Noninfectious Causes of Pregnancy Loss at the Late Embryonic/Early Fetal Stage in Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Noninfectious Causes of Late Embryonic/Early Fetal Losses
2.1. Dam-Related Risk Factors
2.1.1. Declining Pregnancy Protein Concentrations
2.1.2. Twin Pregnancy Diagnosis
2.1.3. Number of Corpora Lutea
2.1.4. Ultrasonographic Findings Indicating Imminent Pregnancy Loss
2.1.5. Metabolic State at the Time of Pregnancy Diagnosis
2.2. Environment-Related Factors
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szelényi, Z.; Szenci, O.; Kovács, L.; Garcia-Ispierto, I. Practical Aspects of Twin Pregnancy Diagnosis in cattle. Animals 2021, 11, 1061. [Google Scholar] [CrossRef] [PubMed]
- Hubbert, W.T. Recommendations for standardizing bovine reproductive terms by committee on bovine reproductive nomenclature. Cornell Vet. 1972, 62, 216–237. [Google Scholar]
- Wiltbank, M.C.; Baez, G.M.; Garcia-Guerra, A.; Toledo, M.Z.; Monteiro, P.L.J.; Melo, L.F.; Ochoa, J.C.; Santos, J.E.P.; Sartori, R. Pivotal Periods for Pregnancy Loss during the First Trimester of Gestation in Lactating Dairy Cows. Theriogenology 2016, 86, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Szelényi, Z.; Győri, D.; Boldizsár, S.; Kovács, L.; Répási, A.; Molnár, L.; Szenci, O. Pregnancy and Stillbirth Losses in Dairy Cows with Singleton and Twin Pregnancies. Acta Vet. Hung. 2019, 67, 115–126. [Google Scholar] [CrossRef]
- Andreu-Vázquez, C.; Garcia-Ispierto, I.; López-Béjar, M.; de Sousa, N.M.; Beckers, J.F.; López-Gatius, F. Clinical Implications of Induced Twin Reduction in Dairy Cattle. Theriogenology 2011, 76, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Sigdel, A.; Bisinotto, R.S.; Peñagaricano, F. Genes and Pathways Associated with Pregnancy Loss in Dairy Cattle. Sci. Rep. 2021, 11, 13329. [Google Scholar] [CrossRef]
- Diskin, M.G.; Waters, S.M.; Parr, M.H.; Kenny, D.A. Pregnancy losses in cattle: Potential for improvement. Reprod. Fertil. Dev. 2015, 28, 83–93. [Google Scholar] [CrossRef]
- Albaaj, A.; Durocher, J.; LeBlanc, S.J.; Dufour, S. Meta-Analysis of the Incidence of Pregnancy Losses in Dairy Cows at Different Stages to 90 Days of Gestation. JDS Commun. 2023, 4, 144–148. [Google Scholar] [CrossRef]
- Reese, S.T.; Geary, T.W.; Franco, G.A.; Moraes, J.G.N.; Spencer, T.E.; Pohler, K.G. Pregnancy Associated Glycoproteins (PAGs) and Pregnancy Loss in High vs Sub Fertility Heifers. Theriogenology 2019, 135, 7–12. [Google Scholar] [CrossRef]
- Giordano, J.O.; Guenther, J.N.; Lopes, G., Jr.; Fricke, P.M. Changes in serum pregnancy-associated glycoprotein, pregnancy-specific protein B, and progesterone concentrations before and after induction of pregnancy loss in lactating dairy cows. J. Dairy Sci. 2012, 95, 683–697. [Google Scholar] [CrossRef]
- Xie, S.C.; Low, B.G.; Nagel, R.J.; Kramer, K.K.; Anthony, R.V.; Zoli, A.P.; Beckers, J.F.; Roberts, R.M. Identification of the major pregnancy-specific antigens of cattle and sheep as inactive members of the aspartic proteinase family. Proc. Natl. Acad. Sci. USA 1991, 88, 10247–10251. [Google Scholar] [CrossRef] [PubMed]
- Wooding, F.; Morgan, G.; Monaghan, S.; Hamon, M.; Heap, R. Functional specialization in the ruminant placenta: Evidence for two populations of fetal binucleate cells of different selective synthetic capacity. Placenta 1996, 17, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Wooding, F.B.; Morgan, G.; Adam, C.L. Structure and function in the ruminant synepitheliochorial placenta: Central role of the trophoblast binucleate cell in deer. Microsc. Res. Tech. 1997, 38, 88–99. [Google Scholar] [CrossRef]
- García-Ispierto, I.; Almería, S.; Serrano, B.; de Sousa, N.; Beckers, J.; López-Gatius, F. Plasma Concentrations of Pregnancy-Associated Glycoproteins Measured Using Anti-Bovine PAG-2 Antibodies on Day 120 of Gestation Predict Abortion in Dairy Cows Naturally Infected with Neospora caninum. Reprod. Domest. Anim. 2013, 48, 613–618. [Google Scholar] [CrossRef]
- Pohler, K.G.; Pereira, M.H.C.; Lopes, F.R.; Lawrence, J.C.; Keisler, D.H.; Smith, M.F.; Vasconcelos, J.L.M.; Green, J.A. Circulating Concentrations of Bovine Pregnancy-Associated Glycoproteins and Late Embryonic Mortality in Lactating Dairy Herds. J. Dairy Sci. 2016, 99, 1584–1594. [Google Scholar] [CrossRef]
- López-Gatius, F.; Garbayo, J.M.; Santolaria, P.; Yániz, J.; Ayad, A.; de Sousa, N.M.; Beckers, J.F. Milk Production Correlates Negatively with Plasma Levels of Pregnancy-Associated Glycoprotein (PAG) during the Early Fetal Period in High Producing Dairy Cows with Live Fetuses. Domest. Anim. Endocrinol. 2007, 32, 29–42. [Google Scholar] [CrossRef]
- Pagnah Zoli, A.; Beckers, J.-F.; Wouters-Ballman, P.; Closset, J.; Falmagne, P.; Ectors, F. Purification and Characterization of a Bovine Pregnancy-Associated Glycoprotein1. Biol. Reprod. 1991, 45, 1–10. [Google Scholar] [CrossRef]
- Butler, J.E.; Hamilton, W.C.; Sasser, R.G.; Ruder, C.A.; Hass, G.M.; Williams, R.J. Detection and Partial Characterization of Two Bovine Pregnancy-Specific Proteins12. Biol. Reprod. 1982, 26, 925–933. [Google Scholar] [CrossRef]
- Drion, P.V.; Zarrouk, A.; Sulon, J.; Szenci, O.; Beckers, J.F.; Perényi, Z.; Remy, B.; Garbayo, J.M. Pregnancy Associated Glycoproteins in Ruminants: Inactive Members Of The Aspartic Proteinase Family. Acta Vet. Hung. 1999, 47, 461–469. [Google Scholar] [CrossRef]
- Green, J.A.; Parks, T.E.; Avalle, M.P.; Telugu, B.P.; McLain, A.L.; Peterson, A.J.; McMillan, W.; Mathialagan, N.; Hook, R.R.; Xie, S.; et al. The Establishment of an ELISA for the Detection of Pregnancy-Associated Glycoproteins (PAGs) in the Serum of Pregnant Cows and Heifers. Theriogenology 2005, 63, 1481–1503. [Google Scholar] [CrossRef] [PubMed]
- Gábor, G.; Kastelic, J.; Abonyi-Tóth, Z.; Gábor, P.; Endrődi, T.; Balogh, O. Pregnancy Loss in Dairy Cattle: Relationship of Ultrasound, Blood Pregnancy-Specific Protein B, Progesterone and Production Variables. Reprod. Domest. Anim. 2016, 51, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Mayo, L.M.; Moore, S.G.; Poock, S.E.; Silvia, W.J.; Lucy, M.C. Technical Note: Validation of a Chemical Pregnancy Test in Dairy Cows That Uses Whole Blood, Shortened Incubation Times, and Visual Readout. J. Dairy Sci. 2016, 99, 7634–7641. [Google Scholar] [CrossRef]
- Fosgate, G.T.; Motimele, B.; Ganswindt, A.; Irons, P.C. A Bayesian Latent Class Model to Estimate the Accuracy of Pregnancy Diagnosis by Transrectal Ultrasonography and Laboratory Detection of Pregnancy-Associated Glycoproteins in Dairy Cows. Prev. Vet. Med. 2017, 145, 100–109. [Google Scholar] [CrossRef]
- Szenci, O. Recent Possibilities for the Diagnosis of Early Pregnancy and Embryonic Mortality in Dairy Cows. Animals 2021, 11, 1666. [Google Scholar] [CrossRef]
- Kiracofe, G.H.; Wright, J.M.; Schalles, R.R.; Ruder, C.A.; Parish, S.; Sasser, R.G. Pregnancy-Specific Protein B in Serum of Postpartum Beef Cows. J. Anim. Sci. 1993, 71, 2199–2205. [Google Scholar] [CrossRef]
- Szenci, O.; Beckers, J.F.; Sulon, J.; Bevers, M.M.; Börzsönyi, L.; Fodor, L.; Kovács, F.; Taverne, M.A.M. Effect of Induction of Late Embryonic Mortality on Plasma Profiles of Pregnancy Associated Glycoprotein 1 in Heifers. Vet. J. 2003, 165, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Szelényi, Z.; Balogh, O.G.; Lopez-Gatius, F.; Garcia-Ispierto, I.; Krikó, E.; Gábor, G. Is Twin Pregnancy, Calving and Pregnancy Loss Predictable by Serum Pregnancy-Specific Protein b (Pspb) Concentration 28–35 Days after Ai in Dairy Cows? Acta Vet. Hung. 2018, 66, 451–461. [Google Scholar] [CrossRef]
- Peixoto, P.M.; Hubner, A.M.; Junior, W.; Cunha, L.L.; Garrett, E.F.; Pohler, K.G.; Dias, N.W.; Mercadante, V.; Canisso, I.F.; Lima, F.S. Characterization of pregnancy-associated glycoproteins and progesterone as a predictor of twins and conceptus loss in high-risk-pregnancy Holstein cows. J. Dairy Sci. 2021, 104, 5034–5046. [Google Scholar] [CrossRef]
- Szelényi, Z.; Répási, A.; de Sousa, N.M.; Beckers, J.F.; Szenci, O. Accuracy of Diagnosing Double Corpora Lutea and Twin Pregnancy by Measuring Serum Progesterone and Bovine Pregnancy-Associated Glycoprotein 1 in the First Trimester of Gestation in Dairy Cows. Theriogenology 2015, 84, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gatius, F.; Santolaria, P.; Yaniz, J.; Garbayo, J.; Hunter, R. Timing of Early Foetal Loss for Single and Twin Pregnancies in Dairy Cattle. Reprod. Domest. Anim. 2004, 39, 429–433. [Google Scholar] [CrossRef]
- López-Gatius, F.; García-Ispierto, I. Ultrasound and Endocrine Findings That Help to Assess the Risk of Late Embryo/Early Foetal Loss by Non-Infectious Cause in Dairy Cattle: Ultrasound for Early Pregnancy Loss in Cattle. Reprod. Domest. Anim. 2010, 45, 15–24. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Andreu-Vázquez, C.; Mur-Novales, R.; Cabrera, V.E.; Hunter, R.H.F. The Dilemma of Twin Pregnancies in Dairy Cattle. A Review of Practical Prospects. Livest. Sci. 2017, 197, 12–16. [Google Scholar] [CrossRef]
- López-Gatius, F.; Garcia-Ispierto, I.; Hunter, R.H.F. Twin Pregnancies in Dairy Cattle: Observations in a Large Herd of Holstein-Friesian Dairy Cows. Animals 2020, 10, 2165. [Google Scholar] [CrossRef] [PubMed]
- Assey, R.J.; Purwantara, B.; Greve, T.; Hyttel, P.; Schmidt, M.H. Corpus Luteum Size and Plasma Progesterone Levels in Cattle after Cloprostenol-Induced Luteolysis. Theriogenology 1993, 39, 1321–1330. [Google Scholar] [CrossRef]
- Wiltbank, M.C.; Souza, A.H.; Giordano, J.O.; Nascimento, A.B.; Vasconcelos, J.M.; Pereira, M.H.C.; Surjus, R.S.; Zinsly, F.C.S.; Carvalho, P.D.; Bender, R.W.; et al. Positive and Negative Effects of Progesterone during Timed AI Protocols in Lactating Dairy Cattle. Anim. Reprod. 2012, 11, 231–241. [Google Scholar]
- Repasi, A.; Beckers, J.; Sulon, J.; Karen, A.; Reiczigel, J.; Szenci, O. Effect of the Type and Number of Prostaglandin Treatments on Corpus Luteum, the Largest Follicle and Progesterone Concentration in Dairy Cows. Reprod. Domest. Anim. 2005, 40, 436–442. [Google Scholar] [CrossRef]
- McMillan, W.H.; Peterson, A.J. Transuterine Embryo Migration in Recipient Cattle. Theriogenology 1999, 51, 1577–1586. [Google Scholar] [CrossRef]
- Borges, G.B.O.; Oliveira, R.A.; Pivato, I. Transuterine Embryo Migration, Distribution of Sexes within Uterine Horns, and Fetometry in Nellore (Bos indicus) Cattle. Theriogenology 2017, 90, 49–53. [Google Scholar] [CrossRef]
- López-Gatius, F.; Santolaria, P.; Yániz, J.; Rutllant, J.; López-Béjar, M. Factors Affecting Pregnancy Loss from Gestation Day 38 to 90 in Lactating Dairy Cows from a Single Herd. Theriogenology 2002, 57, 1251–1261. [Google Scholar] [CrossRef]
- Wiltbank, M.C.; Mezera, M.A.; Toledo, M.Z.; Drum, J.N.; Baez, G.M.; García-Guerra, A.; Sartori, R. Physiological Mechanisms Involved in Maintaining the Corpus Luteum during the First Two Months of Pregnancy. Anim. Reprod. 2018, 15, 805–821. [Google Scholar] [CrossRef]
- Herzog, K.; Brockhan-Lüdemann, M.; Kaske, M.; Beindorff, N.; Paul, V.; Niemann, H.; Bollwein, H. Luteal Blood Flow Is a More Appropriate Indicator for Luteal Function during the Bovine Estrous Cycle than Luteal Size. Theriogenology 2010, 73, 691–697. [Google Scholar] [CrossRef]
- Kelley, D.E.; Galvão, K.N.; Mortensen, C.J.; Risco, C.A.; Ealy, A.D. Using Doppler Ultrasonography on Day 34 of Pregnancy to Predict Pregnancy Loss in Lactating Dairy Cattle. J. Dairy Sci. 2017, 100, 3266–3271. [Google Scholar] [CrossRef] [PubMed]
- Bollwein, H.; Heppelmann, M.; Lüttgenau, J. Ultrasonographic Doppler Use for Female Reproduction Management. Vet. Clin. N. Am. Food Anim. Pract. 2016, 32, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Holton, M.P.; Oosthuizen, N.; Dalmaso de Melo, G.; Davis, D.B.; Stewart, R.L.; Pohler, K.G.; Lamb, G.C.; Fontes, P.L.P. Luteal Color Doppler Ultrasonography and Pregnancy Associated Glycoproteins as Early Pregnancy Diagnostic Tools and Predictors of Pregnancy Loss in Bos taurus Postpartum Beef Cows. J. Anim. Sci. 2022, 100, skac018. [Google Scholar] [CrossRef] [PubMed]
- Wenzinger, B.; Bleul, U. Effect of a Prostaglandin F2α Analogue on the Cyclic Corpus Luteum during Its Refractory Period in Cows. BMC Vet. Res. 2012, 8, 220. [Google Scholar] [CrossRef]
- Stevenson, J.S.; Pulley, S.L.; Mellieon, H.I. Prostaglandin F2α and Gonadotropin-Releasing Hormone Administration Improve Progesterone Status, Luteal Number, and Proportion of Ovular and Anovular Dairy Cows with Corpora Lutea before a Timed Artificial Insemination Program. J. Dairy Sci. 2012, 95, 1831–1844. [Google Scholar] [CrossRef]
- Carvalho, P.D.; Santos, V.G.; Fricke, H.P.; Hernandez, L.L.; Fricke, P.M. Effect of Manipulating Progesterone before Timed Artificial Insemination on Reproductive and Endocrine Outcomes in High-Producing Multiparous Holstein Cows. J. Dairy Sci. 2019, 102, 7509–7521. [Google Scholar] [CrossRef]
- Pierson, R.A.; Ginther, O.J. Ultrasonography for Detection of Pregnancy and Study of Embryonic Development in Heifers. Theriogenology 1984, 22, 225–233. [Google Scholar] [CrossRef]
- Breukelman, S.; Mulder, E.J.H.; van Oord, R.; Jonker, H.; van der Weijden, B.C.; Taverne, M.A.M. Continuous Fetal Heart Rate Monitoring during Late Gestation in Cattle by Means of Doppler Ultrasonography: Reference Values Obtained by Computer-Assisted Analysis. Theriogenology 2006, 65, 486–498. [Google Scholar] [CrossRef]
- Lénárt, L.; Taverne, M.; Wolleswinkel, P.; Gubik, Z.; Molnár, L.; Szenci, O. Reference Values for Fetal Heart Rate in Cattle in the First Trimester of Pregnancy. Acta Vet. Hung. 2019, 67, 274–281. [Google Scholar] [CrossRef]
- Jonker, F.H.; van Oord, H.A.; van Geijn, H.P.; van der Weijden, G.C.; Taverne, M.A.M. Feasibility of Continuous Recording of Fetal Heart Rate in the near-term Bovine Fetus by Means of Transabdominal Doppler. Vet. Q. 1994, 16, 165–168. [Google Scholar] [CrossRef]
- Labèrnia, J.; López-Gatius, F.; Santolaria, P.; López-Béjar, M.; Rutllant, J. Influence of Management Factors on Pregnancy Attrition in Dairy Cattle. Theriogenology 1996, 45, 1247–1253. [Google Scholar] [CrossRef]
- Grimard, B.; Freret, S.; Chevallier, A.; Pinto, A.; Ponsart, C.; Humblot, P. Genetic and Environmental Factors Influencing First Service Conception Rate and Late Embryonic/Foetal Mortality in Low Fertility Dairy Herds. Anim. Reprod. Sci. 2006, 91, 31–44. [Google Scholar] [CrossRef]
- Lee, J.-I.; Kim, I.-H. Pregnancy Loss in Dairy Cows: The Contributing Factors, the Effects on Reproductive Performance and the Economic Impact. J. Vet. Sci. 2007, 8, 283. [Google Scholar] [CrossRef]
- Zobel, R.; Tkalčić, S.; Pipal, I.; Buić, V. Incidence and Factors Associated with Early Pregnancy Losses in Simmental Dairy Cows. Anim. Reprod. Sci. 2011, 127, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Novo, A.; Fargas, O.; Loste, J.M.; Sebastian, F.; Perez-Villalobos, N.; Pesantez-Pacheco, J.L.; Patron-Collantes, R.; Astiz, S. Pregnancy Loss (28–110 Days of Pregnancy) in Holstein Cows: A Retrospective Study. Animals 2020, 10, 925. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.E.P.; Thatcher, W.W.; Chebel, R.C.; Cerri, R.L.A.; Galvão, K.N. The Effect of Embryonic Death Rates in Cattle on the Efficacy of Estrus Synchronization Programs. Anim. Reprod. Sci. 2004, 82–83, 513–535. [Google Scholar] [CrossRef]
- Carvalho, P.D.; Souza, A.H.; Amundson, M.C.; Hackbart, K.S.; Fuenzalida, M.J.; Herlihy, M.M.; Ayres, H.; Dresch, A.R.; Vieira, L.M.; Guenther, J.N.; et al. Relationships between Fertility and Postpartum Changes in Body Condition and Body Weight in Lactating Dairy Cows. J. Dairy Sci. 2014, 97, 3666–3683. [Google Scholar] [CrossRef] [PubMed]
- Szelényi, Z.; Bajcsy, Á.C.; Horváth, A.; Simon, J.; Szenci, O. Evaluation of a complex reproductive management in a large-scale Holstein-Friesian dairy farm. Magyar Állatorvosok Lapja 2010, 132, 529–536. [Google Scholar]
- Cabrera, V.E. A Simple Formulation and Solution to the Replacement Problem: A Practical Tool to Assess the Economic Cow Value, the Value of a New Pregnancy, and the Cost of a Pregnancy Loss. J. Dairy Sci. 2012, 95, 4683–4698. [Google Scholar] [CrossRef]
- McDougall, S.; Rhodes, F.; Verkerk, G. Pregnancy Loss in Dairy Cattle in the Waikato Region of New Zealand. N. Z. Vet. J. 2005, 53, 279–287. [Google Scholar] [CrossRef]
- Dahl, M.O.; De Vries, A.; Galvão, K.N.; Maunsell, F.P.; Risco, C.A.; Hernandez, J.A. Combined Effect of Mastitis and Parity on Pregnancy Loss in Lactating Holstein Cows. Theriogenology 2020, 143, 57–63. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Jeong, J.-K.; Lee, S.-C.; Kang, H.-G.; Kim, I.-H. Risk Factors for Late Embryonic Mortality in Dairy Cows. J. Vet. Clin. 2017, 34, 82. [Google Scholar] [CrossRef]
- Dubuc, J.; Denis-Robichaud, J. A Dairy Herd-Level Study of Postpartum Diseases and Their Association with Reproductive Performance and Culling. J. Dairy Sci. 2017, 100, 3068–3078. [Google Scholar] [CrossRef]
- Pinedo, P.; Santos, J.E.P.; Chebel, R.C.; Galvão, K.N.; Schuenemann, G.M.; Bicalho, R.C.; Gilbert, R.O.; Rodriguez Zas, S.; Seabury, C.M.; Rosa, G.; et al. Early-Lactation Diseases and Fertility in 2 Seasons of Calving across US Dairy Herds. J. Dairy Sci. 2020, 103, 10560–10576. [Google Scholar] [CrossRef]
- Ribeiro, E.S.; Gomes, G.; Greco, L.F.; Cerri, R.L.A.; Vieira-Neto, A.; Monteiro, P.L.J., Jr.; Lima, F.S.; Bisinotto, R.S.; Thatcher, W.W.; Santos, J.E.P. Carryover Effect of Postpartum Inflammatory Diseases on Developmental Biology and Fertility in Lactating Dairy Cows. J. Dairy Sci. 2016, 99, 2201–2220. [Google Scholar] [CrossRef]
- Thangavelu, G.; Gobikrushanth, M.; Colazo, M.G.; Ambrose, D.J. Pregnancy per Artificial Insemination and Pregnancy Loss in Lactating Dairy Cows of a Single Herd Following Timed Artificial Insemination or Insemination at Detected Estrus. Can. J. Anim. Sci. 2015, 95, 383–388. [Google Scholar] [CrossRef]
- Middleton, E.L.; Minela, T.; Pursley, J.R. The High-Fertility Cycle: How Timely Pregnancies in One Lactation May Lead to Less Body Condition Loss, Fewer Health Issues, Greater Fertility, and Reduced Early Pregnancy Losses in the next Lactation. J. Dairy Sci. 2019, 102, 5577–5587. [Google Scholar] [CrossRef]
- Hansen, P.J. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology 2007, 68, S242–S249. [Google Scholar] [CrossRef] [PubMed]
- Lucy, M.C. Stress, strain, and pregnancy outcome in postpartum cows. Anim. Reprod. 2019, 16, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Kovács, L.; Jurkovich, V.; Bakony, M.; Póti, P.; Szenci, O.; Tőzsér, J. Welfare assessment in dairy cattle by heart rate and heart rate variability—Literature review and implications for future research. Animal 2014, 8, 316–330. [Google Scholar] [CrossRef]
- Hong, H.; Lee, E.; Lee, I.H.; Lee, S.-R. Effects of transport stress on physiological responses and milk production in lactating dairy cows. Asian-Austral J. Anim. Sci. 2019, 32, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Szenci, O.; Karen, A.; Bajcsy, Á.C.; Gáspárdy, A.; de Sousa, N.M.; Beckers, J.F. Effect of restraint stress on plasma concentrations of cortisol, progesterone and pregnancy associated-glycoprotein-1 in pregnant heifers during late embryonic development. Theriogenology 2011, 76, 1380–1385. [Google Scholar] [CrossRef]
- Chebel, R.C.; Silva, P.R.B.; Endres, M.I.; Ballou, M.A.; Luchterhand, K.L. Social stressors and their effects on immunity and health of periparturient dairy cows. J. Dairy Sci. 2016, 99, 3217–3228. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B.; Proudfoot, K.L. Effect of group size and health status on behavior and feed intake of multiparous dairy cows in early lactation. J. Dairy Sci. 2017, 100, 9759–9768. [Google Scholar] [CrossRef]
- Wechsler, B. Normal behaviour as a basis for animal welfare assessment. Anim. Welf. 2007, 16, 107–110. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Bakony, M.; Hufnágel, L.; Tőzsér, J.; Jurkovich, V. Associations between heart rate variability parameters and housing- and individual-related variables in dairy cows using canonical correspondence analysis. PLoS ONE 2015, 10, e0145313. [Google Scholar] [CrossRef]
- García-Ispierto, I.; López-Gatius, F.; Santolaria, P.; Yániz, J.L.; Nogareda, C.; López-Béjar, M.; De Rensis, F. Relationship between heat stress during the peri-implantation period and early fetal loss in dairy cattle. Theriogenology 2006, 65, 799–807. [Google Scholar] [CrossRef]
- Silke, V.; Diskin, M.G.; Kenny, D.A.; Boland, M.P.; Dillon, P.; Mee, J.E.; Sreenan, J.E. Extent, pattern, and factors associated with late embryonic loss in dairy cows. Anim. Reprod. Sci. 2002, 71, 1–12. [Google Scholar] [CrossRef]
- Cartmill, J.A.; El-Zarkouny, S.Z.; Hensley, B.A.; Rozell, T.G.; Smith, J.F.; Stevenson, J.S. An alternative AI breeding protocol for dairy cows exposed to elevated ambient temperatures before or after calving or both. J. Dairy Sci. 2001, 84, 799–806. [Google Scholar] [CrossRef]
- Yavas, Y.; de Avila, D.M.; Reeves, J.J. Trucking stress at breeding does not lower conception rate of beef heifers. Theriogenology 1996, 45, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Harrington, T.E.; King, M.E.; Mihura, H.E.; LeFever, D.G.; Hill, R.; Odde, K.G. Effect of Transportation Time on Pregnancy Rates of Synchronized Yearling Beef Heifers. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1995; p. 26. [Google Scholar]
- Merrill, M.L.; Ansotegui, R.P.; Burns, P.D.; MacNeil, M.D.; Geary, T.W. Effects of Flunixin Meglumine and Transportation on Establishment of Pregnancy in Beef Cows. J. Anim. Sci. 2007, 85, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Salverson, R. Effects of Shipping and Heat Stress on Embryonic Mortality in Cattle. South Dakota State University, Animal Science Department. South Dakota Board of Regents. 2020. Available online: https://extension.sdstate.edu/sites/default/files/2020-10/P-00189.pdf (accessed on 30 October 2023).
- Perry, G.A.; Dalton, J.C.; Geary, T.W. Management factors influencing fertility in synchronized and natural breeding programs. In Proceedings of the Applied Reproductive Strategies in Beef Cattle, San Antonio, TX, USA, 28–29 January 2010; Available online: https://beefrepro.org/wp-content/uploads/2020/09/George_Perry.pdf (accessed on 30 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szelényi, Z.; Szenci, O.; Bodó, S.; Kovács, L. Noninfectious Causes of Pregnancy Loss at the Late Embryonic/Early Fetal Stage in Dairy Cattle. Animals 2023, 13, 3390. https://doi.org/10.3390/ani13213390
Szelényi Z, Szenci O, Bodó S, Kovács L. Noninfectious Causes of Pregnancy Loss at the Late Embryonic/Early Fetal Stage in Dairy Cattle. Animals. 2023; 13(21):3390. https://doi.org/10.3390/ani13213390
Chicago/Turabian StyleSzelényi, Zoltán, Ottó Szenci, Szilárd Bodó, and Levente Kovács. 2023. "Noninfectious Causes of Pregnancy Loss at the Late Embryonic/Early Fetal Stage in Dairy Cattle" Animals 13, no. 21: 3390. https://doi.org/10.3390/ani13213390
APA StyleSzelényi, Z., Szenci, O., Bodó, S., & Kovács, L. (2023). Noninfectious Causes of Pregnancy Loss at the Late Embryonic/Early Fetal Stage in Dairy Cattle. Animals, 13(21), 3390. https://doi.org/10.3390/ani13213390