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Simple Summary: The use of by-products from the olive oil industry in livestock farming is an
important resource due to their high content of biomolecules with strong antioxidant properties. In
this study, 30 Italian Holstein–Friesian cows were fed with an Olea europaea L. polyphenol-enriched
diet (500 mg/cow/day) to evaluate the effects of such supplementation on metabolic parameters and
milk quality. The enriched diet helped (1) maintain cows’ metabolic parameters in the physiological
range producing hypoglycemic and hypolipidemic effects, and (2) improve the fatty acid profile
of milk, paralleled by an increase in protein content and lactose. The obtained results show that
in lactating dairy cows, supplementation with Olea europaea L. extracts can be a valid strategy to
improve animal welfare and milk quality.

Abstract: Here, we evaluated the effect of dietary supplementation with an Olea europaea L. extract
on the animal welfare and milk quality of dairy cows. Thirty Italian Holstein–Friesian dairy cows
in the mid-lactation phase (90 to 210 days) were blocked into experimental groups based on parity
class (namely, primiparous (P) (n = 10), secondiparous (S) (n = 10) and pluriparous (PL) (n = 10)) and
received, for 60 days, Phenofeed Dry® at 500 mg/cow/day. Milk and blood samples were collected
before the start of the treatment (T0), subsequently every 15 days (T1–T4) and at 45 days after the
end of treatment (T5). In the serum, glucose and triglycerides, stress, the thyroid, lactation and sex
hormones were measured; in the milk, lysozyme content as well as the fatty acid profile were assessed.
In the whole animal, the enriched feed helped to maintain hormonal parameters in the physiological
range while producing hypoglycemic (T4 vs. T0, for P and PL p < 0.001) and hypolipidemic effects
(T4 vs. T0, for P p < 0.001 and for PL p < 0.01). At the milk level, it resulted in a reduction in total
fat (T5 vs. T0, for P, S and PL p < 0.001) and in the saturated fatty acids (SFAs)/monounsaturated
fatty acids (MUFAs) ratio paralleled by an increase in polyunsaturated fatty acids (PUFAs) (T5 vs. T0,
for P, S and PL p < 0.001), protein content (lysozyme (T4 vs. T0, for P and PL p < 0.001)) and lactose
(T5 vs. T0, for P, S and PL p < 0.001). Thus, the inclusion of natural bioactive molecules such as O.
europaea L. polyphenols in the dairy cow diet may help to improve animal welfare and milk quality.

Keywords: Olea europaea L.; polyphenols; animal welfare; milk quality; milk fatty acids; antioxidant;
functional feed; dairy cows

1. Introduction

In recent years, the use of phytocompounds, such as food supplements with beneficial
properties and stimulators of animal welfare [1,2], is becoming extensively employed in
livestock farming, particularly in intensive farming. Several studies conducted on diets
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supplemented with biomolecules show the ability of phenolic compounds to improve
productive performance and the immune response, and to reduce the oxidative stress
and inflammatory status [3–6]. By preventing the interaction of free radicals with cellular
DNA as well as acting on the intestinal microbiota by increasing the digestibility and
absorption of nutrients [7], these substances possess antioxidant, immunomodulating/anti-
inflammatory and anti-carcinogenic action [6,8,9]. Polyphenols may find new applications
in the production of functional foods, which are a valuable aid in reducing the use of
antibiotics and drugs currently used in animal breeding [10–12]. In recent years, there has
been a progressive increase in the use of feed or functional foods, for which, by definition,
beyond the basic nutritional properties, their ability to positively influence one or more
physiological functions has been scientifically demonstrated. A fundamental prerogative of
polyphenols is also to help preserve or improve the health status of humans and animals [1].
A waste/refusal of processing in the agri-food chain representing a disposal cost that affects
the general production costs can become a precious economic resource with important
repercussions in terms of benefits from health, social-health and environmental aspects [13].
Therefore, supplementing the feed ration with natural antioxidants such as polyphenols
may become an optimal alternative to ensure the welfare of dairy cows with a sustainable
approach. In organic farms, access to polyphytic pastures, with high plant biodiversity,
ensures an appropriate intake of polyphenols [14]. In the case of intensive farming, to obtain
such a result, it is necessary to supplement the ration with food supplements enriched with
polyphenols. This strategy is supported by several studies conducted in farms in which
diets integrated with natural antioxidants have shown an improvement in the quality
of animal products [15–17]. Among the physio-pathological alterations that may affect
dairy cows, there is a growing interest in diseases associated with oxidative stress [18,19],
considered, to date, a metabolic disorder affecting all organs and damaging not only
the health of animals but also the quality of finished products, such as milk and dairy
products [16,20]. The introduction of olive–olive co-products into the diets of farm animals
has been shown to improve not only their welfare status but also the shelf life of animal
products due to their content of polyunsaturated fatty acids and polyphenols [21] and the
quality of animal products such as milk, cheese and eggs [22]. Milk is an important source of
SFAs, MUFAs and PUFAs (i.e., omega-3 and omega-6) [23], and the content of the essential
fatty acids omega-3 and omega-6 depends on the dietary intake of cows [24]. Moreover,
milk is rich in biomolecules, whose quantity is conditioned by breeding techniques and by
the welfare status of the cows [25]. Therefore, the evaluation of nutritional composition and
the protein content with antibacterial properties in milk becomes essential. Among these,
lysozyme, which synergistically works with lactoferrin, has a high antibacterial activity by
enhancing the immune response, through mechanisms of nonspecific immunity [26,27]. The
concentrations of these proteins in cow milk are extremely low during lactation, at average
values of 0.13 µg/mL [28], lower than those of other species such as jenny milk: 1.0 to 3.7
mg/mL [29]; camel: 1.12 µg/mL [30]; ewe: 0.20 µg/mL [31]; and goat: 0.25 µg/mL [32].
Colostrum, but also mastitic milk, contains higher lysozyme concentrations [33,34]. Based
on these considerations, the objective of this study was to evaluate the effect of dietary
supplementation with an Olea europaea L. extract on the animal welfare and milk quality
in the Holstein–Friesian dairy cows.

2. Materials and Methods

Animal procedures were reviewed and approved by the Ethical Animal Care and Use
Committee of the University of Naples “Federico II” (Protocol No. 99607-2017).

2.1. Animals and Experimental Design

This study was carried out at the dairy farm “Fratelli Mirra” located in Francolise (CE)
(Italy) (41◦07′56′′ N 14◦03′43′′ E; 10 m above sea level) on thirty Italian Holstein–Friesian
dairy cows in mid-lactation phase (149 ± 42 days in milk), blocked into three experimental
groups based on parity class (primiparous (P) (n = 10) (body weight, 580 ± 20 kg), secondi-



Animals 2023, 13, 3225 3 of 18

parous (S) (n = 10) (body weight, 630 ± 10 kg) and pluriparous (PL) (n = 10) (body weight,
640 ± 15 kg)) [35]. This study lasted 105 days. Cows were fed with a total mixed ration (TMR)
and oat hay and milked twice daily in the morning and afternoon in the milking parlor.
Animals were selected and divided into the experimental groups according to days in milk
and parity; for 60 days, cows received a supplement with Olea europaea L. phenolic extract
(Phenofeed Dry®) (500 mg/cow/day) added in powder form into the feed ration of dairy
cows. Milk and blood samples were collected before the start of the administration of the
functional feed, at time 0 (control time, T0); during supplementation at 15 (T1), 30 (T2), 45 (T3)
and 60 (T4) days; and at 45 days after the end of treatment (follow-up, T5) [35].

2.2. Diet Composition and Functional Feed

Standard diet composition, chemical–nutritional analysis, functional analysis (charac-
terization of total phenolic content and antioxidant activity) and fatty acid profile of the
feed enriched with Phenofeed Dry® extract are reported in Di Meo et al. [35].

2.3. Bovine Blood Collection and Analysis

Blood samples from each individual cow were collected every 15 days before and
after milking, as reported by Di Meo et al. [35]. Plasma samples were used for fatty acids
analysis [35], while serum samples were used for metabolic analysis, as described below.

2.3.1. Serum Concentrations of Glucose and Triglycerides

Glucose and triglyceride concentrations in bovine serum were determined through en-
zymatic colorimetric methods using commercial kits (Giesse Diagnostics, Colle Prenestino,
Rome, Italy). The rates for individual cows, at the different sampling times, were analyzed
using 1000 µL of reagent and 10 µL of sample. The blank and the standard were initially
prepared in duplicate with the addition of 1000 µL of reagent and 10 µL of distilled water
for the blank and 1000 µL of reagent and 10 µL of standard. The samples were shaken and
incubated at 37 ◦C for 10 min for glucose determination and 5 min for triglycerides; sub-
sequently, the reading was carried out in duplicate on the spectrophotometer (Biomate 3)
at wavelengths of 510 and 546 nm for glucose and triglycerides, respectively. Results are
expressed as mg/dL of bovine serum.

2.3.2. Serum Levels of Hormonal Parameters

Specific Enzyme-Linked Immunosorbent Assay (ELISA) kits (Diametra, Foligno, Italy)
were used to assess serum concentrations of free triiodothyronine (fT3), thyroxine (fT4) and
17β-estradiol. Analyses were performed in duplicate. Results are expressed as ng/dL for
fT4 and as pg/mL for fT3 and for 17β-estradiol. Serum levels of oxytocin and prolactin
were measured to evaluate putative effects of the functional food on lactation. Serum levels
of adrenocorticotropic hormone (ACTH) and cortisol were measured as markers of stress
and oxidative imbalance. Oxytocin levels were measured using an ELISA kit from DRG
Diagnostic, Germany, and prolactin, ACTH and cortisol were measured using specific
ELISA kits from FineTest, Wuhan, China.

2.4. Milk Sampling and Analysis

Milk was collected from each cow every 15 days for 60 days and at 45 days after
the end of treatment (follow-up, T5), immediately transferred to the laboratory, divided
into several aliquots and stored at −20 ◦C until used for analyses. About 10 mL of milk
was used for fatty acid composition analysis, while other aliquots were used to perform
the ELISA Lysozyme Food assay (DRG Diagnostic, Marburg, Germany, EIA-6027) for the
quantitative determination of lysozyme in milk.
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2.4.1. Analysis of Fatty Acid Profile

To analyze fatty acid composition, milk samples were extracted with methylene
chloride and the organic phase was dried under a slight flow of nitrogen. As previously re-
ported [36], each sample was dried for 1 h over P2O5 and then treated for
20 min at 60 ◦C with a solution of boron trifluoride/methanol 10% (1.3 M, 0.5 mL) and
100 µL of dimethoxypropane. The crude mixture of fatty acid methyl esters thus obtained
was extracted twice with hexane and the organic phases were combined and dried. Gas
chromatography (GC-FID) analyses were obtained on a Shimadzu model GC2010 instru-
ment equipped with an SP52–60 capillary column (Sigma-Aldrich, St Louis, MO, USA;
100 m × 0.25 inside diameter × 0.20 film thickness) and performed as reported in
Di Meo et al. [35].

2.4.2. Lysozyme Content and Chemical–Nutritional Analysis of Milk

For milk quality analysis, the lysozyme levels were determined by using a specific
commercial ELISA kit, according to the manufacturer’s instructions, and the absorbance at
450 nm was determined using a Biomate 3-Thermo Spectronic spectrophotometer (Thermo
Fisher, Waltham, MA, USA). Results are expressed as ppb and the measurements were
performed in duplicate.

The chemical composition of milk (total fat, protein and lactose) and hygiene param-
eters (somatic cell count (SSC)) were determined using the Speedylab analyzer (Astori
Tecnica snc, Brescia, Italy) based on a sensitive and specific ultrasonic technique, and the
Lactoscan Milk Analyzer (Bulgaria), respectively. All analyses were carried out in duplicate.

2.5. Statistical Analysis

Before statistical analysis, the data were tested for normality using the Shapiro–Wilk
test [37]. For comparisons between two groups, statistical significance was calculated using
non-paired two-tailed Student’s t-test. For multiple comparisons, One-way ANOVA (post
hoc test: Student–Newman–Keuls) was performed. Graphs and calculation of statistical
significance were performed using Graph Pad Prism 8 software (GraphPad, San Diego, CA,
USA). Bars are represented as the standard deviation (SD) of the mean. For all analyses,
p value < 0.05 was considered the minimum statistical significance. Differences between
cows for each parity class (P, S, PL) were analyzed using One-way ANOVA statistical
analysis (Newman–Keuls post-test) each time, while two-way ANOVA (Tukey test) was
used to assess the effects of dietary treatment in each parity class at different experimental
points (T0, T1, T2, T3, T4, T5). The experimental results (T1-T5) were compared with the
control (T0) to evaluate the blood parameters and milk composition, during and after the
experimental phase.

For simplicity in reading the data, it was decided to report the One-way ANOVA
statistical analysis in graphs and tables, while the Two-way ANOVA analysis was reported
in the legend for each analyzed parameter. Only for the table of fatty acids of cow milk
(Table 1), the Two-way ANOVA is reported in Supplementary Materials.

Moreover, to make the data reported in Figures 1–8 more understandable in terms of
actual change, a strategic table containing mean values and One-way ANOVA results is
available in Supplementary Materials (see Tables S1 and S2).
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Table 1. Fatty acid composition of milk from P, S and PL cows fed with a standard diet (T0) and the Phenofeed Dry® supplemented diet (T1-T5) 1.

Fatty
Acid

(g/100 g)

Experimental Time

T0 T1 T2 T3 T4 T5

P S PL P S PL P S PL P S PL P S PL P S PL

C14:0 1.09 ±
0.04 a

16.19 ±
0.25 b

15.35 ±
0.33 c

1.00 ±
0.03

14.87 ±
0.29

13.35 ±
0.29

0.90 ±
0.02

14.23 ±
0.32

12.99 ±
0.20

0.80 ±
0.09

12.18 ±
0.10

10.76 ±
0.13

0.68 ±
0.10

9.70 ±
0.18

8.09 ±
0.16

0.60 ±
0.09

9.15 ±
0.17

7.10 ±
0.13

C16:0 15.31 ±
0.33 a

47.50 ±
0.62 b

38.77 ±
0.67 c

15.00 ±
0.28

33.76 ±
0.82

29.28 ±
0.68

14.70 ±
0.20

30.39 ±
0.76

28.79 ±
0.14

13.41 ±
0.13

28.00 ±
0.20

27.03 ±
0.18

12.09 ±
0.10

27.33 ±
0.18

25.18 ±
0.17

11.18
± 0.11

27.10 ±
0.17

24.40
± 0.16

C16:1 n7t 4.74 ±
0.05 b n.d.a n.d.a 5.08 ±

0.04
0.10 ±

0.02
0.03 ±

0.01
5.37 ±

0.05
0.22 ±

0.05
0.07 ±

0.01
6.01 ±

0.16
0.56 ±

0.11
0.26 ±

0.09
6.23 ±

0.13
0.86 ±

0.08
0.40 ±

0.04
6.90 ±

0.11
0.90 ±

0.09
0.55 ±

0.04

C16:1 n7 n.d.a 0.85 ±
0.02 b n.d.a 0.10 ±

0.02
0.98 ±

0.03
0.05 ±

0.02
0.13 ±

0.03
1.56 ±

0.10
0.10 ±

0.02
0.16 ±

0.06
2.91 ±

0.11
0.25 ±

0.07
0.20 ±

0.06
3.56 ±

0.10
0.42 ±

0.02
0.25 ±

0.05
4.02 ±

0.10
0.58 ±

0.05

C18:0 8.45 ±
0.17 a

9.89 ±
0.13 b

14.43 ±
0.26 c

7.64 ±
0.16

6.24 ±
0.17

10.22 ±
0.19

7.43 ±
0.20

5.77 ±
0.10

9.81 ±
0.11

6.15 ±
0.09

5.09 ±
0.08

8.56 ±
0.11

5.48 ±
0.11

4.39 ±
0.09

7.98 ±
0.08

5.00 ±
0.10

3.06 ±
0.08

6.17 ±
0.12

C18:1 n9 9.36 ±
0.18 a

21.01 ±
0.42 b

26.38 ±
0.53 c

9.60 ±
0.17

24.14 ±
0.34

29.00 ±
0.26

9.80 ±
0.21

27.64 ±
0.25

29.80 ±
0.30

11.00 ±
0.14

29.80 ±
0.32

32.34 ±
0.36

11.90 ±
0.02

30.75 ±
0.35

35.13 ±
0.36

12.26
± 0.16

31.14 ±
0.31

36.50
± 0.34

C18:2 n6t n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

C18:2 n6 17.96 ±
0.27 a

3.42 ±
0.09 b

3.02 ±
0.10 c

18.19 ±
0.26

12.90 ±
0.11

11.07 ±
0.17

18.23 ±
0.32

13.00 ±
0.18

11.20 ±
0.16

18.45 ±
0.20

13.80 ±
0.20

12.46 ±
0.15

19.10 ±
0.22

15.20 ±
0.21

13.00 ±
0.18

19.16
± 0.23

16.01 ±
0.17

14.03
± 0.12

C18:3 n6 1.01 ±
0.12 a

0.07 ±
0.03 b

0.27 ±
0.01 c

1.10 ±
0.03

0.50 ±
0.03

1.89 ±
0.10

1.10 ±
0.02

0.54 ±
0.10

1.90 ±
0.07

1.11 ±
0.05

0.59 ±
0.09

2.00 ±
0.10

1.13 ±
0.04

0.75 ±
0.05

2.50 ±
0.10

1.14 ±
0.08

0.80 ±
0.03

2.60 ±
0.10

C20:1 n9 3.98 ±
0.08 a n.d.b

0.49 ±
0.04 c

4.30 ±
0.07

0.05 ±
0.01

0.78 ±
0.06

4.47 ±
0.08

0.19 ±
0.06

0.82 ±
0.05

5.28 ±
0.16

0.29 ±
0.11

1.68 ±
0.13

5.74 ±
0.20

0.35 ±
0.03

1.90 ±
0.08

6.10 ±
0.10

0.45 ±
0.02

2.33 ±
0.09

C18:3 n3 0.10 ±
0.04 b

0.21 ±
0.08 a

0.26 ±
0.03 a

0.11 ±
0.02

1.27 ±
0.03

0.99 ±
0.06

0.13 ±
0.03

1.28 ±
0.14

1.01 ±
0.12

0.15 ±
0.08

1.30 ±
0.11

1.03 ±
0.10

0.17 ±
0.03

1.40 ±
0.09

1.13 ±
0.03

0.18 ±
0.05

1.58 ±
0.09

1.20 ±
0.08

C20:2 n6 2.83 ±
0.06 b

0.07 ±
0.02 a

0.09 ±
0.01 a

3.00 ±
0.06

1.13 ±
0.05

0.78 ±
0.05

3.01 ±
0.07

1.15 ±
0.03

0.86 ±
0.01

3.08 ±
0.10

1.16 ±
0.06

0.90 ±
0.02

3.10 ±
0.10

1.20 ±
0.11

1.08 ±
0.09

3.12 ±
0.11

1.22 ±
0.07

1.12 ±
0.03

C20:3 n6 2.60 ±
0.03 b

0.25 ±
0.10 a

0.33 ±
0.04 a

2.78 ±
0.03

1.29 ±
0.12

0.65 ±
0.05

2.80 ±
0.05

1.30 ±
0.20

0.68 ±
0.09

2.85 ±
0.07

1.35 ±
0.20

0.70 ±
0.06

3.00 ±
0.10

1.38 ±
0.10

0.88 ±
0.05

3.03 ±
0.04

1.40 ±
0.06

0.90 ±
0.03

C20:4 n6 16.97 ±
0.27 b

0.33 ±
0.13 a

0.38 ±
0.03 a

17.40 ±
0.27

1.97 ±
0.11

1.25 ±
0.10

17.45 ±
0.26

1.98 ±
0.10

1.27 ±
0.09

17.50 ±
0.30

2.04 ±
0.05

1.30 ±
0.10

17.65 ±
0.29

2.09 ±
0.15

1.42 ±
0.09

17.67
± 0–27

2.10 ±
0.11

1.46 ±
0.09

C24:0 7.00 ±
0.14 b

0.09 ±
0.02 a

0.07 ±
0.01 a

5.98 ±
0.13

0.08 ±
0.04

0.08 ±
0.01

5.73 ±
0.09

0.08 ±
0.03

0.06 ±
0.03

5.07 ±
0.14

0.05 ±
0.01

0.04 ±
0.01

4.36 ±
0.20

0.03 ±
0.01

0.02 ±
0.01

4.11 ±
0.16

0.01 ±
0.01

0.01 ±
0.01

C20:5 n3 1.00 ±
0.05 b n.d. a n.d. a 1.08 ±

0.06
0.10 ±

0.05
0.23 ±

0.08
1.08 ±

0.04
0.11 ±

0.05
0.27 ±

0.10
1.10 ±

0.11
0.13 ±

0.05
0.29 ±

0.11
1.13 ±

0.09
0.15 ±

0.06
0.33 ±

0.04
1.15 ±

0.11
0.16 ±

0.05
0.40 ±

0.12

C24:1 n9 0.10 ±
0.04 b

0.02 ±
0.03 a

0.02 ±
0.01 a

0.10 ±
0.03

0.08 ±
0.04

0.07 ±
0.01

0.13 ±
0.05

0.15 ±
0.05

0.08 ±
0.01

0.20 ±
0.06

0.20 ±
0.09

0.10 ±
0.04

0.25 ±
0.05

0.26 ±
0.05

0.19 ±
0.04

0.27 ±
0.08

0.28 ±
0.07

0.25 ±
0.04

C22:6 n3 7.50 ±
0.15 b

0.10 ±
0.05 a

0.13 ±
0.04 a

7.54 ±
0.15

0.54 ±
0.07

0.28 ±
0.10

7.54 ±
0.17

0.54 ±
0.05

0.29 ±
0.12

7.68 ±
0.15

0.55 ±
0.13

0.30 ±
0.11

7.79 ±
0.18

0.60 ±
0.11

0.35 ±
0.09

7.88 ±
0.12

0.62 ±
0.10

0.40 ±
0.12
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Table 1. Cont.

Fatty
Acid

(g/100 g)

Experimental Time

T0 T1 T2 T3 T4 T5

P S PL P S PL P S PL P S PL P S PL P S PL

Total

SFA 31.95 ±
4.14 a

73.69 ±
0.26 b

68.65 ±
0.20 c

29.62 ±
0.100002

54.95 ±
0.33

52.93 ±
1.17

28.76 ±
0.13

50.34 ±
0.30

51.65 ±
0.12

25.43 ±
0.32

45.32 ±
0.10

46.39 ±
0.11

22.61 ±
0.13

41.45 ±
0.12

41.27 ±
0.11

20.89
± 0.12

39.32 ±
0.08

37.68
± 0.11

MUFA 18.08 ±
0.09 a

21.86 ±
0.45 b

26.87 ±
0.12 c

19.18 ±
0.33

25.35 ±
0.44

29.93 ±
0.36

19.90 ±
0.08

29.76 ±
0.10

30.87 ±
0.17

22.65 ±
0.12

33.76 ±
0.15

34.63 ±
0.14

24.32 ±
0.09

35.78 ±
0.12

38.04 ±
0.11

25.78
± 0.10

36.79 ±
0.26

40.21
± 0.11

PUFA 49.97 ±
0.12 b

4.45 ±
0.13 a

4.48 ±
0.04 a

51.20 ±
0.11

19.70 ±
0.07

17.14 ±
0.09

51.34 ±
0.12

19.90 ±
0.11

17.48 ±
0.10

51.92 ±
0.13

20.92 ±
0.11

18.98 ±
0.10

53.07 ±
0.13

22.77 ±
0.11

20.69 ±
0.08

53.33
± 0.13

23.89 ±
0.09

22.11
± 0.11

SFA/MUFA 1.77 a 3.37 b 2.55 c 1.54 2.17 1.77 1.45 1.69 1.67 1.12 1.34 1.34 0.92 1.16 1.08 0.81 1.07 0.94

1 Abbreviations: P, Primiparous; S, Secondiparous; PL, Pluriparous. T0—time point of control diet; T1,T2,T3,T4—time points of experimental diet supplementation; T5—45 days after the
last administration of the enriched feed (end lactation); MUFA, monounsaturated fatty acid; SFA, saturated fatty acid; PUFA, polyunsaturated fatty acid. Note: Data are reported as mean
± standard deviation. One-way ANOVA (Newman–Keuls test). a,b,c is the statistical significance (One-way ANOVA). T0 C14:0, C16:0, C18:0, C18:1 n9, C20:1 n9 (P vs. S, PL *** p < 0.001;
S vs. PL *** p < 0.001), C16:1 n7t, C20:2 n6, C20:3 n6, C20:4 n6, C24:0, C20:5 n3, C22:6 n3 (P vs. S, PL *** p < 0.001), C16:1 n7 (S vs. P, PL *** p < 0.001), C18:2 n6, C18:3 n6 (P vs. S, PL
*** p < 0.001; S vs. PL * p < 0.05), C18:3 n3 (P vs. S * p < 0.05; P vs. PL ** p < 0.01), C24:1 n9 (P vs. S, PL ** p < 0.01). SFA (P vs. S, PL *** p < 0.001; S vs. PL * p < 0.05). MUFA (P vs. S
*** p< 0.001; P, S vs. PL *** p < 0.001). PUFA (P vs. S, PL *** p < 0.001). SFA/MUFA (P vs. S *** p < 0.001; P, S vs. PL *** p < 0.001).
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3. Results
3.1. Serum Glucose Levels in P, S and PL Cows upon Polyphenol-Enriched Diet

Figure 1 shows the time-course analysis (T0–T5) of serum glucose levels measured
in P, S and PL cows during the two months of treatment. In all three experimental groups
(P, S, PL), the polyphenol-enriched feed determines a hypoglycemic effect, more evident
within the first month (T2), while it fades at the second month (T4). On average, the values
decrease from T0 over the treatment period until the T5 (follow-up), corresponding to the
end of lactation phase.
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3.2. Serum Levels of Triglycerides in P, S and PL Cows upon Polyphenol-Enriched Diet

As reported in Figure 2, in all three experimental groups, the enriched feed produces
a statistically significant reduction (p < 0.001) in the serum levels of triglycerides. In the
time interval T2–T4, the hypotriglyceridemic effect is, on average, more evident in the P
group. In this group, the values reduce to one third compared to the controls at T3 (T3
vs. T0), whereas, in the S and PL groups, at the same time point, the values are halved,
suggesting a treatment effect dependent on parity class. At the follow-up, 45 days after
the last administration of enriched feed, in all three experimental groups, the triglyceride
levels reach significantly higher values than those of the control time (T0).
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Figure 2. Serum triglycerides levels in the Primiparous (P), Secondiparous (S) and Pluriparous (PL)
cow groups at time T0, T1, T2, T3, T4 and T5 (follow-up). Data are reported as mean ± SD. a,b,c is the
statistical significance One-way ANOVA (Newman–Keuls test): T0 (P vs. S, PL * p < 0.05). Two-way
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*** p < 0.001). S (T0 vs. T3, T5 *** p < 0.001; T1, T2, T3, T4 vs. T5 *** p < 0.001). PL (T0 vs. T2, T3, T5
*** p < 0.001; T0 vs. T4 ** p < 0.01; T1 vs. T2, T3, T4 ** p < 0.01; T1, T2, T3, T4 vs. T5 *** p < 0.001).
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3.3. Serum Levels of fT3 and fT4 in P, S and PL Cows upon Polyphenol-Enriched Diet

As shown in Figure 3, in all three experimental groups, serum levels of fT3 and fT4
(Figure 3A,B, respectively) do not appear to be affected by the dietary regimen, remaining
at values within the euthyroid range throughout the observation period.

Animals 2023, 13, x FOR PEER REVIEW 6 of 18 
 

As shown in Figure 3, in all three experimental groups, serum levels of fT3 and fT4 
(Figure 3A,B, respectively) do not appear to be affected by the dietary regimen, remaining 
at values within the euthyroid range throughout the observation period. 

  
(a) (b) 

Figure 3. Serum levels of fT3 (a) and fT4 (b) in the Primiparous (P), Secondiparous (S) and Plurip-
arous (PL) cow groups at time T0, T1, T2, T3, T4 and T5 (follow-up). Data are reported as mean ± 
SD. In (a), a,b is the statistical significance One-way ANOVA (Newman–Keuls test): T0 (P vs. S, PL* 
p < 0.05). T5 (P vs. S ** p < 0.01; P vs. PL *** p < 0.001). In Two-way ANOVA test: P (T0 vs. T1 ** p < 
0.01; T1 vs. T2, T4 *** p < 0.001; T1 vs. T5 ** p < 0.01; T2 vs. T3 ** p < 0.01; T3 vs. T4 ** p < 0.01). S (T0, 
T1, T2 vs. T4 ** p < 0.01; T0, T1 vs. T5 *** p < 0.001; T2 vs. T5 ** p < 0.01; T3 vs. T5 * p < 0.05). PL (T0, 
T1, T2, T3 vs. T4, T5 *** p < 0.001). In (b), a,b,c is the statistical significance One-way ANOVA (New-
man–Keuls test): T3 (p vs. S *** p < 0.001; P vs. PL ** p < 0.01). T4 (P vs. S ** p < 0.01; P vs. PL *** p < 
0.001; S vs. PL * p < 0.05). T5 (S vs. P, PL ** p < 0.01). Two-way ANOVA test: P (T0 vs. T2, T3 ** p < 
0.01; T0 vs. T4 *** p < 0.001; T1 vs. T2, T3 *** p < 0.05; T1 vs. T4 ** p < 0.01). S (T0 vs. T5 * p < 0.05; T1 
vs. T4 * p < 0.05; T2 vs. T4 ** p < 0.01; T4 vs. T5 *** p < 0.001). PL (T0, T1, T2, T3, T5 vs. T4 *** p < 0.001). 

3.4. Serum Levels of 17β-Estradiol in P, S and PL Cows upon Polyphenol-Enriched Diet 
As shown in Figure 4, serum levels of 17β-Estradiol remain unchanged in cows of P 

and S groups over the entire treatment period. Interestingly, PL cows show periodic peaks 
with a statistically significant increase at monthly frequency (T2 and T4). At T5, all cows 
show increased values of serum 17β-Estradiol. 

 
Figure 4. Serum levels of 17-β-Estradiol in the Primiparous (P), Secondiparous (S) and Pluriparous 
(PL) cow groups at time T0, T1, T2, T3, T4 and T5 (follow-up). Data are reported as mean ± SD. a,b,c 
is the statistical significance One-way ANOVA (Newman–Keuls test): T0 (P vs. S, PL *** p < 0.001; S 
vs. PL * p < 0.05). T3 (P vs. S ** p < 0.01; P vs. PL *** p < 0.001; S vs. PL * p < 0.05). T5 (S vs. P *** p < 
0.001; S vs. PL ** p < 0.01). Two-way ANOVA (Tukey test): P (T0, T1, T2, T3, T4 vs. T5 *** p < 0.001; 
T1 vs. T2 * p < 0.05; T1 vs. T3 *** p < 0.001; T3 vs. T4 * p < 0.05). S (T0 vs. T2, T5 *** p < 0.001; T0 vs. T4 
** p < 0.01; T1, T3, T4 vs. T5 *** p < 0.001; T2 vs. T5 ** p < 0.01). PL (T0 vs. T2, T4, T5 *** p < 0.001; T1 
vs. T2 * p < 0.05; T1, T2, T3, T4 vs. T5 *** p < 0.001; T2 vs. T3 ** p < 0.05). 

3.5. Serum Levels of ACTH and Cortisol in P, S and PL Cows upon Polyphenol-Enriched Diet 

Figure 3. Serum levels of fT3 (a) and fT4 (b) in the Primiparous (P), Secondiparous (S) and Pluriparous
(PL) cow groups at time T0, T1, T2, T3, T4 and T5 (follow-up). Data are reported as mean ± SD.
In (a), a,b is the statistical significance One-way ANOVA (Newman–Keuls test): T0 (P vs. S, PL
* p < 0.05). T5 (P vs. S ** p < 0.01; P vs. PL *** p < 0.001). In Two-way ANOVA test: P (T0 vs. T1
** p < 0.01; T1 vs. T2, T4 *** p < 0.001; T1 vs. T5 ** p < 0.01; T2 vs. T3 ** p < 0.01; T3 vs. T4
** p < 0.01). S (T0, T1, T2 vs. T4 ** p < 0.01; T0, T1 vs. T5 *** p < 0.001; T2 vs. T5 ** p < 0.01;
T3 vs. T5 * p < 0.05). PL (T0, T1, T2, T3 vs. T4, T5 *** p < 0.001). In (b), a,b,c is the statis-
tical significance One-way ANOVA (Newman–Keuls test): T3 (p vs. S *** p < 0.001; P vs. PL
** p < 0.01). T4 (P vs. S ** p < 0.01; P vs. PL *** p < 0.001; S vs. PL * p < 0.05). T5 (S vs. P, PL
** p < 0.01). Two-way ANOVA test: P (T0 vs. T2, T3 ** p < 0.01; T0 vs. T4 *** p < 0.001; T1 vs. T2, T3
*** p < 0.05; T1 vs. T4 ** p < 0.01). S (T0 vs. T5 * p < 0.05; T1 vs. T4 * p < 0.05; T2 vs. T4 ** p < 0.01; T4
vs. T5 *** p < 0.001). PL (T0, T1, T2, T3, T5 vs. T4 *** p < 0.001).

3.4. Serum Levels of 17β-Estradiol in P, S and PL Cows upon Polyphenol-Enriched Diet

As shown in Figure 4, serum levels of 17β-Estradiol remain unchanged in cows of P
and S groups over the entire treatment period. Interestingly, PL cows show periodic peaks
with a statistically significant increase at monthly frequency (T2 and T4). At T5, all cows
show increased values of serum 17β-Estradiol.
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Figure 4. Serum levels of 17-β-Estradiol in the Primiparous (P), Secondiparous (S) and Pluriparous
(PL) cow groups at time T0, T1, T2, T3, T4 and T5 (follow-up). Data are reported as mean ± SD. a,b,c
is the statistical significance One-way ANOVA (Newman–Keuls test): T0 (P vs. S, PL *** p < 0.001;
S vs. PL * p < 0.05). T3 (P vs. S ** p < 0.01; P vs. PL *** p < 0.001; S vs. PL * p < 0.05). T5 (S vs. P
*** p < 0.001; S vs. PL ** p < 0.01). Two-way ANOVA (Tukey test): P (T0, T1, T2, T3, T4 vs. T5
*** p < 0.001; T1 vs. T2 * p < 0.05; T1 vs. T3 *** p < 0.001; T3 vs. T4 * p < 0.05). S (T0 vs. T2, T5
*** p < 0.001; T0 vs. T4 ** p < 0.01; T1, T3, T4 vs. T5 *** p < 0.001; T2 vs. T5 ** p < 0.01). PL (T0 vs. T2,
T4, T5 *** p < 0.001; T1 vs. T2 * p < 0.05; T1, T2, T3, T4 vs. T5 *** p < 0.001; T2 vs. T3 ** p < 0.05).
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3.5. Serum Levels of ACTH and Cortisol in P, S and PL Cows upon Polyphenol-Enriched Diet

As shown in Figure 5, serum levels of ACTH are significantly increased in a parity-
class-dependent manner, with the highest values in PL cows compared to S and P cows.
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In parallel, cortisol levels, although not statistically significant, show an increase
dependent on parity class during treatment, with higher values in PL cows (Figure 6).
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statistical significance One-way ANOVA (Newman–Keuls test): T0 (S vs. P, PL * p < 0.05; PL vs. P
*** p < 0.001). T1 (P vs. S ** p < 0.01; P vs. PL *** p < 0.001; PL vs. S * p < 0.05). T2 (S vs. P, PL * p < 0.05;
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3.6. Serum Levels of Prolactin and Oxytocin in P, S and PL Cows upon Polyphenol-Enriched Diet

In all experimental groups (P, S and PL), prolactin levels remain constant during the
feeding treatment (Figure 7). As far as the serum levels of oxytocin are concerned, no
variations between groups and time points are observed (Figure 8).
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statistical significance One-way ANOVA statistical analysis (Newman–Keuls test): T0 (PL vs. S, P
*** p < 0.001). T1 (P vs. S, PL ** p < 0.01). T2 (PL vs. P, S *** p < 0.001). T5 (S vs. PL * p < 0.05). Two-way
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* p < 0.05). PL (T0 vs. T1, T2, T3, T4, T5 *** p < 0.001).

3.7. Fatty Acids Profile of Milk from P, S and PL Cows upon Polyphenol-Enriched Diet

Table 1 shows the content of saturated (SFAs) and unsaturated (MUFAs and PUFAs)
fatty acids in the milk of the dairy cows during the experimental period.

Milk FA composition is strongly influenced by polyphenol supplementation
(Table 1 and Table S1 in Supplementary Materials). Total SFA, MUFA and PUFA contents
change significantly during the experimental periods: the total content of SFA decreases in
the polyphenol-supplemented diet animal in favor of the MUFA and PUFA concentrations
in all parity classes (p < 0.001), with a statistically significant increase even after the end of
the treatment (T5). Indeed, the enriched diet contributes to a lower SFA/MUFA ratio in
cow milk. As expected, at time T0, the SFA/MUFA ratio is higher in S and PL compared to
P (p < 0.001); on the contrary, at the end, and during the follow-up, the differences between
the groups are comparable.

Regarding the PUFA ratio omega-6/omega-3, before the supplemented diet admin-
istration, cows show a significantly higher content of omega-6 than omega-3 in the milk.
During the treatment, a significant increase in both fatty acids is detected already after one
month of diet administration (p < 0.001), and the ratio is conserved in the optimal range
throughout the experimental period.

3.8. Lysozyme Content and Chemical–Nutritional Analysis in Milk from P, S and PL Cows upon
Polyphenol-Enriched Diet

Figure 9 shows that, in all the experimental groups (P, S and PL), the lysozyme content
in cow milk significantly increases during the dietary treatment (p < 0.001). Lower values
are observed at T0 and T5. Compared to control time (T0), a higher lysozyme content
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(p < 0.001) persists in S and PL cows at time T5, likely indicating a long-lasting antibacterial
effect of diet polyphenols in such groups. At each time point, there are very few differences
between the parity classes. Concerning the different parity classes, significant differences
are found at time T0 (p < 0.01) and T5 (p < 0.01; p < 0.05), but not during the dietary
treatment. The chemical–nutritional composition of milk (protein, lactose and fat content)
and the somatic cell content are reported in Table 2. While no significant differences are
observed between the cows of different parity classes, an increased content of lactose and
protein is observed when comparing T0 and T5. In addition, significant differences are
observed only in the somatic cell content, which progressively lowers during the whole
treatment and remains stable after the end of treatment (T5).

Animals 2023, 13, x FOR PEER REVIEW 11 of 18 
 

3.8. Lysozyme Content and Chemical–Nutritional Analysis in Milk from P, S and PL Cows upon 
Polyphenol-Enriched Diet 

Figure 9 shows that, in all the experimental groups (P, S and PL), the lysozyme con-
tent in cow milk significantly increases during the dietary treatment (p < 0.001). Lower 
values are observed at T0 and T5. Compared to control time (T0), a higher lysozyme con-
tent (p < 0.001) persists in S and PL cows at time T5, likely indicating a long-lasting anti-
bacterial effect of diet polyphenols in such groups. At each time point, there are very few 
differences between the parity classes. Concerning the different parity classes, significant 
differences are found at time T0 (p < 0.01) and T5 (p < 0.01; p < 0.05), but not during the 
dietary treatment. The chemical–nutritional composition of milk (protein, lactose and fat 
content) and the somatic cell content are reported in Table 2. While no significant differ-
ences are observed between the cows of different parity classes, an increased content of 
lactose and protein is observed when comparing T0 and T5. In addition, significant dif-
ferences are observed only in the somatic cell content, which progressively lowers during 
the whole treatment and remains stable after the end of treatment (T5). 

 

Figure 9. Lysozyme levels in milk from Primiparous (P), Secondiparous (S) and Pluriparous (PL) 
cows at time T0, T1, T2, T3, T4 and T5 (follow-up). Data are reported as mean ± SD. a,b,c is the 
statistical significance One-way ANOVA analysis (Newman–Keuls test): T0 (S vs. P, PL ** p < 0.01); 
T5 (P vs. S ** p < 0.01; P vs. PL * p < 0.05). Two-way ANOVA analysis (Tukey Test): P (T0 vs. T1, T2, 
T3, T4 *** p < 0.001; T0 vs. T5 * p < 0.05; T1 vs. T3, T4 *** p < 0.001; T2 vs. T4 ** p < 0.01, T2 vs. T5 * p < 
0.05; T5 vs. T3, T4 *** p < 0.001); S (T0 vs. T1 * p < 0.05; T0 vs. T2, T3, T4 *** p < 0.001; T1 vs. T3 ** p < 
0.01; T1 vs. T4 *** p < 0.001 ; T2 vs. T4 * p < 0.05; T5 vs. T3, T4 *** p < 0.001); PL (T0 vs. T1, T2, T3, T4, 
T5 *** p < 0.001; T1 vs. T3, T4 *** p < 0.001; T2 vs. T4 *** p < 0.001; T2 vs. T5 * p < 0.05; T5 vs. T3, T4 *** 
p < 0.001). 

  

Figure 9. Lysozyme levels in milk from Primiparous (P), Secondiparous (S) and Pluriparous (PL)
cows at time T0, T1, T2, T3, T4 and T5 (follow-up). Data are reported as mean ± SD. a,b,c is the
statistical significance One-way ANOVA analysis (Newman–Keuls test): T0 (S vs. P, PL ** p < 0.01);
T5 (P vs. S ** p < 0.01; P vs. PL * p < 0.05). Two-way ANOVA analysis (Tukey Test): P (T0 vs. T1, T2,
T3, T4 *** p < 0.001; T0 vs. T5 * p < 0.05; T1 vs. T3, T4 *** p < 0.001; T2 vs. T4 ** p < 0.01, T2 vs. T5
* p < 0.05; T5 vs. T3, T4 *** p < 0.001); S (T0 vs. T1 * p < 0.05; T0 vs. T2, T3, T4 *** p < 0.001; T1 vs. T3
** p < 0.01; T1 vs. T4 *** p < 0.001; T2 vs. T4 * p < 0.05; T5 vs. T3, T4 *** p < 0.001); PL (T0 vs. T1, T2, T3,
T4, T5 *** p < 0.001; T1 vs. T3, T4 *** p < 0.001; T2 vs. T4 *** p < 0.001; T2 vs. T5 * p < 0.05; T5 vs. T3,
T4 *** p < 0.001).
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Table 2. Milk composition traits in Italian Holstein–Friesian cows during the polyphenol-enriched diet treatment 1.

ITEMS
T0 T1 T2 T3 T4 T5

P S PL P S PL P S PL P S PL P S PL P S PL

Lactose
%

4.57 ±
0.05 a/b

4.54 ±
0.04 a

4.65 ±
0.06 b

4.72 ±
0.05

4.68 ±
0.06

4.75 ±
0.07

4.76 ±
0.05

4.72 ±
0.05

4.76 ±
0.03

4.79 ±
0.05

4.75 ±
0.04

4.78 ±
0.05

4.80 ±
0.05

4.82 ±
0.07

4.87 ±
0.04

4.79 ±
0.05 a

4.80 ±
0.05 a

4.89 ±
0.05 b

Protein
%

3.22 ±
0.04

3.27 ±
0.03

3.30 ±
0.03

3.30 ±
0.05

3.39 ±
0.05

3.36 ±
0.04

3.45 ±
0.07

3.48 ±
0.03

3.46 ±
0.04

3.48 ±
0.11

3.53 ±
0.05

3.50 ±
0.04

3.50 ±
0.05

3.54 ±
0.04

3.56 ±
0.05

3.50 ±
0.03

3.55 ±
0.04

3.55 ±
0.11

Fat % 4.00 ±
0.05 a/b

4.04 ±
0.04 a

3.93 ±
0.05 b

3.94 ±
0.03

3.97 ±
0.05

3.90 ±
0.04

3.91 ±
0.05

3.94 ±
0.04

3.92 ±
0.03

3.89 ±
0.07

3.89 ±
0.08

3.90 ±
0.04

3.74 ±
0.06

3.75 ±
0.04

3.80 ±
0.05

3.70 ±
0.03

3.73 ±
0.04

3.75 ±
0.07

Somatic
cell

count
(SCC)

103/mL

400 ±
50

300 ±
55

350 ±
56

300 ±
50

250 ±
40

300 ±
50

285 ±
50

235 ±
40

278 ±
50

250 ±
40

200 ±
45

250 ±
50

150 ±
40

145 ±
40

186 ±
45

150 ±
50

150 ±
50

190 ±
45

1 Note: Values represent the mean ± standard deviation. Abbreviations: P, Primiparous; S, Secondiparous; PL, Pluriparous; SCC, Somatic cell count. One-way ANOVA analysis. a,b is
the statistical significance (One-way ANOVA): Lactose T0 (S vs. PL * p < 0.05); T5 (P, S vs. PL * p < 0.05). Fat T0 (S vs. PL * p < 0.05). Two-way ANOVA analysis: Lactose: P (T0 vs. T1
** p < 0.01; T0 vs. T2, T3, T4, T5 *** p < 0.001). S (T0 vs. T1 ** p < 0.01; T0 vs. T2, T3, T4, T5 *** p < 0.001; T1 vs. T4 ** p < 0.01; T1 vs. T5 * p < 0.05). PL (T0 vs. T2, T3 * p < 0.05; T0 vs. T4, T5
*** p < 0.001; T1,T2 vs. T4 * p < 0.05; T1 vs. T5 ** p < 0.01; T2, T3 vs. T5 * p < 0.05). Protein: P (T0 vs. T2, T3, T4, T5 *** p < 0.001; T1 vs. T2 ** p < 0.01; T1 vs. T3, T4, T5 *** p < 0.001). S (T0 vs.
T1 * p < 0.05; T0 vs. T2, T3, T4, T5 *** p < 0.001; T1 vs. T3, T4, T5 ** p < 0.01). PL (T0 vs. T2 ** p < 0.01; T0 vs. T2, T3, T4 *** p < 0.001; T1 vs. T3 ** p < 0.01; T1 vs. T4, T5 *** p < 0.001). Fat: P
(T0, T1, T2 vs. T4, T5 *** p < 0.001; T3 vs. T4 ** p < 0.01; T3 vs. T5 *** p < 0.001). S (T0 vs. T3 ** p < 0.01; T0, T1,T2 vs. T4, T5 *** p < 0.001; T3 vs. T4 ** p < 0.01; T3 vs. T5 *** p < 0.001).
PL (T0 vs. T4 ** p < 0.01; T0 vs. T5 *** p < 0.001; T1 vs. T5 ** p < 0.01; T2 vs. T4 * p < 0.05; T2 vs. T5 *** p < 0.001; T3 vs. T5 ** p < 0.01). SCC: P (T0 vs. T3 * p < 0.05; T0, T1 vs. T4, T5
*** p < 0.001; T2 vs. T4, T5 ** p < 0.01; T3 vs. T4, T5 * p < 0.05). S (T0 vs. T3 * p < 0.05; T0 vs. T4, T5 *** p < 0.001; T1 vs. T4, T5 * p < 0.05). PL (T0 vs. T3 * p < 0.05; T0 vs.T4, T5 *** p < 0.001;
T1 vs. T4, T5 * p < 0.05).
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4. Discussion

The addition of phenolic compounds derived from products and by-products of
the main agri-food supply chains in the diet of lactating cows represents an important
resource [38]. The large production quantities, environmental impact and nutritional
content of by-products from the olive oil industry make them an important subject for an
accurate valorization and implementation in animal nutrition [3]. In this regard, our study
aims, with a view to the circular economy, to implement co-products of the olive oil sector
in the livestock sector as an important biomolecule resource, given the high production
of waste/by-products in the Mediterranean area. Several studies show that the inclusion
of these by-products/co-products in the diets of monogastric and ruminants should be
monitored due to the high fiber and fat content in the feed ration [21,39], emphasizing that
moderate intake does not affect the growth performance of animals, but may improve the
fatty acid profile of animal products by reducing the share of saturated fatty acids and
increasing unsaturated ones [40].

Our findings show a significant effect of the enriched diet on the glucose and lipid
metabolism of the cows, and on the milk fatty acid profile, while the hormonal status (stress
hormones and hormones involved in lactation) is maintained within the physiological
range, indicating a lack of putative adverse effects of polyphenolic compounds on specific
endocrine axes.

There are several studies that also report the antioxidant effects of other types of
extracts (pomegranate peel [38] and dried pomace [41]) when added to the diet of dairy
cows, but which did not lead to significant differences in serum glucose and triglyceride
levels. In contrast, goats fed tea catechins showed an increase in metabolic parameters,
particularly glucose content [38,42,43]. Thus, we can hypothesize that the hypoglycemic
and hypotriglyceridemic effect observed in our study may be related to the animal species,
type and/or concentration of O. europaea polyphenols combined with the diet.

Thyroid hormones, whose serum levels are influenced by the lactation phase, play an
important role in determining the intensity of cell metabolism, and are known to affect the
metabolism of lipids and carbohydrates, the main constituents of the ruminants’ diet [44].
A positive correlation between the circulating levels of thyroid hormones, fT4 and fT3, on
the one hand and of glucose and lipids on the other has been reported [45]. In our study,
the serum levels of fT4 and fT3 are within the euthyroid range in all experimental groups,
suggesting a protective effect of the diet against the risk of developing hypothyroidism, a
condition leading to oxidative stress and altered blood glucose and lipid metabolism [46].

There are few studies on the effects of diet on 17β-estradiol levels, a steroid hormone
whose elevated secretion drastically reduces milk production, in dairy cows. According
to our data, the observed fluctuations of these hormones are more likely influenced by
the physiological condition of the cow (i.e., lactation, dry period, pregnancy, estrus cycle,
transition period) [47].

Still on the hormonal status, cortisol and ACTH levels in dairy cows can be used as
indices of physiological or environmental stress, with consequences on the welfare and
quality of cow production [48]. Here, we find that the enriched diet does not influence
cortisol and ACTH levels, as well as the milking procedures (i.e., prolactin and oxytocin).
However, in our study, significant differences in the levels of cortisol and ACTH are
observed when comparing the parity classes. In particular, the pluriparous cows show
higher basal levels of cortisol and ACTH associated with a general condition of chronic
stress probably due to the higher calving number [49]. The experimental dietary treatment,
independently of the parity class, also contributed to keeping serum prolactin levels stable.
Sani et al. [50] report that in rats, a diet enriched with Launaea taraxacifolia and resveratrol
leads to an increased serum concentration of prolactin and oxytocin due to the increased
secretory activity of the mammary glandular alveoli, resulting in increased milk secretion.

In ruminants, milk fatty acids are primarily derived from the diet, the de novo synthe-
sis in the mammary gland and the production by ruminal bacteria [51]. Palladino et al. [52]
report that the diet is among the main factors influencing the fatty acid content of cow milk,
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particularly PUFAs. Ruminant milk is predominantly rich in SFAs (on average 60–70% of
total fatty acids) than in unsaturated ones (MUFAs and PUFAs), and the ratio between
SFAs, MUFAs and PUFAs has been reported to be primarily influenced by the lactation
phase and the diet composition [53,54]. In general terms, ruminant milk fat is poor in
PUFAs such as linoleic acid (C18:2,ω-6) and α-linolenic acid (C18:3,ω-3). The main goal
of our research was to verify whether the experimental polyphenol-enriched diet could
significantly modify the acid profile of the milk produced by the cows under treatment.
Independently of the parity class, the administration of the functional feed determines
a significant reduction in the SFA content in favor of those of MUFA and PUFA in milk.
This effect is also evident in P animals whose milk, at T0, was characterized by a high
concentration of PUFA (49.9%). It should be noted that our study confirms that cow milk is
the richest source of oleic acid (24%) (MUFA) compared to the milk of other animal species
(goats, sheep), composed of 18% of total fatty acids on average, corroborating the high
functional value of cow milk [55].

We hypothesize that the fatty acid diet composition and its enrichment with bioactive
molecules influence the content of fatty acids in milk. Cimmino et al. [17] showed that in
goats, the supplementation with 3.2 mg/day of powdered polyphenols extract derived
from olive mill wastewater resulted in a significant reduction in short-chain fatty acids with
a higher proportion of monounsaturated fatty acids in the derived meat. This suggests the
possible influence of polyphenols on the enzyme desaturase ∆-9, the key enzyme required
to convert palmitic to palmitoleic acid and stearic to oleic acid. Such a mechanism could
also be involved in the increase in PUFA observed in the milk produced by the cows
analyzed in our study.

Moreover, several other studies show a significant reduction in the SFA/MUFA ratio
following the addition of phenolic compounds to the diet also in other livestock (buffaloes,
goats, sheep). In this regard, Terramoccia et al. [56], Vargas-Bello-Pérez et al. [57] and
Chiofalo et al. [58] point out that the addition of 15–25% of olive cake to the diet results
in an increase in C18:1n-9 (MUFA) in ruminant milk (buffalo and ewe). Malla et al. [59]
report in other animal species (goat, sheep, camel) a higher SFA/MUFA ratio (2.42% in
goat, 2.70% in sheep, 2.24% in camel).

We underline the good “functionality” of our dietary treatment considering that
the milk of the experimental cows was also enriched in lysozyme content. Lysozyme is
an enzymatic protein functioning in synergism with immunoglobulins and lactoferrin,
showing antibacterial activity against a wide variety of bacteria [26]. Krol et al. [26] found
high levels of lysozyme and immunoglobulins in bovine milk as lactation progressed. In
our study, higher values of milk lysozyme content are detected (>20 µg/L) compared
to those reported in the literature. Specifically, Krol et al. [26] show that the lysozyme
content, in the mid-lactation phase, is 9.18 µg/L and is lower in primiparous and higher in
pluriparous cows, while Reklewska et al. [60] show a lysozyme content of 12.54–16.43 µg/L
mainly influenced by the diet and season (higher in summer). It is well known that the
content of this protein is very low in bovine milk [27,28].

To our knowledge, this is a pilot study. Although this study provides promising new
perspectives on the use of the functional feed on dairy cow welfare and milk composition,
the main concern may be about the sample size. The limited sample number is due to the
low availability of PhenoFeed Dry® in the dose we tested to be effective. Therefore, even
though more samples were initially enrolled, some animals unfortunately experienced an
early dry phase.

5. Conclusions

In conclusion, this study shows that the polyphenol-enriched diet of Olea europaea
L., in Holstein–Friesian cows in the mid-lactation phase, influences glucose and lipid
metabolism and the fatty acid composition of milk while ensuring hormonal physiology
and balance and, thus, a general state of wellbeing in the experimental cows. The enriched
diet with olive extract PhenoFeed Dry® appears effective in (i) promoting the reduction in
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SFAs, (ii) increasing MUFAs and PUFAs and (iii) ensuring an adequate protein content in
the milk, in particular, lysozyme, with known antibacterial properties.

Our results show that O. europaea L. polyphenols contribute to improving the quality
of cow milk and represent an important resource, also in view of the circular economy,
to produce feeds with a high functional value for dairy cows. Finally, in the context of
the existing literature on the use of O. europaea extracts as a supplement for cattle diets,
the advancement provided by our study consists of having tested a standardized, highly
reproducible, functional extract (PhenoFeed Dry®), which, compared to other enrichment
methods, may represent an exemplary zootechnical approach.

Future Implications

This study reinforces the hypothesis that supplementing the diet of animals in livestock
production with bioactive molecules from O. europaea may be an interesting strategy from a
feedstuff standpoint to replace and/or reduce part of the OGM raw material and synthetic
supplements. The use of natural antioxidant molecules in the olive oil supply chain
contributes to ensuring welfare conditions in animals under production stress, and to
improving the nutritional and functional quality of food of animal origin.

The recent diffusion of functional feeds and recent insights on the physiological effects
in livestock and production quality have stimulated the interest of the scientific community
in broadening knowledge about the effects of animal-derived products in humans, an
advantage that helps with the beneficial use of using sustainable/disposable products in
the perspective of the circular economy.

The results of this study give further insights into the discussion, started by many
researchers, aiming to improve the fatty acid composition of cow milk according to the
diet, production process, breed and lactation phase of the cows. However, further studies
are needed to further characterize the effects and efficacy of the diet supplemented with
O. europaea polyphenols on the rheological properties and lipid composition of milk and
milk products. In this regard, administration of this diet to lactating cows in a whole herd
and/or to cows in different physiological phases, such as the dry phase and the transition
phase, may help to better characterize the beneficial effect on reproductive performance.
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