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Simple Summary: Enteropathogenic viruses, such as hepatitis E virus, and diarrhoeagenic protists
have been frequently reported in swine and can infect a wide range of mammals, including humans.
Data on their fecal shedding and circulation pathways are still lacking or incomplete. Hence, the
aim of the present study was to characterize the presence of microeukaryotes and HEV in the wild
boar of Portugal. Of the 144 samples tested, 2 showed the presence of Cryptosporidium scrofarum,
21 Balantioides coli, 42 Blastocystis ST5, and 4 HEV genotype 3. The present work shows that potentially
zoonotic protozoa and HEV are circulating in wild boar populations in Portugal.

Abstract: Enteropathogenic parasites and viruses have been frequently reported in swine and can
infect a wide range of mammals, including humans. Among the wide variety of parasites infecting
swine, diarrhoeagenic protists are among those that cause significant morbidity. Hepatitis E virus
(HEV) has also been reported both in domestic pigs and wild boar and is known to have an important
public health significance. These agents share the fecal–oral transmission route, but data on their fecal
shedding and circulation pathways are still lacking or incomplete. Hence, the aim of the present study
was to characterize the presence of microeukaryotes and HEV in the wild boar of Portugal. Wild boar
stool samples (n = 144) were obtained during the official hunting seasons (October to February) in
2018/2019, 2019/2020, and 2021/2022 and tested for Cryptosporidium spp., Balantioides coli, Giardia
duodenalis, Blastocystis sp., Enterocytozoon bieneusi and HEV by molecular assays, followed by sequenc-
ing and phylogenetic analysis. We have detected Cryptosporidium scrofarum (1.4%, 95% CI: 0.2–4.9),
B. coli (14.6%, 95% CI: 9.2–21.4), Blastocystis ST5 (29.2%, 95% CI: 21.9–37.2) and HEV genotype 3 (2.8%,
95% CI: 0.7–6.9; subgenotypes 3e and 3m). Co-infections were observed in thirteen animals where
two were positive for both HEV and B. coli, one was positive for both C. scrofarum and Blastocystis ST5,
and ten were positive for both B. coli and Blastocystis ST5. Giardia duodenalis and E. bieneusi were not
detected in the surveyed wild boar population. As far as we know, this is the first report describing
protist infections by Cryptosporidium spp., B. coli, and Blastocystis sp., as well as the first identification
of the emerging HEV genotype 3m in wild boar of Portugal. The present work shows that potentially
zoonotic protozoa and HEV are circulating in wild boar populations in Portugal. Awareness and
epidemic-surveillance network implementation measures targeting wild boar are needed to prevent
the spread of these pathogenic agents to humans.
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1. Introduction

The presence of zoonotic parasites and viruses has been frequently reported in swine
and is a potential threat to human health [1,2]. Animals can host a variety of parasites,
such as those in the Cryptosporidium, Balantioides, Giardia, Blastocystis, and Enterocytozoon
genera, that may have a negative impact on their welfare [3–7]. Among the wide variety of
parasites infecting swine, diarrhoeagenic protists are known to cause significant morbidity
in wild boar and domestic pigs [8–10]. Direct contact with infected hosts or their fecal
material, or indirect transmission through the consumption of contaminated water or
food, are the most common transmission pathways to animals and humans [5,11–21]. Of
those, Cryptosporidium spp. infections have a direct impact on development rates and are
linked to significant economic losses in livestock production [22,23]. Up until now, at least
46 Cryptosporidium species have been identified [24,25], of which host-adapted C. suis and
C. scrofarum, and zoonotic C. parvum, C. felis, C. muris, C. tyzzeri, and C. andersoni have
been reported in pigs [26–30]. Cryptosporidium suis seems to be more prevalent among pre-
weaned pigs, whereas C. scrofarum is among starters, especially those weaned at a younger
age [27]. Balantioides coli, formerly known as Balantidium coli, is a protozoan ciliate able to
infect pigs, cattle, sheep, goats, camels, equids, and human and non-human primates [9].
Domestic pigs and wild boars are the dominant reservoir host species. Of note, B. coli is
regarded as the only ciliate known to infect humans [31]. Most swine and human infections
by this protozoan are asymptomatic [9]. To date, three B. coli genotypes (A, B, and C) have
been identified. Genotypes A and B have mostly been found in pigs, whereas genotype C
is prevalent in non-human primates [32].

Giardia duodenalis is a parasite that affects humans and many other animals. This
protozoan has two morphological stages, trophozoite and cyst, where the latter is the
infective stage. Giardia duodenalis is now classified as a species complex with eight (A–H)
distinct genotypic assemblages. In domestic pigs, assemblage E is usually the most com-
mon assemblage found [33,34], although assemblages A, B, C, D, and F have also been
sporadically detected [35,36].

The non-flagellated stramenopile Blastocystis sp. is commonly found in the intestine of
humans and a wide spectrum of animals [37]. It is regarded as the most common eukaryotic
agent present in human feces [38]. Blastocystis sp. has a high degree of genetic variability
at the small subunit of the ribosomal RNA gene (ssu rDNA) [39,40], with 30 proposed
subtypes (STs) [41–43]. ST1-ST8 and ST12 have the significant zoonotic potential [44].
Initially thought to be human-specific, ST9 has also been identified in peafowl [45] and
non-human primates [46], among other animals’ species. Additionally, ST10, ST14, and
ST23 have also been described in humans [47,48]. The remaining subtypes have only been
isolated from non-human animal species [43,45,49–54].

Enterocytozoon bieneusi is a fungi-related, obligate intracellular pathogen that infects
intestinal epithelial cells, resulting in severe or chronic diarrhea and malabsorption [55].
Over 600 genotypes of E. bieneusi have been reported and classified into 11 phylogenetic
groups based on polymorphisms in the internal transcribed spacer (ITS) of the ssu rRNA
gene [56,57]. Host-adapted genotypes are found in groups 3–11, whereas zoonotic geno-
types reported in humans and animals fall within groups 1 and 2 [58]. Pigs are the primary
reservoir host for E. bieneusi [3]. Currently, 134 ITS E. bieneusi genotypes have been identified
in pigs or wild boars worldwide [59]. Among them, 19 genotypes (BEB4, CAF1, CS-1, CS-4,
D, EbpA, EbpC, EbpD, H, Henan-III, Henan-IV, I, LW1, O, PigEBITS5, PigEBITS7, PigEB10,
and SH8) have also been detected in humans and are therefore considered zoonotic [59].
More than 20 genotypes have been identified in wild boars, the majority of which (D, EbpA,
EbpC) are zoonotic [58].
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Besides parasites, viruses also frequently infect animals and humans [2]. Among them, the
hepatitis E virus (HEV) is regarded as an emerging public health concern [60]. Hepatitis E virus
belongs to the Hepeviridae family, genus Paslahepevirus [61–63], and causes hepatitis in humans
by consumption of undercooked meat and meat products in industrialized countries [64].

HEV genotypes 3–7 are zoonotic [65], with viral strains being isolated from both
human and animal populations. The main HEV reservoirs are domestic pigs and wild
boar [66,67], but zoonotic strains have also been found in rabbits, deer, camels, and rats [68].
Most HEV infections in developed countries are autochthonous, caused by HEV 3, and
spread via zoonotic HEV infection from raw or undercooked swine meat or direct contact
with infected swine [68]. In Europe, HEV 3 is the predominant genotype, and those strains
belonging to the clade 3efg are thought to be associated with more severe illnesses [69].

With over 230,000 licensed hunters currently, the Portuguese population has a long
tradition of hunting and eating game meat (Relatório de Actividade Cinegética, 2022). In
Portugal, HEV 3 has been detected in hunted wild boar and domestic pigs [70,71]. The HEV
3 circulation in swine likely contributed to the 16.3% anti-HEV IgG seroprevalence detected
in a nationwide Portuguese population serosurvey [72]; however, molecular information
on circulating HEV in Portugal is still scarce.

Studies on microeukaryotes and viruses have been increasing over time [1,73–75].
However, there is still an important lack of information on co-infections involving both
microeukaryotes and HEV in wild boar, with recent data suggesting an interaction between
these two groups of enteric pathogens [1]. The aim of the present study was to detect and
characterize the circulation of microeukaryotes and HEV in the wild boar of Portugal.

2. Materials and Methods
2.1. Sample Collection

Individual wild boar stool samples (n = 144) were obtained during three official
hunting seasons (October to February) in 2018/2019, 2019/2020, and 2021/2022 across
Portugal (Figure 1). Within 1–3 h after death, fecal samples were collected from the
posterior part of the large intestine. All fecal samples processed and tested in the present
study were formed, suggestive of light pathogen infections and absence of gastrointestinal
manifestations (diarrhea). No animals were killed for the sake of this study. All stool
samples were kept at 4 ◦C and transported to the lab within 12 h. Samples were then stored
at −20 ◦C until DNA/RNA extraction, which was completed within 2 weeks of collection.

2.2. DNA and RNA Extraction

Fecal suspensions (10%) were prepared in phosphate-buffered saline pH 7.2 and
centrifuged for 5 min at 8000× g. DNA and RNA were simultaneously extracted and
purified using the QIAamp Cador Pathogen Mini Kit (Qiagen, Hilden, Germany), accord-
ing to the manufacturer’s instructions using 200 µL of the clarified supernatants in the
QIAcube®automated platform (Qiagen). Eluted DNA and RNA were stored at −80 ◦C
with RNase-free water.

2.3. Molecular Detection of Cryptosporidium spp.

To detect Cryptosporidium spp., a nested-PCR assay was used to amplify a 587 bp
fragment of the ssu rRNA gene with the primer sets CR-P1/CRP2 and CR-P3/CPB-DIAGR,
as recommended by Tiangtip and Jongwutiwes (2002) [76].

2.4. Molecular Detection of Balantioides coli

Detection of B. coli was attempted by a direct PCR assay targeting the complete
ITS1–5.8s-rRNA–ITS2 region and the last 117 bp (3t’ end) of the ssu rRNA gene (400 bp)
using the primer set B5D/RD5 as proposed by Ponce-Gordo et al. (2011) [77].
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2.5. Molecular Detection of Giardia duodenalis

For the detection of G. duodenalis a real-time PCR (qPCR) assay was used to amplify a
62-bp region of the ssu rRNA gene with the primer set Gd-80F/Gd-127R as proposed by
Verweij et al. (2003) [78].

2.6. Molecular Detection of Blastocystis sp.

For the detection of Blastocystis sp., a direct PCR assay was used to amplify a 600-bp
region of the ssu rRNA gene with the pan-Blastocystis, barcode primer set RD5/BhRDr
according to Scicluna et al. (2006) [79].

2.7. Molecular Detection and Characterization of Enterocytozoon bieneusi

For the detection of E. bieneusi, a nested PCR assay was used to amplify the ITS region as
well as sections of the surrounding large and small subunits of the rRNA gene (390 bp) with the
primer sets EBITS3/EBITS4 and EBITS1/EBITS2.4 as described by Buckholt et al. (2002) [80].

2.8. Molecular Detection of HEV

For the detection of HEV, a broad nested RT-PCR assay was used targeting the RNA-
dependent RNA-polymerase (RdRp) gene of the open reading frame ORF 1 region of
the genome (331–334 bp) with the primer sets HEV-cs/HEV-cas and HEV-csn/HEV-casn
(Johne et al., 2010) [81].
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2.9. General Procedures

Oligonucleotides used for the molecular detection of the parasites and HEV described
above are shown in Table S1. All qPCR reactions were run on a CFX Connect Real-Time PCR
Detection System (Bio-Rad; Hercules, CA, USA). All direct and nested PCR reactions were
run on a T100 thermocycler (Bio-Rad). Reaction mixtures included Fast qPCR Mastermix
(Probe) (GriSP®, Porto, Portugal), Fast PCR Mastermix (GriSP®), and 2x Xpert Fast Hotsart
Mastemix (GriSP®). The amplified DNA fragments were identified by electrophoresis of
PCR amplification products at 100 V for 40 min on 1.5% agarose gels stained with Xpert
Green Safe DNA gel dye (GriSP®), and UV light was irradiated to confirm the results.

2.10. Sequencing and Phylogenetic Analysis

Using GRS PCR & Gel Band Purification Kit (GriSP®), amplicons that appeared to be
positive and the expected size were purified. After purification using the Sanger method and
the correct internal specific primers for the target gene, bidirectional sequencing was carried out,
and with the help of the BioEdit Sequence Alignment Editor v7.1.9 software package, version 2.1,
sequences were aligned and compared to sequences found in the NCBI (GenBank) nucleotide
database, which were retrieved on 3 November 2022 (http://blast.ncbi.nlm.nih.gov/Blast).
MEGA version X software [82] and the Interactive Tree Of Life (iTOL) platform [83] were used
for the phylogenetic analysis, together with the sequences found in this work and additional
representative sequences received from GenBank. The maximum-likelihood (ML) approach was
used to infer this analysis [82,84], and Tamura 3-parameter model was used to estimate the ML
bootstrap values using 1000 replicates [84]. This model was determined by MEGA version X [82]
to be the most effective replacement. The sequences obtained in this study were deposited in
GenBank with accession numbers OM349065-OM349073/OP779215-OP779226 (Balantioides coli),
ON322862-ON322864/ON322866-ON322871/OP765595-OP765627 (Blastocystis), OM319689-
OM319690 (Cryptosporidium scrofarum) and OM751885-OM751887/OP765582 (HEV).

2.11. Statistical Analysis

The prevalences of microeukaryote parasites and HEV in wild boar of Portugal popu-
lations investigated were calculated based on the ratio of the number of positive samples to
the total number of samples examined with a 95% confidence interval (95% CI). Statistical
analysis of association in co-infections among microeukaryote parasites and HEV was
conducted using the Chi-square (χ2) or Fisher’s exact test performed with GraphPad Prism
5.0 (GraphPad Software, Inc., San Diego, CA, USA). A p-value ≤ 0.05 was used to determine
that the observed differences were statistically significant.

3. Results

Cryptosporidium spp. was detected in two out of 144 stool samples of wild boar (1.4%;
95% confidence interval [CI]: 0.2–4.9) (Table 1). Sequence analyses of the obtained amplicons
showed 100% identity with a C. scrofarum sequence from a wild boar in neighboring Spain
(MT114476) (Figure 2).

Table 1. Summary of prevalences of microeukaryote parasites and HEV in wild boar of Portugal.

Cryptosporidium spp. Balantioides coli Giardia duodenalis Blastocystis spp. Enterocytozoon bieneusi Hepatitis E Virus

Positive samples 2 21 0 42 0 4
Prevalence 2/144 (1.4%) 21/144 (14.6%) 0/144 (0%) 42/144 (29.2%) 0/144 (0%) 4/144 (2.8%)

Twenty-one samples tested positive for B. coli (14.6%, 95% CI: 9.2–21.4). Six samples
generated sequences showing 95–100% identity with a B. coli isolate from a pig in South
Korea (MZ676851); two shared 99.6% and 98.8% identity, respectively, with a B. coli isolate
also from a South Korean pig (MZ676842), one sequence shared 100% identity with a B.
coli isolate from a pig in Malaysia (MG734707), one shared 96.8% identity with a B. coli
isolate from a pig in Kenya (JQ073378), three sequences shared 99.4–100% identity with

http://blast.ncbi.nlm.nih.gov/Blast
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a B. coli isolate from a pig in China (MT252055), one shared 100% identity with a B. coli
isolate from a pig in Spain (MW648345), four sequences shared 99.4–100% identity with
a B. coli isolate from a pig in China (MT252069), one shared 98.5% identity with a B. coli
isolate from a pig in China (MT252062), one shared 97.4% identity with a B. coli isolate from
a pig in Spain (MT112069), and one shared 100% identity with a B. coli isolate from a pig in
China (MT252079). Sixteen and five B. coli sequences were assigned to genotypes A and B,
respectively (Figure 3).
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Blastocystis sp. was identified in 42 samples (29.2%, 95% CI: 21.9–37.2). BLAST analysis
indicated that six sequences shared 99.8–100% identity with a Blastocystis sp. isolated from
a pig in Romania (MK801419), one shared 100% identity with a Blastocystis sp. isolated
from a domestic pig in Romania (MK801418), and thirty-five shared 98.8–100% identity
with Blastocystis isolate from a pig in Poland (MT373853). All Blastocystis sequences were
identified as subtype 5 (Figure 4).
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Four samples were positive for HEV (2.8%, 95% CI: 0.7–6.9). Amplicons from two
samples generated sequences sharing 94.1% and 97.0% identity with human isolates from
France (MW355236 and MF444030, respectively), one sequence shared 99.3% identity with
an isolate from a mussel in Spain (LN887198), and one shared 96.2% identity with a human
isolate from Spain (MZ289103). All HEV sequences belonged to genotype 3, being three of
subtype 3m and one subtype 3e (Figure 5).
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Molecular testing for the presence of G. duodenalis and E. bieneusi yielded negative results.
Co-infections were observed in thirteen animals (Table 2 and Table S2). Two were

positive for both HEV and B. coli, one was positive for both C. scrofarum and Blastocystis
ST5, and ten were positive for both B. coli and Blastocystis ST5. In this study, no asso-
ciation between Cryptosporidium spp., Balantioides coli, Giardia duodenalis, Blastocystis sp.,
Enterocytozoon bieneusi, and HEV was significant (Table S3).

Table 2. Summary of pathogen detection in stools.

Fecal Presence No. of Samples

Balantioides coli + Blastocystis spp. 10
Balantioides coli + Hepatitis E virus 2

Blastocystis spp. + Cryptosporidium spp. 1
Blastocystis spp. 42
Balantioides coli 21

Hepatitis E virus 4
Cryptosporidium spp. 2

Giardia duodenalis 0
Enterocytozoon bieneusi 0

4. Discussion

Here, we report the first description of protist infections by Cryptosporidium spp.,
B. coli, and Blastocystis sp., as well as the first identification of the emerging HEV genotype
3 m in the wild boar of Portugal.

Cryptosporidium infections were detected at a 1.4% prevalence. The occurrence rates of
this pathogen in other European wild boar populations varied largely from 8.2% (Spain, [1]),
13.3% (Central Europe, [27]), and 25% (Sweden, [29]). However, care should be taken when
comparing prevalence data from different studies, as different detection methods (microscopy,
PCR) differ in diagnostic sensitivities. Molecular methods are considered a highly sensitive
and specific analytical tool for the detection and characterization of infections, providing
reliable data when compared to conventional parasitological methods [85]. Notwithstanding,
the performance of PCR-based methods can be affected by several factors, including inefficient
removal of inhibitors present in stools, low parasitic load, and insufficient quantity/quality
of starting DNA material, potentially leading to underestimated prevalence rates [86]. The
B. coli prevalence of 14.6% found in the wild boar population studied was slightly higher
than that from a study conducted in neighboring Spain, where an 11.7% prevalence rate
was reported [1]. Interestingly, a recent study has identified B. coli in the wild cervids of
Portugal [87], suggesting potentially different novel transmission routes. Nevertheless, the
discrepancies observed in prevalence between the present study and the study mentioned
before conducted in Spain may be explained, at least partially, by epidemiologic factors, as
samples from the study were retrospectively studied up to 20 years ago.

Blastocystis sp. was also detected in this wild boar population, with an occurrence rate
of 29.2%. As far as we know, this is the first study reporting the presence of Blastocystis sp.
in wild boar from Portugal. Additionally, our results showed a lower prevalence of the
agent than compared with one from Italy (61.9%, [88]) and substantially higher than a
similar study conducted in Spain (0.1%, [1]). Nevertheless, these prevalence rate differences
should be analyzed with care as the sample size from Italy was considerably lower than the
present study, and the sample size from the study conducted in Spain was similar, which
shows a higher circulation of Blastocystis in wild boar of Portugal when comparing to those
of the study from Spain. Furthermore, our molecular data confirm host-adapted ST5 as the
main Blastocystis genetic variant circulating in European wild boar.

Remarkably, neither the protozoan G. duodenalis nor the microsporidia E. bieneusi were
detected. Both pathogens have been previously described, with occurrences ranging from
1.7–2.1% in Croatia [89] and Spain [3]. Our lack of positive results for these two species
may be related to the relatively low sample size analyzed in the present study.
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Concerning viral detection, the overall occurrence of HEV (2.8%) was lower than
that previously reported in a Portuguese study (10%) on wild boar stools [71]. The HEV
sequences detected in wild boar were of subgenotype 3e (J454) and subgenotype 3m (J275;
J296; LB06) [90]. Subgenotype 3e has been found in wild boars in Portugal and Germany,
while countries such as France, Italy, Slovenia, Sweden, and the United Kingdom reported
HEV 3e in pigs [91]. In Europe, the predominant HEV genotype is HEV 3, with severe
illness being associated with those strains belonging to clade 3efg [69]. Of note, HEV
3 found in our study has been linked to fulminant autochthonous hepatitis E in humans
in Europe [92]. Interestingly, subgenotype 3m has been detected in three wild boars from
this study. This subgenotype was recently discovered in the same host species in southern
Spain [93], having also been detected in humans of the same region. Our study is the first
to report the detection of this genotype in Portugal that belongs to the same clade as other
sequences recently isolated from humans in France and Spain. Since zoonotic transmission
of this novel HEV 3 subgenotype has already been demonstrated [94], more surveys should
be conducted in human populations.

In this study, protist and HEV co-infections were detected in thirteen wild boars
(Table 2). One sample had a concomitant infection by Blastocystis ST5 and C. scrofarum,
two samples were co-infected with B. coli genotype A and HEV genotype 3m, and ten
samples were co-infected with B. coli and Blastocystis ST5. Previous reports have suggested
that enteroparasites in co-infection with HEV can modulate the infectivity of the latter
in swine [1,75]. That survey hypothesized that the presence of extracellular G. duodenalis
and Blastocystis sp. could offer protection against HEV infection by an unknown mech-
anism, whereas intracellular Cryptosporidium spp. and E. bieneusi had the reverse effect,
favoring HEV infection [1,75]. Additionally, there are two mechanisms that can explain
the interaction between viruses and enteroparasites, such as mechanical competition or
cross-immune impairment. The effect of HEV infection increased sensitivity in the case of
intracellular enteroparasites may be connected to the enteroparasites’ induction of immune
evasion. However, extracellular enteroparasites may potentially have an immune-related
mechanism that reduces the vulnerability to HEV infection [75]. Our results show that
there is no association between the presence of the microeukaryote parasites reported in
this study and HEV. Nevertheless, caution should be taken when interpreting our results
as the number of positive animals is low. The above-mentioned associations would require
additional studies involving larger sample sizes.

Additionally, the prevalence rates of the microeukaryotes Blastocystis and B. coli were
higher in the hunting season of 2021/2022 (42.9% and 15.6%, respectively) when compared
with the previous 2018/2019 (30% and 0%) and 2019/2020 (10.3% and 15.5%) seasons,
with positive samples being widely distributed throughout the country in all studied
seasons, showing an increase in cases during these past few years. Moreover, C. scrofarum
was only detected in 2 wild boar samples from the hunting season of 2019/2020 in the
central area of Portugal. Finally, HEV was not detected in samples from the hunting season
of 2018/2019, whilst three samples from the hunting season 2019/2020 were positive
for HEV with subgenotypes 3e and 3m being described, and one from 2021/2022 with
subgenotype 3m characterized which was collected in the same district (Viana do Castelo)
as the subgenotype 3e identified in 2019/2020, showing the potential circulation of several
subgenotypes of HEV genotype 3 in wild boar of this region.

5. Conclusions

In conclusion, the present work shows that potentially zoonotic protozoa and virus
are circulating in wild boar populations in Portugal. Awareness and implementation of an
epidemic-surveillance network targeting wild ungulates should be carried out to prevent
the spread of these pathogenic agents to humans. To avoid the dissemination of zoonotic
agents, veterinarians, and hunters, also meat suppliers and consumers must establish a
comprehensive approach to biosecurity and awareness.
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27. Němejc, K.; Sak, B.; Květoňová, D.; Hanzal, V.; Janiszewski, P.; Forejtek, P.; Rajský, D.; Ravaszová, P.; McEvoy, J.; Kváč, M. Cryptosporidium
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