220 PSGs were identified in the
A-subgenome and B-subgenome of S. multipunctatus, and the GO functional annotation
analysis showed that there were PSGs in all three GO terms. Meanwhile, the number of
PSGs in the B-subgenome was more than that in the A-subgenome, while the number
of PSGs in the cellular component (CC) was less than that in biological process (BP) and
molecular function (MF) (Table S1). We classified the PSGs in the A-subgenome and
B-subgenome of S. multipunctatus by GO categories and drew the distribution of GO
term classifications of PSGs among the same GO categories (Figure 10). GO categories
“signal transduction”, “DNA repair” and “protein phosphorylation” (in BP); “membrane”,
“integral component of membrane” and “cytoplasm” (in CC); and “protein binding”,
“DNA binding” and “metal ion binding” (in MF) contained the largest percentage of genes.
In addition, the subgenomes A and B of S. multipunctatus also have different GO term
descriptions, such as, “regulation of DNA-templated transcription” (in BP) and “sequence-
specific DNA binding” (in MF), and were significantly enriched in A-subgenome, and these
PSGs of B-subgenome were significantly enriched in “proteolysis” (in BP), “extracellular
region” (in CC) and “cysteine-type peptidase activity” (in MF) (Table S1). These GO
term descriptions indicated that the PSGs play key roles in the biological functions and
environmental adaptations of S. multipunctatus.
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4. Discussion
4.1. Long-Read Reference Reconstruction of the Full-Length Transcripts

Sinocyclocheilus multipunctatus is a unique fish in subterranean karst caves, but its
genetic background, genetic diversity, and cave adaptability are still unknown. In this study,
we first analyzed the full-length transcriptome of S. multipunctatus, and employed PacBio
SMRT sequencing to produce 259 Gb clean data, including 1,776,276 CCS and 1,554,240
FLNC reads. After removing redundant sequences, 232,126 high-quality non-redundant
full-length transcripts for S. multipunctatus were obtained. A total of 70,300 SSRs and 2384
TFs were identified. A total of 16,321 lncRNAs were predicted. Functional annotation of
transcripts indicated that 40,487 transcripts were annotated into at least one functional
database, much higher than no homologous sequences in the public databases. These
consequences indicated that the integrality and quality of the full-length transcriptome
obtained using SMRT sequencing is quite reliable, which can be used as a preliminary
reference for future Sinocyclocheilus genome assembly and gene annotation.

According to previous studies, lncRNAs play key regulatory roles in important bio-
logical processes, such as gender regulation and aging, cell cycle and differentiation, and
genetic regulation [46]. With the development of science and technology, a large number of
studies have shown that lncRNA plays an increasingly important role in the regulation of
epigenetics [47]. In this study, we identified a total of 16,321 lncRNAs on the non-redundant
full-length transcript sequences, and found a large number of new lncRNAs in S. multipunc-
tatus. Whether this is related to the adaptation of S. multipunctatus to the cave environment
and its special morphological characteristics, and the function of lncRNAs still needs to be
investigated in future studies.

It was found that TFs bind specifically to the regulatory regions of the genome through
a sequence and play an important role in regulating gene transcription [48]. In that recent
study, 2384 TFs from 68 families were projected in total, including zf-C2H2, Homeobox,
BTB, HLH and others. Among them, zf-C2H2 occupied the largest proportion; it, as a
member of the zinc-finger protein family, can recognize DNA, RNA, proteins or lipids by
binding with metalions, thus regulating the expression of a large number of functional
genes [49]. This will provide a useful reference for future research on the regulatory
mechanisms of transcription factors in biological processes.
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SSRs are short tandem repeats consisting of short tandem arrays of 1–6 base pairs,
also known as microsatellites [50]. Furthermore, the identified SSR loci can be used for
subsequent genetic and molecular marker-related studies [7]. Here, a total of 70,300 SSRs
were identified in all full-length transcripts; the most abundant loci in S. multipunctatus
were mono-nucleotides (A/T) and di-nucleotides (AC/GT, TG/CA), and this result is
similar to that of the analysis of Schizothorax prenanti, Nibea albiflora, and Squaliobarbus
curriculus [7,51,52]. This provided valuable future resources for marker-assisted breeding.

In summary, these full-length transcripts acquired in this study will lay a foundation
for further research on the genetics and evolution of S. multipunctatus and other endangered
Sinocyclocheilus.

4.2. Evolutionary Status and Positive Selection

In recent years, the universal ploidy variation of polyploidy has become a research
hotspot, but the complexity of ploidy presents many challenges to the genetic or genomic
research of polyploidy [5,53]. A previous study has shown that Sinocyclocheilus species
have the closest phylogenetic relationship to Cyprinus carpio and Carassius auratus at the
genomic level [54]. Based on one-to-one orthologous genes, S. multipunctatus had the closest
evolutionary relationship with Cyprinus carpio and Carassius auratus when compared to
Danio rerio and Ctenopharyngodon idellus, which coincides with the results inferred from
genome data.

Positive selection, which focuses on adaptive evolution, is a significant source of
species evolution and a major force behind species differentiation [55], during biological
evolution. Here, we identified 220 candidate homologous genes that underwent positive
selection in S. multipunctatus, and the mean and peak of Ka/Ks values of S. multipunctatus
show in Figure 9 were higher than that of other fishes. This indicated that accelerated
evolution occurred in S. multipunctatus after splitting from Carassius auratus and Cyprinus
carpio. Accelerated evolution may be associated with the adaptation of Sinocyclocheilus
fish to their unique cave environment. In addition, out of the six species, the overall rate
of evolution of polyploid individuals was relatively faster compared to those of diploid
species, which was similar to Misgurnus anguillicaudatus [56], showing that the evolutionary
pressure of polyploid S. multipunctatus was increasing.

Positive selection analysis can identify genes that are related to functional and en-
vironmental change [57]. In order to define and describe the function of the 220 PSGs,
GO functional annotation was statistically performed. The GO function classifications of
PSGs identified from the S. multipunctatus clades revealed significant positive selective
enrichment in biological processes and molecular function, particularly in gene control and
cellular process. Notably, 23 PSGs of S. multipunctatus were involved in “protein binding”
(GO:0005515); meanwhile, the genes, which are involved in DNA binding, signal transduc-
tion, DNA repair, and immune response, were positively selected in S. multipunctatus. This
implies that these genes may be involved in the adaption process of S. multipunctatus to
cave dwelling. In addition, in the cellular component, most of the PSGs are concentrated
in the membrane structure, nucleus, and cytoplasm, which may indicate that most of the
gene products play a positive selection to promote biological evolution throughout the cell
during the adaptation of cavefish to the extreme cave environment.

4.3. The Whole-Genome Duplication Event in S. multipunctatus

All teleost fishes are generally believed to be undergoing third-round WGD (3R WGD,
which also means the teleost-specific WGD) [58], and Cyprinidae fishes have experienced a
recent whole-genome duplication event (thus 4R WGD) [59]. We performed Ks analyses to
estimate the timing of occurrence of recent lineage-specific WGD in S. multipunctatus. The
WGDs were predicted to occur around 15.6–17.5 Mya but the estimated times of the recent
divergences were approximately ~14.74 Mya (Figure 7), indicating that whole-genome
duplication events provide conditions for species divergence during species evolution.
During geology and climate change, their divergence may be because of the geographical
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isolation formed by the continuous uplift of the Yunnan–Guizhou Plateau after Himalayan
orogeny (40–50 Mya) [60], and some of their ancestral individuals may have swam down
along the underground rivers into surrounding caves or dragon pools. Furthermore, the
nearly overlap of the peak values indicated that S. multipunctatus and Cyprinus carpio might
have shared the recent specific WGD together (Figure 8). In previous studies based on
common carp (Cyprinus carpio), the time estimation of the latest WGD for Cyprinidae fishes
ranging from 8.2–16 Mya was controversial [36,61,62]. However, with the development
of fish genome research, a recent study in common carp established a general time range
(9.7–23 Mya) and further predicted this time point to be about 12.4 Mya [63]. Our result of
15.6–17.5 Mya in the present study falls within the same time range, and the Ks analyses of
S. multipunctatus will provide more evidence for the timing of recent genome duplication
in Cyprinidae.

5. Conclusions

PacBio SMRT sequencing was used to gain the first comprehensive full-length tran-
scriptome of S. multipunctatus, whose genome is not available. The acquisition of full-length
transcripts makes gene annotation, the development of a molecular marker, and lncRNA
prediction more accurate and reliable. Therefore, this study of the comprehensive full-
length transcriptome of S. multipunctatus will provide an important resource for future
research on functional genes, molecular markers, molecular events, and signaling pathways.
Through a comparative analysis of phylogenetic relationships, divergence time, positive
selection, and whole-genome duplication-event analysis, we can further understand the
origin and speciation, as well as species polyploidization of Sinocyclocheilus fishes. Finally,
this study will offer valuable support for future evolutionary and genomic research on the
mechanisms underlying cave adaptability in this particular species.
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