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Simple Summary: Identifying wildlife species is crucial in various wildlife monitoring tasks. In
this paper, a wildlife image recognition approach is implemented based on deep learning with a
joint adaptation network. This paper presents a joint adversarial learning approach and a cross-
domain local and global representation learning approach. Utilizing the two approaches, a Deep
Joint Adaptation Network model for wildlife image recognition is designed. The proposed model
can yield high accuracy in wildlife image recognition and is beneficial to improve the generalization
ability in complex environments. Our research is of the utmost importance for wildlife recognition
and wildlife biodiversity monitoring.

Abstract: Wildlife recognition is of utmost importance for monitoring and preserving biodiversity. In
recent years, deep-learning-based methods for wildlife image recognition have exhibited remarkable
performance on specific datasets and are becoming a mainstream research direction. However,
wildlife image recognition tasks face the challenge of weak generalization in open environments. In
this paper, a Deep Joint Adaptation Network (DJAN) for wildlife image recognition is proposed to
deal with the above issue by taking a transfer learning paradigm into consideration. To alleviate the
distribution discrepancy between the known dataset and the target task dataset while enhancing the
transferability of the model’s generated features, we introduce a correlation alignment constraint and
a strategy of conditional adversarial training, which enhance the capability of individual domain
adaptation modules. In addition, a transformer unit is utilized to capture the long-range relationships
between the local and global feature representations, which facilitates better understanding of the
overall structure and relationships within the image. The proposed approach is evaluated on a
wildlife dataset; a series of experimental results testify that the DJAN model yields state-of-the-art
results, and, compared to the best results obtained by the baseline methods, the average accuracy of
identifying the eleven wildlife species improves by 3.6 percentage points.

Keywords: transfer learning; wildlife recognition; distribution discrepancy; domain adaptation;
deep learning

1. Introduction

Wildlife identification is a crucial component of monitoring and conserving biodiver-
sity in the wild. Wildlife monitoring serves as the foundation for wildlife conservation man-
agement [1] and plays an importance role in this regard. Through collecting and analyzing
data on various aspects of wildlife, such as habitat utilization, migration patterns, quantity
distribution, and behavioral activities, monitoring provides valuable information [2] and
insights for conservation organizations and government agencies. These data unveil key
issues related to species population status, habitat quality, and habitat connectivity, which,
in turn, contribute to the development of effective conservation strategies and management
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plans. Thus, the identification of wildlife species is essential for species diversity detection
and the conservation of rare and endangered wildlife. Currently, camera traps are the
mainstream method for wildlife species monitoring [3–5]. However, manual identification
of monitoring images is known to suffer from the challenges of high intensity and low effi-
ciency. With the rapid development of artificial intelligence technology, automatic wildlife
identification methods based on deep networks have demonstrated excellent performance
on specific datasets [6–9]. A deep convolutional neural network for automatic identification
of wildlife was proposed [10] and achieved a Top-1 accuracy of 88.9% and a Top-5 accuracy
of 98.1% on the Serengeti dataset, a public wildlife dataset. Trnovszky et al. [11] achieved
a recognition accuracy of 98.0% using an improved LeNet model on a dataset contain-
ing five wildlife species. Verma et al. [12] addressed the interference of cluttered scene
images, which do not contain individual animals, in wildlife recognition in monitoring
datasets. They utilized deep convolutional neural networks (DCNNs) to extract features
from cluttered scene images and achieved cluttered scene image recognition based on
VGGNet and ResNet, further improving the recognition accuracy of high-value wildlife
monitoring images. Schneider et al. [13] focused on the problem of model generalization
in unknown scenes and compared the performance of different deep learning methods
on various data scenarios. Vargas-Felipe et al. [14] used convolutional neural networks to
recognize wildlife in monitoring images, and their recognition accuracy was significantly
better than that of traditional recognition methods. Schindler [15] combined instance
segmentation networks with action recognition networks to detect wildlife and perform
simultaneous action recognition, providing more-diversified ecological analysis data for
wildlife monitoring. However, in the real world, as depicted in Figure 1, factors such as
different backgrounds, varying lighting conditions, and diverse shooting scales can lead to
changes in feature distributions within the same class of images [16–19]. These factors can
result in suboptimal performance of existing deep learning algorithms, posing significant
challenges to image recognition.

Figure 1. The characteristics of wildlife images.

With the successful application of deep domain adaptation in various fields such as
pattern recognition and computer vision, the learning paradigm based on deep transfer
learning updates or ‘transfers’ models from one domain to another, breaking the limi-
tations of traditional deep learning models that require a large amount of labeled data
as a prerequisite and also overcoming the strict requirement for data to follow the same
distribution. Therefore, domain-adaptation-based wildlife image recognition has become
a current research hotspot and has yielded good results. Norouzzadeh et al. [20] applied
transfer learning to pre-trained convolutional neural network models such as AlexNet,
NiN, VGGNet, and GoogLeNet, and compared the performance of the two models in
automatically detecting animal species in CT image datasets. A transfer-learning-based
wildlife image classification method [21] is proposed that is based on the Xception network,
achieving an average accuracy rate of 99.01%, which is a 57.82% improvement in accuracy
compared to standard convolutional neural network methods. Thangaraj et al. [22] utilized
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the concept of transfer learning fine-tuning and fine-tuned mainstream network models
such as DenseNet169 and Xception for animal individual recognition. Compared with
other models, the InceptionResNetV2 model achieved an accuracy rate of 94.82%. By
employing deep domain adaptation approaches, not only are the limitations of traditional
deep learning methods requiring a large amount of labeled samples and samples following
the same distribution overcome, but also data-driven optimization of recognition models
with strong generalization capability can be achieved. However, the aforementioned mod-
els are still limited to optimizing DCNN models for wildlife recognition through transfer
learning fine-tuning approaches, and they cannot be widely generalized and applied. The
diversity of wildlife species, the similarities between classes, and the differences within
classes increase the difficulty of wildlife recognition, requiring the establishment of models
with strong feature extraction and generalization capabilities for wildlife recognition.

The above-mentioned transfer learning methods only utilize the idea of fine-tuning,
which can partially leverage knowledge from the source domain to assist the learning of the
target domain and mitigate domain differences. However, in order to further alleviate do-
main discrepancies and enhance the model’s generalization performance, some researchers
have proposed a series of deep transfer learning methods. Sun et al. [23] proposed the
Correlation Alignment (CORAL) method, which utilizes a linear transformation to align
the second-order statistical information between the source domain sample distribution
and the target domain sample distribution, aiming to minimize domain differences. How-
ever, CORAL relies on linear transformations and cannot be trained in an end-to-end
style. To address such a limitation, Sun et al. [24] further extended the CORAL algorithm
and introduced the Deep Correlation Alignment (DCORAL) algorithm. DCORAL embeds
CORAL directly into a deep network, constructing a differentiable loss function to minimize
cross-domain correlation differences. With the advent of Generative Adversarial Networks
(GANs) [25], adversarial domain adaptation methods [26–30] have emerged, which aim
to generate domain-transferable features through the adversarial game between a feature
generator and a domain classifier. Inspired by the idea of GANs, a domain-adversarial
neural network [31] is proposed, which involves three modules: a shared feature extractor
cross-domain, a label classifier, and a domain classifier. The feature extractor and label
classifier aim to minimize classification errors in the source domain, ensuring that the
learned features are discriminative. At the same time, the domain classifier maximizes the
domain classification error, encouraging domain-invariant feature distributions. To balance
the competition between the feature extractor and label classifier with the domain classifier
during training, a gradient reversal layer (GRL) is introduced. GRL works by reversing
the gradients of the domain classifier’s loss so that while the domain classifier aims to
minimize its loss, the feature extractor maximizes its loss. This is achieved by flipping the
sign of the gradients and propagating them back to the feature extractor. The gradient
reversal layer enables the network to ensure domain confusion between the domains while
preserving the discriminative power of the learned features.

Based on DANN, Long et al. [32] presented a joint domain adaptation network model
that outperforms domain-adversarial network models on multiple image classification
databases. The JDAN model considers how to match the joint activation distributions of
multiple layers in the source and target domains by constraining the Joint Maximum Mean
Discrepancy (JMMD). It uses a multi-layer neural network to parameterize JMMD and
employs adversarial learning methods to learn discriminative features. Chen et al. [33]
discovered that although adversarial domain adaptation methods enhance the transferabil-
ity of features, they can decrease the discriminability of feature classes. To address this,
they introduced batch spectral penalization during training to ensure that the differences
between feature values are not too large, thereby preserving feature discriminability. The
shared network feature extraction mechanism prevents the generation of domain-specific
information for each domain. To overcome this, Tzeng et al. [34] used a weight non-sharing
strategy to independently generate features for each domain. Unlike DANN [31], this
method allows the feature extractor to generate more domain-specific features due to the
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non-shared parameters. Volpi et al. [35] utilized a feature generator for data augmentation
within the source domain feature space. They employed a domain classifier to distinguish
between the generated and authentic features, ultimately aligning the distribution of the
augmented data with that of the target domain.

The aforementioned methods that use cross-domain feature alignment based on
marginal probability distributions overlook the effect of conditional probability distribu-
tions in improving network transfer gain. Therefore, researchers have introduced class infor-
mation to align the conditional probability distributions cross-domain. A multi-adversarial
domain adaptation method is proposed [36] to capture the multi-modal structure of data.
For a K-class classification problem, this method introduces K domain discriminators,
where each domain discriminator matches the samples from the source and target domains
with the same label. Specifically, it performs soft classification of the data based on probabil-
ities generated by the class classifier. When the label space of the target domain is a subset of
the label space of the source domain, i.e., in the case of partial domain adaptation, it needs
to select a subset of source domain samples from the shared label space. There are also some
methods that, although they do not employ multiple domain discriminators, achieve simi-
lar effects by introducing class information and are therefore classified as multi-adversarial
methods. A conditional domain adversarial networks is presented [37], which combines
instance weights with adversarial feature learning to capture the multi-modal structure hid-
den under complex data distributions, leading to effective knowledge transfer. However,
during the process of translating technology into practical applications, existing methods
have two limitations. Firstly, they rely on single-domain adaptation and class information,
neglecting the relationship between adversarial domain adaptation and domain alignment.
Secondly, they fail to capture the long-term relationship between local and global feature
representations, which would help better understand the overall structure and relationships
within images. To address these challenges, a Deep Joint Adaptation Network (DJAN) is
proposed in this paper, as shown in Figure 2. Specifically, it incorporates class information
into the domain adversarial network to explore more fine-grained transferable features.
Additionally, it further exploits more transferable features across domains via considering
correlation alignment. It is worth noting that the domain-transferable features learned in
this process exhibit strong transferability for different images and different transfer tasks,
demonstrating the generalization capability of this method. It effectively improves the
accuracy of wildlife image recognition while enhancing the usability and scalability of the
approach. In the learning process, a transformer unit is proposed to capture the long-term
relationship between local and global feature representations, achieving optimal transfer
effects. In summary, this paper presents three main contributions:

• A correlation alignment constraint and the strategy of conditional adversarial training
are proposed to enhance the capability of individual domain adaptation modules.

• Combining the correlation alignment constraint and the strategy of conditional adver-
sarial training, a transformer unit is proposed to capture the long-range relationships
between the local and global feature representations, which facilitates better under-
standing of the overall structure and relationships within the image.

• A series of experimental results prove that our approach yields state-of-the-art results,
and, compared to the best results achieved by the baseline methods, the average
accuracy of identifying the eleven wildlife species improves by 4.7%.
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Figure 2. Structure diagram of Deep Joint Adaptation Network. Note: LCE denotes the loss function
of optimizing the source domain data; LCA is correlation alignment loss, which is defined as the mea-
surement between the second-order statistics information of label classifier prediction of the training
and test images; LAdv indicates the objective optimization function for the final domain discriminator
D and feature extractor G in adversarial domain alignment; LT represents a transformer loss.

2. Materials and Methods
2.1. Dataset

In this paper, the wildlife dataset utilized was derived from two publicly available
wildlife datasets, ENA24 [38] and NACTI [39]. These datasets were used to construct
two distinct datasets, which are respectively abbreviated as ES and NS with different
distributions but consistent class spaces. They contain 25,591 images of 11 different wildlife
species (as shown in Figure 3 and Table 1). These images were captured utilizing infrared
camera traps placed in different locations and at different times, resulting in variations in
backgrounds, animal poses, and other factors. These distribution differences mainly arise
from variations in lighting conditions, camera angles, backgrounds, vegetation, and colors.
In this study, each image in the wildlife dataset was resized to a unified size of 224× 224
before training the model. The dataset was then divided into source and target domains.
Based on the optimization criteria of transfer learning models, two transfer learning wildlife
recognition tasks were constructed: ES→NS and NS→ES.

Table 1. Statistics of the wildlife image dataset.

bear bobcat coyote deer fox raccoon

ES 2870 455 1814 4336 1866 1376
NS 867 328 181 2357 427 142

squirrel striped
skunk

virginia
opossum wild boar wild

turkey

ES 1386 1323 110 1893 815
NS 927 295 715 819 289

2.2. Joint Adversarial Learning

In this section, a joint adversarial learning method combining conditional adaptation
learning and correlation domain alignment is proposed to promote fine-grained and highly
transferable feature generation.
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Figure 3. Images of 11 wild animals. Note: 1. bear, 2. bobcat, 3. coyote, 4. deer, 5. fox, 6. raccoon,
7. squirrel, 8. striped skunk, 9. Virginia opossum, 10. wild boar, and 11. wild turkey.

2.2.1. Conditional Adaptation Learning

Deep learning has enjoyed tremendous success in the field of image processing, and
one important reason is its ability to confuse domain discriminators and achieve domain
alignment by learning new features across domains. Therefore, we first focus on how to
learn more transferable features across domains. The Domain-Adversarial Neural Net-
works (DANN) method [31] can generate domain-transferable feature representations
via a minimax game strategy. Specifically, the feature extractor G and the label classifier
C minimize the classification error LCE in the source domain, ensuring that the features
generated by the deep network are discriminative. At the same time, the feature extractor G
maximizes the domain adversarial classification error LCE, making the feature distribution
domain-transferable. This mechanism establishes a competitive relationship between the
feature extractor G, the label classifier C, and the domain discriminator D. During the
backpropagation optimization process, the gradient from the domain discriminator D to
the feature extractor G needs to be multiplied by a negative constant. The aforementioned
domain-adversarial network provides domain-transferable feature information, which
is beneficial for training an effective domain adaptation network model and achieving
better unsupervised domain adaptation for image classification. However, dataset bias [40]
persists in domain-specific feature and classifier layers, and adversarial adaptation on
specific layers alone is insufficient to alleviate dataset bias. Additionally, when domain sam-
ples contain complex multimodal structures, domain-adversarial neural network models
may not effectively capture the multimodal structure [41] of the samples for fine-grained
cross-domain feature distribution alignment. This is known as the mode collapse prob-
lem in Generative Adversarial Networks. Incorporating category information predicted
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by classifiers into adversarial domain adaptation helps address the challenges faced by
domain-adversarial neural network models.

For this purpose, a reverse focal loss is applied to the domain discriminator D to focus
on easily discriminable samples, i.e., samples that are difficult to match. As a result, the
objective optimization function for the final domain discriminator D and feature extractor
G in adversarial domain alignment is described by Equation (1).

LAdv = − 1
ns

ns

∑
i=1

exp(D(φ(hs
i ))) log(D(φ(hs

i )))−
1
nt

nt

∑
j=1

exp
(

1− D
(

φ
(

ht
j

)))
log
(

1− D
(

φ
(

ht
j

)))
(1)

where exp(D(·)) represents the reverse focal weights for each sample in the source domain,
and exp(1− D(·)) denotes the reverse focal weights for each sample in the target domain.
The connecting variable h = (f, g) is set, where g represents the results of the label classifier,
and f represents the features generated by the feature extractor.

2.2.2. Correlation Domain Alignment

The deep domain transfer model obtained through domain-adversarial networks
lacks alignment based on the relevant information of two-domain features. It only cap-
tures the second-order statistical information of the unexplored samples and includes
irrelevant background information in the learned features. The selected cross-domain
feature alignment is irreplaceable due to its second-order statistical characteristics, and
it contributes significantly to the final prediction. Therefore, in this paper, we introduce
a correlation alignment constraint mechanism that aligns the classifier output features of
two-domain samples based on second-order statistical information to promote the accuracy
of wildlife recognition. Specifically, the calculation formula for the correlation alignment of
features output by the label classifiers for the cross-source and target domain is computed
by Equation (2).

LCA =
1

4d2 ‖CS − CT‖2
F (2)

where d indicates the dimension of the features, ‖ · ‖2
F denotes the Frobenius norm of a

matrix, and CS and CT indicate the correlation matrices of the source and target domain
samples, respectively. Their definitions are as follows:

CS =
1

NS − 1

(
BT

S BS −
1

NS

(
1TBS

)T(
1TBS

))
(3)

CT =
1

NT − 1

(
BT

T BT −
1

NT

(
1TBT

)T(
1TBT

))
(4)

where NS and NT denote, respectively, the batch sizes of the source and target domain
samples. BS and BT indicate the feature representations output by the label classifier C, and
1T is a row vector consisting of all ones. The features BS and BT can be gradient computed
respectively using the chain rule based on Equations (5) and (6).

∂LCA

∂Bij
S

=
1
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(6)

where Bij
S represents the j-th dimension of the i-th source sample, and Bij

T indicates the j-th
dimension of the i-th target sample.



Animals 2023, 13, 3333 8 of 16

2.3. Cross-Domain Local and Global Representation Learning

By utilizing joint adversarial learning as described above, the model can extract the
transferable features to reduce the domain discrepancy cross-domain. However, in the hard
sample, the decision boundary of the model fails to distinguish them and may mistake
these samples. In order to mitigate this issue, cross-domain local and global representation
learning is proposed to build the relationship between samples and boost the discriminant
ability of the decision boundary. Motivated by the prosperity of transformers in natural
language processing and image processing, which aims to build the relationships of the
long-range sequence and improve the transferability of features, a transformer transfer
loss is designed to construct the relationship of the local and global representations via the
transformer unit, as shown in Figure 4.

Figure 4. Detailed structure demonstration of the transformer loss.

Specifically, for the local feature XL and global feature XG generated by the feature
extractor G, we utilize the transformer unit to construct a transformer loss, establishing
a relationship with the long-range sequence to enhance the transferability of the features
and to facilitate better understanding of the overall structure and relationships within
the image. The global feature XG and the local feature XL in each wildlife image can be
identified as different patches, which can be termed as token embeddings. All these token
embeddings are fed into the transformer unit: the specific operations performed by these
embedding features in the transformer unit can be found in Figure 4’s dashed-box section.
Then, we can obtain features Z generated based on the local feature XL and global feature
XG through the transformer unit. Finally, a transformer loss is defined as follows:

LT = −
C

∑
i=1

yi(log(Softmax((Z)))) (7)

where C represents the number of the class in the wildlife dataset, and yi is the ground-truth
label regrading the ith class.

2.4. Optimization of Deep Joint Adaptation Network

We follow similar steps as [42] to train the source-domain discriminative model
C(G(x)) for the wildlife image recognition task via optimizing the parameters of the
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feature extractor G and the label classifier C. Therefore, the objective function of optimizing
the source domain data is:

LCE = min
G,C

1
ns

ns

∑
i=1

LC(C(G(xi)), yi) (8)

where LC(·) is a cross-entropy loss function.
In conclusion, by performing joint adversarial learning and cross-domain local and

global representation learning in Equations (1), (2), and (7), we can effectively improve
the transferability of features and boost the generalization ability so as to learn the benefit
decision boundary. Therefore, joining adversarial learning and cross-domain local and
global representation learning—that is, the Deep Joint Adaptation Network—the total loss
function can be formulated as follows:

L = LCE + α ∗ LAdv + β ∗ LCA + γ ∗ LT (9)

where α, β, and γ denote the hyperparameters; these hyperparameters are used to control
the degree of influence between different constraints.

3. Results
3.1. Implementation Details

This section introduces the details of the experiments: (1) We used a 50-layer ResNet [43]
as the base network model and conducted experiments on the wildlife dataset. (2) All
experiments in this chapter were conducted using the PyTorch framework, and the base net-
work models were pre-trained on the ImageNet dataset. (3) We used mini-batch stochastic
gradient descent with a momentum of 0.9. The learning rate strategy described in [42] was
employed, where the learning rate ηp = η0

(1+ap)b , and p linearly varies from 0 to 1 during
the training phase. The variable η0 is the initial learning rate, which starts at zero for the
task-specific fully connected layers, and the learning rate for the convolutional layers is
10 times higher than that of the fully connected layers (i.e., the learning rate for the convolu-
tional layers is 0.001, and for the fully connected layers, it is 0.01). The progressive strategy
for the domain discriminator is as described in [37], which is 2

1+exp(−εp) − 1 multiplied by
α, with α linearly increasing from 0 to 1 and ε set to 10. (4) During the training and testing
process, the batch size is set to 128. Additionally, the software and hardware employed in
all experiments is reported in Table 2.

Table 2. The hardware and software configuration of the experiment.

Test Environment Type

Operating System Ubuntu 16.04
Framework PyTorch 1.4.0

CPU Intel(R) Core(TM) i9-10900K CPU @ 3.7G Hz
GPU GeForce RTX 3090Ti (24 G/Nvidia)
RAM 32 G

Programming Language Python 3.6

3.2. Evaluation Metrics

To evaluate the effectiveness of our DJAN model for wildlife image recognition,
Accuracy is used as the evaluation metric and is calculated by Equation (10).

Accuracy =

∣∣xt : xt ∈ Xt ∧ ŷt = yt
∣∣

|xt : xt ∈ Xt| (10)

where yt represents the true class label of the sample xt, which is unknown during the
learning phase, and ŷt represents the predicted class label made by the label classifier for
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the sample xt in the target domain. Furthermore, this paper also utilizes three evaluation
metrics, namely Precision, Recall, and the F1 score, to assess the effectiveness of our
method. These evaluation metrics are defined respectively by Equations (11)–(13).

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(13)

where TP (True Positive) indicates the number of correct identifications of a certain wildlife
species, FP (False Positive) represents the number of incorrect identifications of a certain
wildlife species, and FN (False Negative) is the number of incorrect identifications of a
certain wildlife species as another category of wildlife. The F1 score denotes the harmonic
mean based on precision and recall.

3.3. Comparison with State-of-the-Art Models

In order to reveal the effectiveness of the DJAN approach, we compare DJAN with
the state-of-the-art models on the wildlife dataset; these baselines include ResNet50 [43],
MMD [44], DANN [31], DCROAL [24], CDAN [37], DSAN [45], BNM [46], HAN [47], and
JTN [42]. Table 3 reports the evaluation results on the wildlife dataset with two transfer
tasks (i.e., ES→NS and NS→ES). For fair comparison, the results of the comparative
methods are obtained by the authors through experimentation using the source code.

Table 3. Accuracy performance comparison of the DJAN method and the baselines on wildlife dataset.

Method ES→NS NS→ES Avg.

ResNet50 41.4 55.4 48.4
MMD 44.0 59.2 51.6

DANN 42.8 51.6 47.2
DCORAL 44.1 55.1 49.6

CDAN 45.5 56.2 50.9
DSAN 41.5 53.7 47.6
BNM 28.0 60.1 44.0
HAN 47.2 62.0 54.6
JTN 44.4 62.5 53.5

DJAN 48.8 67.5 58.2

As can be observed from Table 3, the DJAN model overpasses all baselines in both the
ES→NS and NS→ES transfer tasks. This is because DJAN can boost the generalization
ability of the network and generate more transferable feature representations via construct-
ing joint adversarial learning and cross-domain local and global representation learning for
the wildlife image recognition task. In addition, among the comparison methods, the HAN
method [47] achieved the highest transfer task accuracy in wild animal image recognition.
It utilizes a conditional domain adaptation and correlation alignment constraint. Compared
to the HAN method, our DJAN model achieved a 3.6% (58.2% vs. 54.6%) improvement
in average recognition accuracy across two transfer tasks (i.e., ES→NS and NS→ES). The
CDAN method [37] is a further extension of the DANN method [31] that learns cross-
domain transferable features by using conditional adversarial domain adaptation. Despite
that, our DJAN method still achieves a 7.3% (58.2% vs. 50.9%) higher accuracy than it.
Overall, the proposed DJAN model achieved an average accuracy of 58.2% in recognizing
11 categories of wild animals, surpassing all the baseline models. This reflects that our
model effectively improves the generalization capacity via employing joint adversarial
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learning and cross-domain local and global representation learning for wild animal image
recognition tasks.

3.4. Analysis of Prediction Results from Recognition Models

This section demonstrates that our DJAN model can correctly classify some samples,
while the HAN method suffers from misclassification, as shown in Figure 5. The main
reason for these misclassifications is that some images were only captured from the back or
side of the target animal or the target was in a dark environment where its species-specific
image features were not displayed. Therefore, it is difficult for the model to correctly
identify them. This once again confirms the effectiveness of our proposed method for
improving the transfer performance of the model and consequently enhancing its predictive
accuracy by employing conditional adaptation learning, correlation domain alignment,
and cross-domain local and global representation learning for wildlife image recognition.

Figure 5. The prediction result comparison of our DJAN and HAN methods on transfer task ES→NS
for wild animal images.

3.5. Analysis of Model Performance Using Different Evaluation Criteria

To comprehensively evaluate the performance of our method in wildlife image recogni-
tion, we conducted experimental tests using four evaluation metrics: Accuracy, Precision,
Recall, and F1 score, on the transfer task ES→NS. The experimental results are shown in
Table 4. The trends are consistent with the results in Table 3. Our method achieved the
highest wildlife image recognition accuracy, precision, recall, and F1 score, with an average
accuracy of 48.8%, precision of 0.43, recall of 0.40, and F1 score of 0.35. Comparing to the
best results from the comparative methods, our method exhibited improvements of 4.4%,
0.08, 0.05, and 0.03, respectively, further validating the effectiveness of our DJAN approach.

Table 4. Performance analysis of wildlife image recognition models under different evaluation criteria.

Methods Accuracy Precision Recall F1

DCORAL 44.1 0.38 0.29 0.24
JTN 44.4 0.38 0.37 0.32

DJAN 48.8 0.46 0.42 0.35

3.6. Ablation Study

We conducted ablation experiments to verify the effectiveness of each constraint
in our approach on the wildlife dataset, and the results are reported in Table 5. We
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observed the following: (1) “ResNet50” indicates the results yielded by directly fine-tuning
ResNet50 [43] on the wildlife dataset, while “DJAN w/o Adv” denotes the results obtained
solely using the deep discriminative feature learning network. Even when only utilizing
the correlation alignment adaptation learning and transformer transfer loss, our approach
achieves better domain adaptation wildlife image recognition accuracy compared to the
ResNet50 method. This suggests that correlation domain alignment and cross-domain local
and global representation learning contribute to learning cross-domain transferable features
in our approach and achieves higher transfer gains. (2) “DJAN w/o CA” presents the
results obtained by removing the correlation domain alignment constraint. Our approach
achieves an improvement of nine percentage points (58.2% vs. 49.2%) compared to “DJAN
w/o CA”. This improvement is attributed to the ability of the “DJAN w/o CA” to enhance
feature transferability. (3) “DJAN w/o T” indicates the results obtained via solely utilizing
conditional adaptation learning and the correlation domain alignment constraint. On
ES→NS and NS→ES transfer tasks, our approach outperforms the baselines in achieving
the best wildlife image recognition results. (4) Compared to our DJAN approach, the “DJAN
method w/o T” model achieves an accuracy below 7.9% (50.3% vs. 58.2%). This further
quantitatively validates the effectiveness of cross-domain local and global representation
learning, enhancing the accuracy of domain adaptation wildlife image recognition.

Table 5. Results of ablation studies on wildlife dataset.

Methods ES→NS NS→ES Avg.

ResNet50 41.4 55.4 48.4
DJAN w/o Adv 46.2 53.7 50.0
DJAN w/o CA 40.5 57.9 49.2
DJAN w/o T 43.3 57.3 50.3

DJAN 48.8 67.5 58.2

3.7. Deep Joint Adaptation Network Convergence

To investigate the convergence performance of the proposed DJAN model compared to
the comparative methods, we conducted the test accuracy experiments on the transfer task
ES→NS, as shown in Figure 6. By Figure 6, we can observe that the recognition accuracy
of our DJAN method gradually increases as the number of iterations increases and then
exhibits a stable trend. Moreover, we can also see that although the JTN method achieves
stable convergence performance similar to our DJAN model, the convergence performance
of our DJAN model is significantly superior to that of the JTN method throughout the entire
convergence process. Therefore, the substantial performance improvement for the wildlife
image recognition task across domains further reflects the advantages of our DJAN.

3.8. Parameter Sensitivity Analysis of the DJAN Model

As shown in Tables 6–8, we investigated the sensitivity of hyperparameters α, β, and
γ on the transfer tasks ES→NS and NS→ES. The strategy we adopted was as follows: if
we wanted to determine the value of parameter α, we fixed the values of parameters β and
γ and obtained the optimal value for parameter α. Similarly, we followed the same process
to determine the optimal values for parameters β and γ: by fixing the values of the other
parameters. From Tables 6–8, we can observe the following: (1) The parameter α changes
within the range of [0.2, 0.4, 0.6, 0.8, 1.0, 1.2]. The transfer performance of our method in
this paper initially increases and then decreases. As α increases, the performance first
increases and then decreases. Therefore, we set the parameter α to 1.0. (2) The parameter
β is optimized within the range of [0.2, 0.4, 0.6, 0.8, 1.0, 1.2], the accuracy of wildlife image
recognition using our method initially stabilizes and then increases before eventually
decreasing. Therefore, the value of parameter β is set to 0.25. (3) The parameter γ is
optimized within the range of [0.15, 0.25, 0.35, 0.45, 0.55, 0.65], the transfer gain of the DJAN
method first increases steadily and then decreases. Therefore, in our DJAN method, the
parameter γ = 0.25.
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Figure 6. The curve of test accuracy based on ResNet50, JTN, and DJAN on transfer task ES→NS.

Table 6. The experimental comparison results of different hypermeter α weights on wildlife dataset.

α 0.2 0.4 0.6 0.8 1.0 1.2

ES→NS 41.3 43.4 45.8 41.7 48.8 46.4
NS→ES 56.9 57.1 56.5 60.2 67.5 58.0

Table 7. The experimental comparison results of different hypermeter β weights on wildlife dataset.

β 0.2 0.4 0.6 0.8 1.0 1.2

ES→NS 41.3 42.4 43.8 42.7 48.8 42.1
NS→ES 54.0 56.8 53.4 54.6 67.5 58.0

Table 8. The experimental comparison results of different hypermeter γ weights on wildlife dataset.

γ 0.15 0.25 0.35 0.45 0.55 0.65

ES→NS 43.8 48.8 40.8 39.8 42.6 40.4
NS→ES 51.5 67.5 55.1 56.1 58.8 55.1

4. Discussion

By joining adversarial learning image recognition and vision transformer study re-
search, a Deep Joint Adaptation Network is proposed for a wildlife image recognition
model that can both accurately recognition wildlife and enhance generalization ability.
Different from domain adaptation wildlife image recognition, such as [20–22], the pro-
posed method generates domain-transferable feature representations across domains by
the correlation alignment constraint, conditional adversarial training, and cross-domain
local and global representation learning method. The correlation alignment constraint and
the strategy of conditional adversarial training improve the capability of individual domain
adaptation modules. In addition, a transformer unit is utilized to capture the long-range
relationships between the local and global feature representations, which facilitates better
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understanding of the overall structure and relationships within the image. In the study of
wildlife image recognition, some deep learning models, such as [10–12], also yielded signifi-
cant recognition results. However, when these methods are confronted with datasets where
the feature distribution is significantly affected by factors such as different backgrounds,
lighting conditions, and varying scales of capture, the recognition performance can degrade
significantly. Moreover, our method avoids the use of costly sample annotation information,
which promotes the application of wildlife image recognition in real-world scenarios.

As shown in Tables 3–5, it can be observed that conditional adaptation learning and
correlation domain alignment obviously further promote the ability of the model to extract
more domain-transferable features. This reflects that the combination of the two could
further enhance highly transferable feature learning, strengthening the complementarity
between adversarial feature learning and domain correlation alignment and thus achieving
higher accuracy in wildlife image recognition. However, this mechanism does not consider
the long-term relationship between local and global feature representations, which can
help to better understand the overall structure and relationships within the image. In
this paper, with the help of the domain adaptation strategy of conditional adaptation
learning and correlation domain alignment, we designed a transformer loss constraint to
capture the long-range relationships between the local and global feature representations,
which facilitated better understanding of the overall structure and relationships within the
image. With the utilization of the transformer loss to guide the DJAN model learning cross-
domain local and global representation, the DJAN model yielded an accuracy of 58.2%,
which achieved a 7.9 percentage point improvement in Accuracy compared to utilizing
conditional adaptation learning and the correlation domain alignment constraint.

The proposed method for wildlife recognition in this paper has indeed improved
the recognition accuracy. However, there are still instances where certain individual
wildlife species are misclassified (as shown in Figure 5). The main reason for this is
the impact of the wildlife photography environment on the transferability of features
and the recognition results. Therefore, it is worth considering the introduction of image
enhancement algorithms to mitigate the influence of complex background factors and to
improve the effectiveness of the model. Furthermore, the next step of this research involves
deploying the proposed wildlife recognition model on edge devices to achieve real-time,
efficient, and privacy-secure wildlife monitoring at the edge.

5. Conclusions

This study presented the Deep Joint Adaptation Network (DJAN), a novel network to
address the issue of weak generalization in wildlife image recognition by leveraging the
principles of transfer learning. DJAN incorporates two key components: the correlation
alignment constraint and conditional adversarial training, which collectively enhance
the adaptability of individual domain-adaptation modules. Additionally, transformer
units are employed to capture long-range relationships between local and global feature
representations, enabling a more comprehensive understanding of the image’s overall
structure and relationships. Experimental evaluations conducted on wildlife datasets
testify of the effectiveness of the DJAN model, yielding state-of-the-art results. Compared
to baseline methods, our DJAN approach achieved an average accuracy improvement of 3.6
percentage points for the classification of eleven wildlife species. These findings highlight
the potential of DJAN in advancing wildlife image recognition and its application in the
conservation and monitoring of diverse wildlife species in open environments. Further
research can explore additional optimizations and extend the use of DJAN to enhance our
understanding and preservation of wildlife biodiversity.
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