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Simple Summary: We propose a new model, YOLOv5-SA-FC, for efficient pig population detection
and counting in intelligent breeding. Traditional manual methods are slow and inaccurate. Our model
incorporates shuffle attention (SA) and Focal-CIoU (FC) for an improved performance. SA enhances
feature extraction without adding parameters, and FC reduces the sample imbalance impact. Our
experiments show that YOLOv5-SA-FC achieves a 93.8% mean average precision (mAP) and 95.6%
count accuracy, outperforming other methods by 10.2% and 15.8% in pig detection and counting.
This validates its effectiveness in intelligent pig breeding.

Abstract: The efficient detection and counting of pig populations is critical for the promotion of
intelligent breeding. Traditional methods for pig detection and counting mainly rely on manual
labor, which is either time-consuming and inefficient or lacks sufficient detection accuracy. To
address these issues, a novel model for pig detection and counting based on YOLOv5 enhanced with
shuffle attention (SA) and Focal-CIoU (FC) is proposed in this paper, which we call YOLOv5-SA-FC.
The SA attention module in this model enables multi-channel information fusion with almost no
additional parameters, enhancing the richness and robustness of feature extraction. Furthermore,
the Focal-CIoU localization loss helps to reduce the impact of sample imbalance on the detection
results, improving the overall performance of the model. From the experimental results, the proposed
YOLOv5-SA-FC model achieved a mean average precision (mAP) and count accuracy of 93.8% and
95.6%, outperforming other methods in terms of pig detection and counting by 10.2% and 15.8%,
respectively. These findings verify the effectiveness of the proposed YOLOv5-SA-FC model for pig
population detection and counting in the context of intelligent pig breeding.

Keywords: pig; detection; counting; shuffle attention; focal loss

1. Introduction

With the advancement of agricultural informatization, the pig farming industry is
undergoing a rapid transformation towards intensification, scale, and intelligence. The
dynamic nature of pig farming necessitates accurate and efficient pig detection and count-
ing methods.

However, the efficient and accurate detection and counting of pigs still pose significant
challenges to the present day. There are several reasons for this. First, as the farming
industry continues to expand, the number of pigs in pens has been increasing. Second,
pigs can become dirty due to their various behaviors, and their tendency to cluster and
nest can result in a large amount of occlusion, indistinct body features, and difficulty in
distinguishing them from the environment [1]. Additionally, changes in pig numbers occur
due to factors such as deaths, sales, new pigs entering the herd, pen splitting or merging,
and pigs growing into the next stage [2]. Therefore, there is an urgent requirement for a pig
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counting method that can maintain a certain level of accuracy and efficiency in high-density
dynamic farming environments, in order to truly achieve intensification and intelligence of
the industry.

At present, pig counting in the industry relies heavily on manual inspections, which
are known to be time-consuming, labor-intensive, and inefficient [3]. Moreover, factors such
as pigs moving back and forth can significantly reduce the accuracy of manual counting.
Additionally, increased contact between caretakers and pigs during manual counting
increases the risk of transmission of zoonotic diseases.

While electronic ear tags have been utilized for counting [4,5], they come with their
own set of challenges. Pigs coming into contact with each other can lead to false reports,
and there is a risk of ear tags falling off or getting damaged in environments where pigs
scratch or in muddy conditions.

In the field of computer vision, Tian et al. [6] have proposed an innovative method for
pig counting on farms using deep learning techniques. Their approach combines a counting
CNN and the ResNeXt model, achieving a high level of accuracy while maintaining a low
computational cost. The results demonstrated a mean absolute error of 1.67 when applied
to real-world data. Jensen et al. [7] developed a novel approach for the automatic counting
and positioning of slaughter pigs within a pen, utilizing a convolutional neural network
(CNN) with a single linear regression output node. This model receives three partial
images corresponding to different areas of the pen and estimates the number of pigs in
each area. Furthermore, they obtained promising results, with a mean absolute error of less
than one pig and a coefficient of determination between estimated and observed counts
exceeding 0.9.

To enhance the automated piglet counting performance and address the challenge of
partial occlusion, Huang et al. [8] have proposed a two-stage center clustering network
(CClusnet). In the initial stage, CClusnet predicts a semantic segmentation map and a
center offset vector map for each image. In the subsequent stage, these maps are combined
to generate scattered center points, and the piglet count is obtained using the mean-shift
algorithm. This method achieved a mean absolute error of 0.43 per image for piglet counting.
A bottom–up pig counting algorithm detected and associated three kinds of keypoints to
count pigs [9]; however, the use of this method can be challenging due to the possibility
of occlusion and keypoints being invisible. The use of farrowing stalls exacerbates the
difficulty of counting, as occlusion can cause a piglet to appear to be fragmented into
multiple smaller parts within the scene, making it even more challenging to accurately
count piglets.

Building upon traditional computer vision technology, Kashila et al. [10] have utilized
elliptical displacement calculation methods to achieve an impressive accuracy of 89.8% in
detecting pig movement. In another study by Kashila et al. [11], they employed an ellipse
fitting technique to obtain a high accuracy of 88.7% in detecting and identifying individual
pigs. Nasirahmadi et al. [12,13] have also utilized ellipse fitting and the Otus algorithm to
successfully detect individual pigs and accurately determine their lying positions.

Tu et al. [14] have proposed an innovative pig detection approach for grayscale video
utilizing foreground object segmentation. Their method involves three stages. First, tex-
ture information is integrated to construct the background model. Next, pseudo-wavelet
coefficients are computed, which are utilized in the final stage to estimate a probability
map using a factor graph and a loopy belief propagation (BP) algorithm. However, it is
important to note that this method suffers from high computational complexity due to
the use of the BP algorithm and factor graphs. In a different study [15], a background
subtraction method based on a Gaussian Mixture Model (GMM) [16] was utilized to detect
moving pigs in scenarios with no windows and continuous lighting for 24 h. It is worth
mentioning that the GMM background subtraction method can be computationally inten-
sive and time-consuming. To address the limitations of the GMM approach, Li et al. [17]
have developed an enhanced pig detection algorithm based on an adaptive GMM. In
this method, the Gaussian distribution is scanned periodically—typically once every m
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frames—in order to adapt the model. Redundant Gaussian distributions are detected and
eliminated to enhance the convergence speed of the model. However, it is important to note
that this method may face challenges in detecting pigs when sudden lighting changes occur.
Traditional computer vision technology has the potential to improve animal welfare and
achieve high recognition accuracy; however, it may not be suitable for industrial production
requirements due to its slow detection speed. Additionally, the performance of the model
may notably drop when the pigs are occluded or when there is significant variation in the
size of the target pigs in the image.

To further enhance accuracy, numerous researchers have leveraged deep neural net-
works for pig detection and counting. Marsot et al. [18] have employed a two-step approach
for pig recognition. They first utilized two Haar feature-based cascade classifiers and a
shallow convolutional neural network to automatically detect pig faces and eyes. Sub-
sequently, a deep convolutional neural network was employed for recognition. Their
approach achieved an accuracy of 83% on a test set consisting of 320 images containing
10 pigs.

Martin et al. [19] have employed the Faster R-CNN [20] object detection pipeline and
the Neural Architecture Search (NAS) backbone network for feature extraction, achieving
a mean average precision (mAP) of 80.2%. In another study conducted by the same
authors [21], Faster R-CNN was utilized to detect the positions and poses of pigs in all-
weather videos captured from 10 pigsties. The detection performance yielded an mAP of
84% during the day and 58% during the night. Zhang et al. [22] employed three CNN-based
models—namely, the Faster-RCNN [20], R-FCN [23], and SSD models [24]—for individual
pig detection. Similarly, van der Zande et al. [25] have utilized the YOLOv3 model for the
same purpose. In another study, conducted by Guo et al. [26], the YOLOv5s model was
employed to achieve automated and continuous individual pig detection and tracking.

Although deep learning methods have achieved promising results in terms of pig
detection, the use of attention mechanisms for feature extraction has not yet been fully
explored. Additionally, the used loss functions may not effectively constrain the detection
process to ensure precise results. To address these challenges and improve the pig detection
and counting performance, we focused on exploring breakthroughs in the following areas.

Shuffle attention [27] is an attention mechanism that integrates group convolutions,
spatial attention mechanisms, channel attention mechanisms, and the concepts of Shuf-
fleNet. By introducing channel shuffle operations and block-wise parallel usage of spatial
and channel attention mechanisms, shuffle attention achieves an efficient and tight inte-
gration of the two attention mechanisms while also possessing the characteristics of a low
computational cost and plug-and-play capability. This means that shuffle attention can be
quickly and seamlessly integrated into any CNN architecture for training while ignoring
computational cost overheads.

Focal-CIoU is an advanced variant of CIoU, which aims to resolve the issue that
CIoU may fail to accurately reflect the true differences in an object’s width, height, and
confidence level. By introducing a focal term into the CIoU loss function, Focal-CIoU
effectively improves upon the performance of CIoU and achieves more accurate results in
object detection.

Leveraging the advantages of the various methods mentioned above, we propose
a network model that integrates the shuffle attention mechanism and Focal-CIoU into
YOLOv5, with the aim of achieving effective detection and counting of densely raised pigs.
Specifically, in contrast to density map-based counting methods, YOLOv5-based counting
directly detects the size and location of each target, allowing for accurate counting of pigs
based on the identified targets. By utilizing YOLOv5-based counting, it becomes possible
to directly annotate and visualize the pigs in the original image. This approach enhances
our understanding of their behavior and simplifies the detection of movement patterns.
To verify the effectiveness of the proposed model, several comparative experiments were
designed to compare the performance differences between different models and YOLOv5-
SA-FC. The main innovations of this paper can be summarized as follows:
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• We first establish a novel data set for pig detection and counting, which comprises
8070 images. The original videos were captured from six cameras installed on a farm
over a period of two months. There are more than 200 pigs on the farm, with ages
ranging from around 140 to 150 days. The aforementioned factors provide a more
diverse data set, including variations in illumination, ages, angles, and other aspects.

• We propose a novel pig detection and counting method called YOLOv5-SA-FC, which
is based on the shuffle attention module and the Focal-CIoU loss function. The channel
attention and spatial attention units in the shuffle attention module enable YOLOv5-
SA-FC to focus on regions in the image that are crucial for detection, leading to the
extraction of more rich, robust, and discriminative features. Meanwhile, the Focal-
CIoU loss function ensures that the proposed YOLOv5-SA-FC model emphasizes
prediction boxes having higher overlap with the target box, leading to an increased
contribution of positive samples and improved model performance. Our model
achieves the best performance for pig detection and counting tasks, with a 2.3%
improvement over existing models.

• We conducted several comparative and ablation experiments to validate the per-
formance of our proposed model, including a comparison with different models,
evaluations of the effectiveness of the shuffle attention module and the Focal-CIoU
loss function, and an overall assessment of the superiority of YOLOv5-SA-FC.

The remainder of this paper is organized as follows. In Section 2, we provide a detailed
description of the materials and methods used in this study. In Section 3, we present the
results and discussions based on the conducted experiments. Section 4 discusses the
implications of the results obtained in our study. Finally, we conclude our findings and
summarize the contributions of this paper in Section 5.

2. Materials and Methods
2.1. Data Set

The data utilized in this experiment were gathered from Nonglueyuan Farm, located
in Xiangfen County, Linfen City, Shanxi Province, China. The farm has an enclosed
environment formed by railings that create an enclosed circular house, the ground of which
is made of concrete, and some portions are constructed in a striped pattern. A fixed camera
from the Hikvision DS-2DE3Q120MY was used to capture images of the pigs. The camera
was installed at a height of approximately 170 cm above the ground and was pointed
towards the inside of the pigsty. The data collection phase lasted for two months, from
August to October 2022. Please note that videos with poor picture quality due to factors
such as lighting conditions were excluded. Overall, a total of approximately 2 Terabytes of
video data were obtained.

To obtain an effective model for pig detection and counting, we processed the collected
pig videos as follows. First, we selected videos with clear images and captured one image
every 20 s, saving them in JPG format. Second, in order to ensure the validity of the
collected images and facilitate model training and validation, we manually screened all
of the captured images and removed blurry and highly repetitive images. Third, we used
the Make Sense.ai annotation tool for online annotation and saved the annotated data as
TXT files. Some sample images are shown in Figure 1. After processing, we obtained a
data set containing 8070 images, with an average of about 15 target pigs per image. Some
sample images are shown in Figure 2. Figure 2a indicates an image taken with the camera
positioned above the farm at a 45° angle, while Figure 2b shows another with the camera
positioned diagonally at a 45° angle. To evaluate the performance of the proposed model,
the data set was divided as follows: 6955 samples were used for training and 1115 samples
were used for testing. Additionally, to increase the diversity of the data and allow the
model to capture richer features, we employed various data augmentation techniques,
including mosaic, random horizontal flipping, scaling, HSV color space transformation,
and translation. Some sample images are shown in Figure 3.
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HSV (Hue, Saturation, Value) [28] is a color space widely used in image processing and
data augmentation, particularly in computer vision and deep learning tasks, such as image
classification, object detection, and semantic segmentation. It plays a significant role in these
fields. HSV techniques have various applications in data augmentation. Firstly, through
color jittering, the values of the HSV channels can be randomly adjusted, creating new
images slightly different from the original, thereby increasing the diversity of the data. This
method effectively enriches the training data and helps improve the model’s robustness.
Secondly, brightness and contrast enhancement is another way to apply HSV techniques.
By adjusting the values of the brightness and saturation channels, the brightness and color
saturation of the image can be increased or decreased, generating images with different
lighting conditions. This method helps the model adapt to different environments. Finally,
HSV transformations can also be part of data augmentation strategies. During the data
augmentation process, HSV random transformations, such as random translation, rotation,
and scaling, can be applied to generate more training samples. This is particularly helpful
for training robust models. In summary, HSV techniques provide powerful tools for data
augmentation, increasing data diversity, and improving model performances.

Figure 1. Some examples of annotated images.

(a) 45° shot

(b) Diagonal 45° shot

Figure 2. The collected data samples for pig detection and counting.

(a) Mosaic
(b) HSV color-space 

transformation

(c) Random 

horizontal flip

(d) Scale (e) Translate

Figure 3. Some examples of data augmentation.
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2.2. Technical Route

The proposed YOLOv5-SA-FC model follows the technical framework illustrated in
Figure 4. First, the collected data are pre-processed by removing blurry images and resizing
the input images to 320 × 320 px. Second, different data augmentation techniques, such as
translation, scaling, mosaic, and flipping, are employed to expand the data set and increase
its diversity, resulting in an improved model performance. Finally, after the pre-processing
stage, the images are fed into the YOLOv5-SA-FC model for training and the detection and
counting of pigs, resulting in accurate and reliable results.

Pig data set 

collection

Data 

preprocessing

YOLOv5-SA-FCModel training

Data 

augmentation

 Pig detection 

and counting
Result

Figure 4. The technical route of YOLOv5-SA-FC for pig detection and counting.

2.3. YOLOv5-SA-FC
2.3.1. YOLOv5

YOLOv5 [29] is a popular object detection algorithm that has been widely used for
various tasks. Based on the network depth, YOLOv5 is available in different versions,
such as YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. It is important to note that we
chose the lightweight YOLOv5s as the baseline model for experimental validation in this
paper. Specifically, YOLOv5 divides the input image into multiple grid cells, with three
anchor boxes predicted for each grid cell. Each anchor box contains parameters for the
height, width, anchor point coordinates, and confidence. The confidence score represents
the probability of an object being present in the grid cell, which is calculated as follows:

Con f idence = pr(obj)× IOU, (1)

where pr(obj) ∈ [0, 1] represents the probability of an object’s presence in the grid cell.
IoU represents the Intersection over Union between the predicted bounding box and the
ground-truth anchor box. The confidence score reflects the probability of the presence of an
object in the grid cell and the accuracy of object detection in the prediction box when there
is an object in the grid cell. Finally, non-maximal suppression (NMS) is applied to remove
redundant anchor boxes, and the position and size of the corresponding anchor boxes are
adjusted to generate the final model predictions.

2.3.2. Shuffle Attention

The shuffle attention [27] structure is depicted in detail in Figure 5. The input feature
map is first divided into groups, and for each group a shuffle unit is employed to combine
the channel attention and spatial attention into a single block. Subsequently, all sub-features
are aggregated, and an operator called “channel shuffle” is applied to facilitate information
exchanges among different sub-features.

• The grouping of features:
In the SA module, given a feature map F with dimensions RC×H×W , where C rep-
resents the number of channels and H and W denote the spatial height and width,
respectively, the feature map is divided into G sub-features: F = [F1; F2; . . . ; FG], where
each sub-feature Fk ∈ R(C/G)×H×W captures a specific semantic response during the
training process. Next, an attention module is applied to generate importance coeffi-
cients for each sub-feature. At the beginning of each attention unit, the input Fk is split
into two branches along the channels Fk1 and Fk2, both with dimensions R(C/2G)×H×W ,
as shown in Figure 5.
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Input 

tensor
SA unit

SA unit

SA unit

SA unit

SA unit

Global 

avg pool

Channel-wise 

statistics
Sigmoid

Element-

wise 

product

SA unit

Group 

norm

Spatial-wise 

statistics
Sigmoid

Element-

wise 

product

SA unit

Concat SA unit

SA unit

SA unit

SA unit

Scale Shift

. . .
. . .

. . .
. . .

Split Aggregate
Channel

ShuffleGroup

Figure 5. The structure of the shuffle attention module.

• The channel attention branch:
The channel attention branch focuses on the informative parts in terms of what they
represent, rather than their specific location. Specifically, in the channel attention
branch, global information is embedded by applying global average pooling (GAP) to
Fk1.

c = Fgp =
1

H ×W

H

∑
i=1

W

∑
j=1

Fk1(i, j). (2)

Moreover, a compact feature is generated to offer guidance for adaptive and precise
selection. This is achieved using a straightforward gating mechanism that utilizes
sigmoid activation. Through the application of this gating mechanism, the final output
of the channel attention can be obtained, facilitating effective and accurate selection.
This process can be formulated as follows:

F′k1 = σ(Fc(s)) · Fk1 = σ(W1c + b1) · Fk1, (3)

where the parameters W1 ∈ R(C/2G)×1×1 and b1 ∈ R(C/2G)×1×1 are employed to shift
and scale the channel-wise statistics c, respectively. These parameters allow for the
adjustment of the values of s, enabling fine-tuning and controlling the influence of the
channel attention on the final output.

• The spatial attention branch:

Unlike channel attention, spatial attention emphasizes the informative parts in terms
of where they are located, thus complementing the channel attention. The process
begins by applying the Group Norm (GN) [30] to Fk2, resulting in spatial statistics.
Then, Fc(·) is utilized to enhance the representation of Fk2. The final output of the
spatial attention is obtained by performing the following operation:

F′k2 = σ(W2 · GN(Fk2) + b2) · Fk2. (4)

The two branches—that is, channel attention and spatial attention—are concatenated
to ensure that the number of channels matches the number of inputs (i.e., F′k =

[F′k1, F′k2] ∈ R(C/G)×H×W).

• Aggregation:

Following the aggregation of all sub-features, a channel shuffle operator is employed to
facilitate the flow of information across different groups along the channel dimension.
This operator, similar to the one used in ShuffleNet v2 [27], allows for effective commu-
nication and the exchange of information between different sub-features, enhancing
the overall performance of the model.
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2.3.3. The Proposed Novel YOLOv5-SA-FC Model

The proposed YOLOv5-SA-FC model is constructed by integrating the shuffle attention
mechanism and Focal-CIoU (FC) loss into the YOLOv5 backbone network. This design
improves the robustness of the model and enables the network to learn richer features.
Figure 6 presents the architecture of the novel YOLOv5-SA-FC model.

• Backbone

The main purpose of the backbone network is to extract features and progressively
down-sample the feature maps.

1. Conv: The Conv module consists of a Conv2d layer, a BatchNorm2d layer, and
the Sigmoid Linear Unit (SiLU) activation function. The Conv2d layer performs
the convolutional operation, which applies a set of learnable filters to the input
feature map, extracting local patterns and features. The BatchNorm2d layer
normalizes the output of the Conv2d layer, ensuring stable and consistent feature
representations during training. The SiLU activation function is applied element-
wise to the output of the BatchNorm2d layer.
It is defined as follows:

SiLU(x) = x ∗ sigmoid(x). (5)

These components of the Conv module work synergistically to extract and pro-
cess features in the YOLOv5-SA-FC model.

2. C3: The C3 module is also known as the Cross-Stage Partial Network (CSPNet)
module with 3 convolutions. After the feature map enters the C3 module, it
is split into two paths: the left path includes a Conv module and a Bottleneck
module, while the right path only passes through a Conv module. Finally,
the outputs of both paths are concatenated and passed through another Conv
module. In the C3 module, all three Conv modules consist of 1 × 1 convolutions
and serve the purpose of dimensionality reduction or expansion.

3. Shuffle attention: The shuffle attention module operates by grouping the channel
dimensions of the input feature map into multiple sub-features. For each sub-
feature, a shuffle unit integrating two complementary attention mechanisms—
channel attention and spatial attention—is employed.

4. SPPF: The SPPF module is used for spatial pyramid pooling and feature fusion. It
divides the input feature map into grids of different sizes and performs pooling
operations to capture multi-scale information. This allows the model to gain a
better understanding of objects at different scales.

• Neck

The neck part combines the Feature Pyramid Network (FPN) [31] structure and the
Path Aggregation Network (PAN) [32] structure. From Figure 6, it can be observed
that the left branch of the neck module performs up-sampling by interpolating the
feature maps, increasing their scale to facilitate the fusion of features obtained from the
backbone. In contrast, the right branch of the neck module continues down-sampling.
This serves two purposes: to obtain feature maps at different scales and to achieve
better fusion between shallow visual features and deep semantic features, going
beyond simple concatenation.

• Head

The head layer serves as the detection module, which has a relatively simple network
structure consisting of three 1 × 1 convolutions corresponding to the three detection
feature layers.
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Figure 6. The pipeline of the proposed YOLOv5-SA-FC.
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2.3.4. The Loss Function

Designing an appropriate loss function is essential for optimizing a pig detection
model. The considered loss function consists of three terms: locality loss (Lloc), category
loss (Lcls), and confidence loss (Lcon f ). In the following, we will provide a detailed
description of them. The loss function of YOLOv5-SA-FC is defined as follows.

Loss = Lloc +Lcls +Lcon f . (6)

• The locality Lloc loss—Focal-CIoU loss (FC loss):

In practical object detection scenarios, there is often a severe class imbalance between
positive samples (i.e., bounding boxes containing objects) and negative samples (i.e.,
bounding boxes not containing objects). The default locality loss (i.e., CIoU loss) treats
all samples equally, which fails to effectively address this issue. Consequently, the
model will tend to overly focus on prediction boxes having less overlap with the
ground truth, resulting in a degradation of the model performance. This is primarily
due to the dominance of negative samples in the weight contribution during the
optimization process, whereas accurate prediction of positive samples is desired. To
tackle this problem, a novel locality loss based on the CIoU loss function, called Focal-
CIoU, is introduced. By resetting the weights in L_CIoU based on the IoU values,
Focal-CIoU increases the contribution of positive samples in L_CIoU:

Lloc = LFocal−CIoU = IoUγ ·LCIoU , (7)

where IoU denotes the Intersection over Union, LCIoU indicates the CIoU loss [33],
and the parameter γ (as mentioned in [33]) controls the curvature of the curve and
determines the degree of outlier suppression. The default value for γ is 0.5. Among
these, IoU and LCIoU are defined as follows:

IoU =
|A ∩ B|
|A ∪ B| , (8)

IoU measures the overlap between the predicted bounding box (denoted by A) and
the ground-truth bounding box (denoted by B), quantifying the extent to which the
predicted region aligns with the ground-truth region.

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv, (9)

where b and bgt denote the center points of the predicted and ground-truth bounding
boxes, respectively; ρ represents the Euclidean distance between the two center points;
c represents the diagonal length of the minimum enclosing rectangle that contains
both the predicted and ground-truth bounding boxes; v is employed to quantify the
consistency of aspect ratios [34]; and α is a weight function. The definitions of v and α
are as follows:

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
), (10)

α =
v

1− IoU
+ v, (11)

where wgt and hgt represent the width and height of the ground-truth bounding
box, while w and h represent the width and height of the predicted bounding box,
respectively.
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• The category loss Lcls:

The category loss is calculated based on the cross-entropy loss function and can be
obtained as follows:

Lcls = −
s2

∑
i=0

B

∑
j=0

Iobj
i,j ∑

c∈cls
[Pj

i(c)log(Pj
i (c)) + (1− Pj

i(c))log(1− Pj
i (c))], (12)

where s2 indicates an s× s grid; B represents the number of bounding boxes predicted
in each grid; Iobj

i,j is an indicator that is equal to 1 when a target is present in the jth

box and 0 otherwise; and Pj
i(c) and Pj

i (c) represent the predicted and ground-truth
probabilities, respectively, of an object in the jth box of the ith grid belonging to the
cth class.

• The confidence loss Lcon f :

The confidence loss is obtained through the following equations:

Lcon f = −
s2

∑
i=0

B

∑
j=0

Iobj
i,j [V

j
i log(V j

i ) + (1−V j
i)log(1−V j

i )]

−λnoobj

s2

∑
i=0

B

∑
j=0

Inoobj
i,j [V j

i log(V j
i ) + (1−V j

i)log(1−V j
i )],

(13)

where s2, B, and Iobj
i,j have similar meanings as in Equation (12); Inoobj

i,j is an indicator

that is equal to 0 when a target is present in the jth box and 1 otherwise; V and V
denote the confidence values for the predicted and annotated boxes, respectively; and
λnoobj is a hyperparameter that is utilized to balance the importance of the two terms.

2.3.5. Evaluation Metric

In order to effectively evaluate the performance of the proposed model, we uti-
lize several evaluation metrics in this paper, including precision (Equation (14)), recall
(Equation (15)), F1 score (Equation (16)), average precision (Equation (17)), and mean
average precision (mAP; Equation (18)). These metrics are defined as follows:

P = TP/(TP + FP), (14)

R = TP/(TP + FN), (15)

In Equations (14) and (15), TP represents true positive, which indicates that there is
a pig in the image and the algorithm correctly predicts its presence; FP stands for false
positive, indicating that there is no pig in the image, but the algorithm incorrectly detects
one; and FN represents false negative, indicating that the algorithm fails to detect a pig
that is actually present in the image. To determine whether an object is considered a true
positive, the algorithm calculates the Intersection over Union (IoU) between the predicted
bounding box and the ground-truth bounding box. If the IoU is greater than a specified
threshold (e.g., IoU > 0.5), the object is considered a true positive. Objects with an IoU below
the threshold are considered false positives, while those that are not correctly identified are
considered false negatives.

Precision (P), calculated using Equation (14), measures the proportion of correctly pre-
dicted positive instances out of all instances predicted as positive. It provides an indication
of the model’s accuracy in identifying true positives. Recall (R), which is calculated using
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Equation (15), measures the proportion of correctly predicted positive instances out of all ac-
tual positive instances, thus indicating the model’s ability to capture all positive instances.

F1_score =
2PR

P + R
, (16)

The F1_score, determined using Equation (16), is the harmonic mean of precision
and recall, providing a balanced measure of the model’s performance by considering both
precision and recall, where P and R are from Equations (14) and (15).

AP =
∫ 1

0
P(R)dR, (17)

Average precision (AP), computed using Equation (17), is the average of precision
values at different recall levels, which provides a comprehensive measure of the model’s
performance across various recall thresholds, where

∫ 1
0 indicates the integration over

data points on the precision–recall curve within the range from 0 and 1. P(R) represents
precision at each recall point (r). In other words, P(R) is the precision of the model at a
specific recall level.

mAP =
∑n

1 (AP)
n

, (18)

Finally, the mean average precision (mAP), calculated using Equation (18), is the
average of average precision values across different classes or categories, which provides
an overall assessment of the model’s performance in object detection tasks, where n signifies
the total number of categories. This fraction is used to normalize the AP values for each
category, ensuring that different categories contribute equally to the mAP. These evaluation
metrics collectively assess the effectiveness and accuracy of the proposed model in detecting
and counting objects.

2.3.6. Experimental Setup

This study was carried out using a Linux Ubuntu 18.04 operating system with the
PyTorch deep learning framework and Python programming language. The hardware used
for the experiments included an Intel Core I7 7800 X CPU, NVIDIA GeForce GTX TITANXP
GPU, and 128 GB memory. For model training, the iteration count was set to 100, the batch
size was set to 16, the initial learning rate was set to 0.01, and the learning rate momentum
was set to 0.937. Further details on the hardware and software configuration used in the
experiments are provided in Table 1.

Table 1. Configuration of hardware and software environment for experiments.

Term Configurations

Operating System Ubuntu 18.04
GPU NVIDIA GeForce GTX TITANXP
CPU Intel Core I7 7800 X

Memory 128GB
Hard disk 4TB SSD*3

Python 3.6.9
Pytorch 1.2.0
CUDA 11.2

CUDNN 10.0.130

The training process for the YOLOv5-SA-FC model is detailed in Algorithm 1.
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Algorithm 1: YOLOv5-SA-FC model training
Input: Pig image, ground truth box
Output: Predicted box

1 Initialization(learning rate, epochs);
2 for i in epoch do
3 for train_image, ground truth box in train_dataloader do
4 output = YOLOv5-SA-FC(train_image)
5 loss = Loss(output, ground truth)
6 Optimizer.zero_grad()
7 loss.backward()
8 Optimizer.step()
9 end

10 for test_image, target in test_dataloader do
11 output = YOLOv5-SA-FC(test_image)
12 loss = Loss(output, ground truth)
13 end
14 Lr_scheduler() (Adjust the learning rate)
15 Save() (Save the weights of the model)
16 end

3. Experimental Results and Analyses

In this section, we detail our experimental results and provide relevant discussions.
The experiments are divided into several parts, including a comparison of different models,
evaluations of the effectiveness of the shuffle attention module and the Focal-CIoU loss
module, and an overall evaluation of the superiority of the YOLOv5-SA-FC model.

3.1. Comparison of Different Models

To verify the effectiveness of our proposed YOLOv5-SA-FC model, we compared
it with several other models, including Faster-RCNN [20], YOLOv2 [35], YOLOv3 [36],
YOLOv4 [37], and YOLOv5. The results are presented in Table 2.

Table 2. Comparision of different models.

Model Counting
Accuracy Precision (%) Recall (%) F1 Score

Mean
Average

Precision (%)

Faster-RCNN - 82.10 81.80 0.81 89.5
SSD - 93.8 68.1 0.79 86.6

YOLOv2 69.8 63 71 0.67 69.2
YOLOv3 79.8 86.9 75.4 0.80 83.6
YOLOv4 82.8 84.0 83.0 0.83 88.6
YOLOv5 86.2 91.0 84.3 0.87 91.0

YOLOv5-SA-FC 95.6 92.7 88.1 0.90 93.8

According to Table 2, our proposed YOLOv5-SA-FC model achieved the best per-
formance across all evaluation criteria. Specifically, YOLOv5-SA-FC achieved a count-
ing accuracy of 95.6%, which is 36.96%, 19.80%, 15.46%, and 10.90% higher than the
YOLOv2, YOLOv3, YOLOv4, and YOLOv5 models, respectively. In addition, YOLOv5-
SA-FC achieved a precision of 92.7%, which is 12.9%, 47.14%, 6.67%, 10.36%, and 1.87%
better than the Faster-RCNN, YOLOv2, YOLOv3, YOLOv4, and YOLOv5 models, and
a recall of 88.1%, which is 7.70%, 29.37%, 24.08%, 16.84%, 6.14%, and 4.51% better than
the Faster-RCNN, SSD, YOLOv2, YOLOv3, YOLOv4, and YOLOv5 models. Moreover,
YOLOv5-SA-FC achieved a 0.90 F1 score, which is 0.11, 0.13, 0.34, 0.12, 0.80, and 0.30
higher than the Faster-RCNN, SSD, YOLOv2, YOLOv3, YOLOv4, and YOLOv5 models,
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and an mAP of 93.8%, which is 4.80%, 8.31%, 35.55%, 12.20%, 5.87%, and 3.08% superior to
those of the aforementioned models, respectively. These results clearly demonstrate the
effectiveness of our proposed YOLOv5-SA-FC model.

Figure 7 illustrates the comparison of different models across various iterations. The
curves representing the mAP, recall, and F1 score of YOLOv5-SA-FC consistently outper-
form those of the Faster-RCNN, SSD, YOLOv2, YOLOv3, YOLOv4, and YOLOv5 models,
indicating that YOLOv5-SA-FC had a superior performance, in terms of these metrics,
when compared to the other models. We should note that the precision of the SSD was
superior to that of our model, which was due to the more complex architecture of the SSD,
specifically in terms of its feature extraction network. Additionally, the SSD utilizes a series
of prior boxes (anchors) for object detection, which allows it to cover objects of different
scales and aspect ratios. However, these factors also contribute to the slower speed of the
SSD. Taking into account both speed and performance considerations, the obtained results
validate the effectiveness of YOLOv5-SA-FC throughout the entire training phase.

Figure 7. Comparison curves of different models, including the SSD, Faster-RCNN, YOLOv2,
YOLOv3, YOLOv4, YOLOv5, and YOLOv5-SA-FC models, under different iteration times. The
four subplots show the comparison curves of different models for mAP, precision, recall, and F1 score
at different iterations.

Furthermore, the qualitative comparison results for the different models, including
the Faster-RCNN, SSD, YOLOv2, YOLOv3, YOLOv4, and YOLOv5 models, are depicted in
Figure 8. It is evident that YOLOv5-SA-FC outperformed the other models by obtaining
more accurate predicted bounding boxes, especially in scenarios involving occlusion and
other challenging situations.

The superiority of the YOLOv5-SA-FC model over other models can be attributed to
the following points. The shuffle attention and Focal-CIoU loss used in YOLOv5-SA-FC
enabled it to adaptively focus on more discriminative regions of the image for pig detection,
allowing it to effectively fuse feature maps at various scales and extract more informative
features, even in scenarios involving pig clustering or occlusion. As a result, YOLOv5-SA-
FC was shown to be capable of achieving rapid and efficient pig detection and counting,
with a remarkable 95.6% counting accuracy and 93.8% mAP—significantly better than
those for the other models.
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(c) YOLOv2

(d) YOLOv3

(e) YOLOv4

(f) YOLOv5

(g) YOLOv5-SA-FC

(b) Faster-RCNN

(a) SSD

Figure 8. Qualitative comparison results of SSD, Faster-RCNN, YOLOv2, YOLOv3, YOLOv4,
YOLOv5, and YOLOv5-SA-FC models.
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3.2. Evaluating the Effectiveness of the Shuffle Attention Module

To assess the effectiveness of the shuffle attention module, we conducted a comparison
between YOLOv5 and YOLOv5-SA. YOLOv5-SA was formed by integrating the shuffle
attention module into the YOLOv5 backbone. The results are given in Table 3.

Table 3. Comparision of YOLOv5 and YOLOv5-SA.

Model Counting
Accuracy Precision (%) Recall (%) F1 Score Mean Average

Precision (%)

YOLOv5 86.2 91.0 84.3 0.87 91.0
YOLOv5-SA 94.4 92.3 87.9 0.89 93.6

Table 3 shows that the YOLOv5-SA model outperforms the YOLOv5 model on all
evaluation criteria. Specifically, YOLOv5-SA achieved a 94.4% counting accuracy, which
is 9.51% higher than that of YOLOv5; 92.3% precision, which is 1.43% better than that of
YOLOv5; 87.9% recall, which is 4.27% superior to that of YOLOv5; and a 0.89 F1 score,
which is 2.30% better than that of YOLOv5. Additionally, YOLOv5-SA achieved an mAP
of 93.6%, which is 2.86% higher than that of YOLOv5. These results demonstrate the
effectiveness of the shuffle attention module.

Moreover, Figure 9 illustrates the results obtained by the different models at various
iterations. The curves representing the mAP, precision, recall, and F1 score for YOLOv5-SA
consistently outperformed those of YOLOv5, indicating that YOLOv5-SA had a superior
performance in terms of mAP, precision, recall, and F1 score, when compared to YOLOv5.
These results validate the effectiveness of the shuffle attention module throughout the
entire training phase.

Figure 9. Comparison curves of different models, including YOLOv5 and YOLOv5-SA, under
different iteration times. The four subplots show the comparison curves of different models for mAP,
precision, recall, and F1 score at different iterations.

The superiority of the YOLOv5-SA model over the YOLOv5 model can be attributed
to several reasons. First, the inclusion of spatial and channel attention mechanisms in
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YOLOv5-SA enabled it to focus on both the informative parts and their spatial locations,
leading to more accurate predictions. This attention mechanism allows the model to
dynamically adapt its attention to different regions of the input, improving its ability to
capture relevant features. Second, YOLOv5-SA employs feature fusion techniques and a
channel shuffle operator to facilitate the integration of information across different groups,
enabling the model to capture diverse features and, thus, enhancing its performance. The
channel shuffle operation promotes a cross-group information flow, allowing for better
communication and exchanges of information between different parts of the network.
Overall, the combination of spatial attention, channel attention, feature fusion, and the
channel shuffle operator in YOLOv5-SA led to improved accuracy and efficiency, making it
the more effective and advanced model in the comparison.

3.3. Evaluating of the Effectiveness of the Focal-CIoU Loss Function

To confirm the superiority of our proposed YOLOv5-SA-FC model, we carried out a
comparison with the other models mentioned above, including YOLOv5, YOLOv5-SA, and
YOLOv5-FC, against YOLOv5-SA-FC, which combines the shuffle attention and Focal-CIoU
modules into the YOLOv5 structure. The results are presented in Table 4.

Table 5 clearly demonstrates that the YOLOv5-FC model outperforms the YOLOv5
model across all evaluation criteria. Specifically, YOLOv5-FC achieved an impressive
counting accuracy of 88.8%, which is 3.02% higher than that of YOLOv5. Additionally,
it achieved a precision of 92.2%, which is 1.32% better than that of YOLOv5, and a recall
of 85.8%, which is 1.78% superior to that of YOLOv5. Moreover, YOLOv5-FC achieved
an F1 score of 0.87, which is 2.29% better than that of YOLOv5. Finally, YOLOv5-SA
achieved an mAP of 92.3%, which is 1.43% higher than that of YOLOv5. These results
clearly demonstrate the effectiveness of the shuffle attention module.

Table 4. Comparision of YOLOv5, YOLOv5-FC, YOLOv5-SA, and YOLOv5-SA-FC.

Model Counting
Accuracy Precision (%) Recall (%) F1 Score

Mean
Average

Precision (%)

YOLOv5 86.2 91.0 84.3 0.87 91.0
YOLOv5-FC 88.8 92.2 85.8 0.89 92.3
YOLOv5-SA 94.4 92.3 87.9 0.89 93.6

YOLOv5-SA-FC 95.6 92.7 88.1 0.90 93.8

Table 5. Comparision of YOLOv5 and YOLOv5-FC.

Model Counting
Accuracy Precision (%) Recall (%) F1 Score Mean Average

Precision (%)

YOLOv5 86.2 91.0 84.3 0.87 91.0
YOLOv5-FC 88.8 92.2 85.8 0.89 92.3

Additionally, Figure 10 presents the comparison results of different models at var-
ious iterations. The curves depicting mAP, precision, recall, and F1 scores consistently
outperform for YOLOv5-FC in comparison to YOLOv5. This clearly indicates that YOLOv5-
FC exhibits a superior performance across mAP, precision, recall, and F1 score metrics
when compared to YOLOv5. These results serve as validation for the effectiveness of the
Focal-CIoU loss throughout the entire training phase.
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Figure 10. Comparison curves of different models, including YOLOv5 and YOLOv5-FC, under
different iteration times. The four subplots show the comparison curves of different models for mAP,
precision, recall, and F1 score at different iterations.

The YOLOv5-FC model has been shown to outperform YOLOv5 due to several key
factors. One of the main advantages of the Focal-CIoU loss function is that it addresses
the issue of class imbalance while also improving the localization accuracy of the object
detection model. Additionally, this loss function can effectively reduce the impact of easy
negative samples, which are samples that are clearly not objects of interest. By doing so,
the model can better focus on the more challenging samples that are critical for accurate
object detection. Overall, the YOLOv5-FC model offers significant improvements over its
predecessor, making it a powerful tool for object detection tasks.

3.4. Evaluating the Superiority of YOLOv5-SA-FC

To confirm the superiority of our proposed YOLOv5-SA-FC model, we conduct a com-
parison with other models mentioned in the previous section, such as YOLOv5, YOLOv5-
SA, and YOLOv5-FC. We also introduce YOLOv5-SA-FC, which combines the shuffle
attention and Focal-IoU modules into the YOLOv5 structure. The comparison results are
presented in Table 4.

Table 4 displays a comparison of the performance metrics for different models, high-
lighting the effectiveness of our proposed YOLOv5-SA-FC model. Our model outperforms
others across all evaluation criteria, as demonstrated by Table 4. Specifically, YOLOv5-
SA-FC showcases significant advantages over YOLOv5, YOLOv5-FC, and YOLOv5-SA
models. In terms of counting accuracy, it achieves an impressive 95.6%, surpassing YOLOv5
by 10.90%, YOLOv5-FC by 7.66%, and YOLOv5-SA by 1.27%. Additionally, in precision
our model achieves 92.7%, outperforming YOLOv5 by 1.87%, YOLOv5-FC by 0.54%, and
YOLOv5-SA by 0.43%. Moreover, in recall YOLOv5-SA-FC achieves 88.1%, which is
4.51%, 2.68%, and 0.23% higher than YOLOv5, YOLOv5-FC, and YOLOv5-SA, respectively.
Further emphasizing its superiority, YOLOv5-SA-FC attains a 0.90 F1 score, showcasing
improvements of 3.44%, 1.12%, and 1.12% over YOLOv5, YOLOv5-FC, and YOLOv5-
SA, respectively. Additionally, its mean average precision (mAP) of 93.8% surpasses the
corresponding values for the aforementioned models by 3.08%, 1.62%, and 0.21%.
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Furthermore, Figure 11 showcases the comparison results of different models at
various iterations. The curves representing mAP, precision, recall, and F1 scores show
YOLOv5-SA-FC consistently outperforms those of other models. This clearly indicates that
YOLOv5-SA-FC exhibits a superior performance across all metrics when compared to the
other models. These results serve as strong validation for the effectiveness of YOLOv5-SA-
FC throughout the entire training phase.

Figure 11. Comparison curves of different models, including YOLOv5, YOLOv5-FC, YOLOv5-SA,
and YOLOv5-SA-FC, under different iteration times. The four subplots show the comparison curves
of different models for mAP, precision, recall, and F1 score at different iterations.

A heatmap comparison of the different models is provided in Figure 12. The heatmaps
illustrate the differences in the activation patterns and highlight the areas of focus for
each model. The heatmap of YOLOv5-SA-FC presents more precise and concentrated
activations, indicating its ability to accurately identify and localize objects. In contrast, the
heatmaps of other models show scattered, less distinct activations. Additionally, the other
models were prone to missing detections in the case of occlusion, as can be observed from
the YOLOv5 heatmap. This comparison intuitively demonstrates the superior performance
of YOLOv5-SA-FC in terms of capturing relevant features and making accurate predictions.

The YOLOv5-SA-FC model was found to outperform the other models for several
reasons. The shuffle attention mechanism allows the model to selectively focus on infor-
mative features while suppressing irrelevant ones, thus reducing the impact of noisy or
irrelevant information and improving the robustness of the model. The Focal-CIoU loss
function addresses the issue of class imbalance in object detection, which is common in
real-world scenarios as certain classes tend to be rare or under-represented. It assigns
higher weights to hard examples and reduces the influence of easy ones, improving the
model’s accuracy and localization performance. Through the combination of these two
techniques, the YOLOv5-SA-FC model achieved a better performance than the original
YOLOv5 model. In particular, the proposed model detected objects with higher precision
and recall while also being more efficient and robust with respect to variations in lighting,
scale, and orientation.
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Input Image

YOLOv5

YOLOv5-SA-FC

YOLOv5-FC

YOLOv5-SA

Figure 12. Comparison heatmaps of different models, including YOLOv5, YOLOv5-FC, YOLOv5-SA,
and YOLOv5-SA-FC, respectively.

4. Discussion

This paper introduces a more advanced version of the YOLOv5 model, called YOLOv5-
SA-FC, which is specifically designed for the efficient detection of individual pigs. To
demonstrate the effectiveness of our proposed model, we carried out a comparative study
against several popular models, as well as ablating our model to obtain four different
models: YOLOv5, YOLOv5-SA, YOLOv5-FC, and YOLOv5-SA-FC. Our experimental re-
sults indicated that both the YOLOv5-SA and YOLOv5-FC models outperform the original
YOLOv5 model, thereby validating the effectiveness of both the Focal-CIoU and shuffle
attention modules.

We also found some existing research used in the detection of pigs with YOLOv5 (e.g.,
Lai [38], Li [39], and Zhou [40]) and compared them with our method. The specific results
are shown in Table 6 and were assessed using the mAP@0.5 metric:

Table 6. Comparision of ECA, CA, CBAM, YOLOv5-SA, and YOLOv5-SA-FC.

ECA [38] CA [39] CBAM [40] YOLOv5-SA YOLOv5-SA-FC

Mean Average
Precision (%) 93.5 92.6 92.9 93.6 93.8

From Table 6, it can be seen that our YOLOv5-SA performs the best. The shuffle atten-
tion uses dual-channel fusion technology and a channel shuffling operation, making the
model more sensitive to capturing target features, which enables the model to adaptively
extract valuable information in critical areas of the image, reduce irrelevant interference
(such as overlapping pigs), and improve accuracy. Moreover, the YOLOv5-SA-FC model
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achieved the best performance in all comparisons, further demonstrating the superiority
of our proposed model. By leveraging the shuffle attention module, our model could
dynamically focus on the most relevant features for pig detection and counting while re-
ducing the weights of non-essential features. Additionally, the Focal-CIoU loss mechanism
gave a higher priority to predicted boxes having higher overlap with the target box, thus
significantly improving the detection performance.

In addition, to translate our research findings into practical productivity, we require
several essential practical steps. Firstly, it is necessary to ensure that the farm has a comput-
ing center with sufficient performance capabilities to efficiently handle the computational
tasks required by the models. Secondly, real-time video feeds from each pigpen need to be
transmitted to the computing center, which may involve laying a substantial amount of
wiring on the farm or establishing a wireless network hub to ensure the timeliness of data
received by the computing center. Finally, personnel training is essential for the farm to
operate smoothly, maintain the system, and provide technical support when necessary. In
summary, deploying the model into practical production requires consideration of numer-
ous factors, such as software, hardware, personnel, etc., and their effective integration to
ensure the system’s proper functioning.

In conclusion, our proposed YOLOv5-SA-FC model outperformed existing models
in terms of accuracy and efficiency, making it a promising solution for pig detection and
counting applications.

5. Conclusions

In this paper, we proposed a new pig detection and counting model called YOLOv5-
SA-FC, which integrates shuffle attention and Focal-CIoU loss into the YOLOv5 framework
backbone. The channel attention and spatial attention units in the shuffle attention module
enable YOLOv5-SA-FC to effectively focus on the critical regions of the image with a
high detection capability, thereby enhancing the feature extraction performance with more
discriminative, robust, and rich feature maps. The Focal-CIoU loss mechanism forces the
model to prioritize the predicted boxes having higher overlap with the target box, thereby
increasing the contribution of positive samples and improving the detection performance.
Furthermore, we conducted ablation studies, the results of which indicated the performance
enhancements brought by both the shuffle attention and Focal-CIoU modules. Moreover,
the experimental results indicated that the proposed YOLOv5-SA-FC model presents a
promising pig detection and counting performance, with a 93.8% mAP and 95.6% accuracy,
thus significantly outperforming other state-of-the-art models.

In future work, we plan to develop more sophisticated and advanced models to further
enhance the pig detection and counting performance. We intend to explore various data
augmentation methods to improve the robustness of the model and experiment with other
attention mechanisms to capture crucial features for pig detection with better accuracy.
Additionally, we hope to extend our work to more complex scenarios, including pig tracking
and behavior analysis, in order to better understand their habits. Finally, we will investigate
the potential of applying our proposed model to various animal detection and counting
tasks aside from pig detection, thus expanding the scope of our research.
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AP Average precision
mAP Mean average precision
Faster R-CNN Faster real-time convolutional neural network
R-FCN Region-based fully convolutional networks
SSD Single-Shot MultiBox Detector
NMS Non-maximal suppression
FPN Feature Pyramid Network
PAN Path Aggregation Network
GAP Global average pooling
GN Group Norm
Conv Convolutional
SPPF Spatial pyramid pooling fusion
SiLU Sigmoid Linear Unit
CSPNet Cross-Stage Partial Network
SPP Spatial pyramid pooling
CBAM Convolutional Block Attention Module
SC Spatial Pyramid Pooling and Convolutional Block Attention Module
YOLO You only look once
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